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This paper deals with the problem of identifying and filtering a class of continuous-time nonlinear dynamic games (nonlinear
differential games) subject to additive and undesired deterministic perturbations. Moreover, the mathematical model of this class
is completely unknownwith the exception of the control actions of each player, and even though the deterministic noises are known,
their power (or their effect) is not. Therefore, two differential neural networks are designed in order to obtain a feedback (perfect
state) information pattern for the mentioned class of games. In this way, the stability conditions for two state identification errors
and for a filtering error are established, the upper bounds of these errors are obtained, and two new learning laws for each neural
network are suggested. Finally, an illustrating example shows the applicability of this approach.

1. Introduction

1.1. Preliminaries and Motivation. Nowadays, an investiga-
tion field that has been developed widely is the design of
controllers for a certain group of systems involved in a
conflicting interaction, that is to say, when the objective
of each implicated system differs and when the known
information about this interaction may be distinct for every
system (e.g., [1]).

More formally, this special class of system groups can be
represented by means of the dynamic noncooperative game
theory, where the decision making process (or interaction) is
called a game and each involved system in it is called a player
[2].

From the viewpoint of control theory, a dynamic game
is controlled by obtaining its equilibrium solution, and in
order to do so, a (mathematical) model of this dynamic game
is needed. So, several publications about dynamic games
(and particularly about continuous-time dynamic games) are
based on the complete knowledge of themodel that describes
its dynamics (see, e.g., [3, 4]). Nevertheless, having a model
(or even a partial model) of a continuous-time dynamic game
is not always possible.

On the other hand, the equilibrium solution of a dynamic
game is also based on the information structure that every
player has or, in other words, on the available information
that each player can use in the control strategy. For example,
one can obtain an open-loop Nash equilibrium solution by
using the maximum principle technique or a feedback Nash
equilibrium solution by utilizing the dynamic programing
method (see [2]).

According to the above, the aim of an identification
process in terms of a dynamic game should be the modeling
of such game and the obtaining of its information structure,
that is, the guarantee that the control strategy of every player
gives an equilibrium solution for a game despite its dynamic
uncertainties. In this way, the works of [5, 6] obtain feedback
control strategies for differential games modeled through
norm-bounded uncertainties; the studies of [7–9] achieve
equilibrium solutions for several classes of differential games
under a multimodel approach; the analyses of [10, 11] present
adaptive algorithms for determining equilibrium solutions
without the complete knowledge of the game dynamics, and
the work of [12] proposes the obtaining of a suboptimal equi-
librium solutionwhere a differential game is approximated by
a fuzzy model.
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However, an identification process could be deficient if
there exist undesired perturbations in the game dynamics,
that is to say, if the obtained information structure of
the game is corrupted by (deterministic) noises. Thereby,
some deterministic filtering works have been published in
order to solve this issue. For example, [13] describes the
concept of adaptive noise canceling for the estimation of
signals corrupted by additive perturbations; [14] introduces
a finite horizon robust 𝐻

∞
filtering method that provides a

guaranteed bound for the estimation error in the presence of
both parameter uncertainty and a known input signal; [15]
presents the filtering of the states of a time-varying uncertain
linear system with deterministic disturbances of limited
power; and [16] derives an optimal filtering formula for linear
time-varying discrete systems with unknown inputs.

Therefore, according to these preliminary works, the
motivation of this paper is to solve the problem of identifying
and filtering a class of nonlinear differential games with
additive deterministic perturbations, where themathematical
model of this class and the effect (or power) of the noises are
completely unknown.

1.2. Main Contribution. Since the introduction of con-
tinuous-time recurrent neural networks (see [17]), the self-
named differential neural networks have proved to be an
excellent tool in the identification, state estimation, and
control of several systems and of the appointed continuous-
time dynamic games.

For example, in [18], differential neural networks are used
for the identification of dynamical systems; references [19–
21] design differential neural network observers for adaptive
state estimation; theworks of [22, 23] propose neural network
controllers for several applications; and [24] shows a com-
pendium of differential neural networks for identification,
state estimation, and control of nonlinear systems. Also, [25]
treats the state estimation problem for affine nonlinear dif-
ferential games using a differential neural network observer,
and in [26], a nearly optimal Nash equilibrium for classes of
deterministic and stochastic nonlinear differential games is
obtained using differential neural networks.

Moreover, speaking of recurrent neural networks and
deterministic filtering, the work of [27] develops a recurrent
neural network for robust optimal filter design in a 𝐻

∞

approach, and in [28], algorithms are presented in order
to obtain adaptive filtering in nonlinear dynamic systems
approximated by neural networks.

Nevertheless, the idea of using differential neural net-
works for identification and filtering of a class of continuous-
time nonlinear dynamic games is a new approach that, as far
as the authors know, has not been treated before.

Hence, the main contribution of this paper is the proof
that it is possible to identify and to filter the states of a certain
class of nonlinear differential games through the designing
of two differential neural networks. Moreover, this filtered
identification process generates a feedback (perfect state)
information pattern for the mentioned class of games.

More specifically, although the structure of this class is
known, its mathematical model is not; that is to say, the only

available information of the nonlinear differential game is
the control actions of each player. So, by using only this
available information, a first differential neural network will
be designed for the identification of the nonlinear dynamic
game with the undesired perturbations, and, similarly, the
second differential neural network will identify the effect
of these additive noises in the dynamics of the nonlinear
differential game, which means that the perturbations are
known but their power is not.

According to the above, one of these two differential
neural networks will do the complete identification process
of the class of nonlinear differential games, and, noticeably,
the filtering (or the canceling) of the undesired perturbations
will be held by subtracting the state estimates of the two
differential neural networks.

Finally, it is important to emphasize that these two
differential neural networks have the structure of multilayer
perceptrons (see [23, 24, 29]), and, by means of Lyapunov’s
secondmethod of stability, the learning laws for their synaptic
weights are derived.

2. Class of Nonlinear Differential Games

Consider the following continuous-time nonlinear dynamic
game given by

�̇�
𝑡
= 𝑓 (𝑥

𝑡
) +

𝑁

∑

𝑖=1

𝑔
𝑖

(𝑥
𝑡
) 𝑢

𝑖

𝑡
+ 𝐻𝜉

𝑡
, (1)

where 𝑡 ∈ [0,∞); the index 𝑖 = 1, 2, 3, . . . , 𝑁 denotes the
number of players; 𝑥

𝑡
∈ R𝑛 is the state vector of the game;

𝑢
𝑖

𝑡
∈ 𝑈

𝑖

adm ⊆ R𝑠𝑖 denotes the admissible control action
vector of each player; the mappings 𝑓 : R𝑛

→ R𝑛 and
𝑔
𝑖

: R𝑛

→ 𝑈
𝑖

adm are unknown nonlinear functions; 𝜉
𝑡
∈ R𝑛

denotes a known deterministic perturbation vector; and𝐻 is
an unknown constant matrix of adequate dimensions.

Similarly, consider now the following set of cost functions
(or performance indexes) associated with each player and
given by

𝐽
𝑖

𝑡
= ∫

∞

0

𝜃
𝑖

(𝑥
𝑡
, 𝑢

𝑖

𝑡
) 𝑑𝑡, (2)

where 𝜃𝑖 : R𝑛

× 𝑈
𝑖

adm → R is well-defined for the 𝑖 player.
Moreover, the information structure of each player

(denoted by 𝜂
𝑖

𝑡
) has a standard feedback (perfect state)

pattern; that is to say,

𝜂
𝑖

𝑡
= {𝑥

𝑡
} (3)

and a permissible control strategy (or control policy) of the 𝑖
player is defined by the set of functions 𝜌𝑖(𝑥

𝑡
) satisfying

𝜌
𝑖

: R
𝑛

→ 𝑈
𝑖

adm. (4)

Nevertheless, the class of nonlinear differential games (1)–(4)
is not completely described if the following assumptions are
not fulfilled.
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Assumption 1. The admissible control actions 𝑢𝑖
𝑡
are measur-

able and bounded for all time 𝑡 ∈ [0,∞); that is,

𝑢
𝑖

𝑡


≤ 𝑢

𝑖

< ∞, (5)

where 𝑢𝑖 ∈ R are known constants.

Assumption 2. In order to guarantee the global existence and
uniqueness of the solution of (1), the unknown nonlinear
functions𝑓(⋅) and 𝑔𝑖(⋅) satisfy the Lipschitz condition; that is,
there exist 0 < 𝜓, 𝜓𝑖

∈ R constants such that the equations
𝑓 (𝜒1) − 𝑓 (𝜒2)

 ≤ 𝜓
𝜒1 − 𝜒2

 ,


𝑔
𝑖

(𝜒
1
) − 𝑔

𝑖

(𝜒
2
)

≤ 𝜓

𝑖 𝜒1 − 𝜒2


(6)

are fulfilled for all 𝜒
1
, 𝜒

2
∈ X ⊂ R𝑛. Moreover, 𝑓(⋅) and 𝑔𝑖(⋅)

satisfy the following linear growth condition:
𝑓 (𝜒)

 ≤ 𝑓1
+ 𝑓

2

𝜒
 ,


𝑔
𝑖

(𝜒)

≤ 𝑔

𝑖

1
+ 𝑔

𝑖

2

𝜒
 ,

(7)

where 𝑓
1
, 𝑓

2
, 𝑔

𝑖

1
, 𝑔

𝑖

2
∈ R are known constants.

Assumption 3. Under the permissible control strategies
𝜌
𝑖

(𝑥
𝑡
), the (feedback) class of nonlinear differential games

given by (1)–(4) is quadratically stable; that is, there exists a
Lyapunov (maybe unknown) function 0 ≤ 𝐸

𝑡
: R𝑛

→ R
such that the inequalities

[
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(𝑥
𝑡
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𝑖

𝑡
+ 𝐻𝜉

𝑡
] ≤ −𝜆

1

𝑥𝑡


2

,



𝜕𝐸
𝑡

𝜕𝑥
𝑡



≤ 𝜆
2

𝑥𝑡


(8)

are satisfied for any known 0 < 𝜆
1
, 𝜆

2
∈ R constants.

Assumption 4. The deterministic perturbation 𝜉
𝑡
is measur-

able and bounded for all time 𝑡 ∈ [0,∞); that is,
𝜉𝑡
 ≤ 𝜉 < ∞, (9)

where 𝜉 ∈ R is a known constant.

3. Problem Statement

Let the class of continuous-time nonlinear dynamic games
(1)–(4) be such that Assumptions 1 to 4 are fulfilled. Then,
if one makes the following change of variables:

̇𝑦
𝑡
= 𝑓 (𝑥

𝑡
) +

𝑁

∑

𝑖=1

𝑔
𝑖

(𝑥
𝑡
) 𝑢

𝑖

𝑡
+ 𝐻𝜉

𝑡
, (10)

�̇�
𝑡
= 𝐻𝜉

𝑡
, (11)

it is clear that the expected or uncorrupted vector state of the
class of nonlinear differential games (1)–(4) can be defined as

𝑥
𝑡
= 𝑦

𝑡
− 𝑧

𝑡
. (12)

Thereby, and in view of the fact that 𝑓(⋅), 𝑔𝑖(⋅), and 𝐻

are unknown, the tackled problem in this paper is to obtain
a feedback (perfect state) information pattern 𝜂

𝑖

𝑡
= {𝑥

𝑡
},

given that 𝑥
𝑡
∈ R𝑛 satisfies the following filtering (or noise

canceling) equation:

𝑥
𝑡
= 𝑦

𝑡
− �̂�

𝑡
(13)

and where 𝑦
𝑡
, �̂�

𝑡
∈ R𝑛 are the state estimates of differential

equations (10) and (11), respectively.

4. Differential Neural Networks Design

In order to solve the problem described above, consider a first
differential neural network given by the following equation:

̇̂𝑦
𝑡
= 𝑊

1,𝑡
𝜎 (𝑉

1,𝑡
𝑦
𝑡
) +

𝑁

∑

𝑖=1

𝑊
𝑖

2,𝑡
𝜑
𝑖

(𝑉
𝑖

2,𝑡
𝑦
𝑡
) 𝑢

𝑖

𝑡
, (14)

where 𝑡 ∈ [0,∞); 𝑖 = 1, 2, 3, . . . , 𝑁 denotes the number of
players; 𝑦

𝑡
∈ R𝑛 is the vector state of the neural network;

the matrices 𝑊
1,𝑡

∈ R𝑛×𝑘, 𝑉
1,𝑡

∈ R𝑘×𝑛, 𝑊𝑖

2,𝑡
∈ R𝑛×𝑟𝑖 , and

𝑉
𝑖

2,𝑡
∈ R𝑟𝑖×𝑛 are synaptic weights of the neural network; and

𝜎 : R𝑘

→ R𝑘 and𝜑𝑖 : R𝑟𝑖 → R𝑟𝑖×𝑠𝑖 are activation functions
of the neural network.

Remark 5. For simplicity (and from now on) 𝜎 := 𝜎(𝑉
1,𝑡
𝑦
𝑡
)

and 𝜑𝑖 := 𝜑𝑖(𝑉𝑖

2,𝑡
𝑦
𝑡
).

According to [29], the differential neural network (14)
is classified as multilayer perceptrons and its structure was
initially taken from [23, 24]. Also, this differential neural
network only uses sigmoid activation functions; that is, 𝜎 and
𝜑
𝑖 have a diagonal structure with elements

𝜎
𝑝
(𝑤) =

𝑎
𝑝

1 + 𝑒
−𝑏𝑝𝑤

− 𝑐
𝑝

𝑤=𝑉1,𝑡𝑦𝑡

, 𝑝 = 1, 2, . . . , 𝑘 (15)

𝜑
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(𝑤

𝑖

) =

𝑎
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𝑖
− 𝑐

𝑞

𝑤𝑖=𝑉𝑖
2,𝑡
𝑦𝑡

,

𝑞 = 1, 2, . . . ,min (𝑟
𝑖
, 𝑠

𝑖
) ,

(16)

where 0 < 𝑎
𝑝
, 𝑏

𝑝
, 𝑐
𝑝

∈ R and 0 < 𝑎
𝑞
, 𝑏

𝑞
, 𝑐
𝑞

∈ R
are known constants that manipulate the geometry of the
sigmoid function.

Thus, in view of the fact that 𝜎 and 𝜑
𝑖 are sigmoid

activation functions, they are bounded and they satisfy the
following equations:

[�̃� − 𝐴 [𝑦
𝑡
− 𝑦

𝑡
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𝑇

Λ
𝜎
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𝑡
− 𝑦

𝑡
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𝑇
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𝜎
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𝑖
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(17)
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] 𝑦

𝑡
+ ]
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(18)
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[]
𝜎
]
𝑇

Λ
𝜎
 []

𝜎
]

≤ 𝑙
𝜎
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𝑡
]
𝑇
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𝑇

Λ
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]𝜑 [[𝑉
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(19)

where 𝐴, Λ
𝜎
, Λ

𝜎
 , Λ ]𝜎 , Λ 𝜎

, Λ𝑖

𝜑
, Λ𝑖

𝜑
 , Λ𝑖

]𝜑 , Λ
𝑖

𝜑
, 𝑙
𝜎
, and 𝑙𝑖

𝜑
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known constants of adequate dimensions, and
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𝑡
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:= 𝜎 (𝑉
1,𝑡
𝑦
𝑡
) − 𝜎 (𝑉
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𝑦
𝑡
) ,

𝜑
𝑖
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𝑖

(𝑉
𝑖

2,𝑡
𝑦
𝑡
) − 𝜑

𝑖

(𝑉
𝑖

2,0
𝑦
𝑡
) ,

𝐷
𝜎
:=

𝜕

𝜕𝜓
𝜎 (𝜓) ∈ R

𝑘×𝑘

,

𝐷
𝑖

𝜑
:=

𝜕

𝜕𝜓
𝜑
𝑖

(𝜓) ∈ R
𝑟𝑖 .

(20)

Nevertheless, there are some design conditions that this
first differential neural network needs to satisfy.

Assumption 6. According to Assumption 2, the approxima-
tion or residual error of (14) corresponding to the unidenti-
fied dynamics of (10) and that is given by

𝐹
𝑡
:= ̇𝑦

𝑡
− [𝑊

1,0
𝜎 (𝑉

1,0
𝑦
𝑡
) +

𝑁

∑
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𝑊
𝑖

2,0
𝜑
𝑖

(𝑉
𝑖

2,0
𝑦
𝑡
) 𝑢

𝑖

𝑡
] , (21)

where 𝑊
1,0
, 𝑉

1,0
, 𝑊𝑖

2,0
, and 𝑉

𝑖

2,0
are initial synaptic weights

(when 𝑡 = 0), is bounded and satisfies the following
inequality:

[𝐹
𝑡
]
𝑇

Λ
𝐹
[𝐹

𝑡
] ≤ 𝐹

1
+ 𝐹

2
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𝑇

Λ
𝐹
[𝑦

𝑡
] , (22)

where 0 < Λ
𝐹
∈ R𝑛×𝑛 is a known constant and 0 < 𝐹

1
,

𝐹
2
∈ R.

Remark 7. The constants 𝐹
1
and 𝐹

2
in (22) are not known

a priori because of the fact that they depend on the perfor-
mance of the differential neural network (14); that is to say,
the residual error (21) will depend on the number of neurons
used in (14) and on its parameters, and therefore 𝐹

1
and 𝐹

2

will depend on this too (see [24]).

Assumption 8. There exist values of Λ
𝜎
, Λ

𝜎
 , Λ𝑖

𝜑
, Λ𝑖

𝜑
 , Λ 𝜎

,
Λ
𝑖

𝜑
, Λ

𝐹
, 𝑙

𝜎
, 𝑙𝑖

𝜑
, 𝐴, and 𝑄, such that they provide a 0 < 𝑃 =

[𝑃]
𝑇

∈ R𝑛×𝑛 solution to the algebraic Riccati equation as
follows:

𝑃𝐴 + [𝐴 ]
𝑇

𝑃 + 𝑃𝑅𝑃 + 𝑄 = 0, (23)

where

𝐴 = 𝑊
1,0
𝐴, (24)
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1,0
] [[Λ

𝜎
]
−1
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]
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+
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] [[Λ

𝑖

𝜑
]
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𝑖
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𝑖

2,0
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,

(25)

𝑄 = 2𝑄 + Λ
𝜎
+

𝑁

∑

𝑖=1

[𝑢
𝑖

]
2

Λ
𝑖

𝜑
, (26)

where 𝐴 such that 𝐴 ∈ R𝑛×𝑛 is Hurwitz and 𝑄 is known.

On the other hand, consider now a second differential
neural network given by the following equation:

̇̂𝑧
𝑡
= 𝑊

3,𝑡
𝛼 (�̂�

𝑡
) + 𝑊

4,𝑡
𝛾 (�̂�

𝑡
) 𝜉

𝑡
, (27)

where 𝑡 ∈ [0,∞); �̂�
𝑡
∈ R𝑛 is the vector state; the matrices

𝑊
3,𝑡

∈ R𝑛×𝛿 and 𝑊
4,𝑡

∈ R𝑛×𝜇 are synaptic weights; and 𝛼 :

R𝑛

→ R𝛿 and 𝛾 : R𝑛

→ R𝜇×𝑛 are sigmoid activation
functions.

Then, similar to𝜎 and𝜑𝑖, the activation functions𝛼(⋅) and
𝛾(⋅) satisfy the following inequalities:

[�̃� − 𝐴 [�̂�
𝑡
− 𝑧

𝑡
]]

𝑇

Λ
�̃�
[�̃� − 𝐴 [�̂�

𝑡
− 𝑧

𝑡
]]

≤ [�̂�
𝑡
− 𝑧

𝑡
]
𝑇

Λ
𝛼
[�̂�

𝑡
− 𝑧

𝑡
] ,

[𝛾 𝜉
𝑡
]
𝑇

Λ
𝛾
[𝛾 𝜉

𝑡
] ≤ [ 𝜉 ]

2

[�̂�
𝑡
− 𝑧

𝑡
]
𝑇

Λ
𝛾
[�̂�

𝑡
− 𝑧

𝑡
] ,

(28)

where 𝐴, Λ
�̃�
, Λ

𝛼
, Λ

𝛾
, and Λ

𝛾
are known constants of

adequate dimensions, and

�̃� := 𝛼 (�̂�
𝑡
) − 𝛼 (𝑧

𝑡
) ,

𝛾 := 𝛾 (�̂�
𝑡
) − 𝛾 (𝑧

𝑡
) .

(29)

Thereby, it is easy to confirm that if 𝛼(⋅) = 𝜎, if 𝛾(⋅) =
𝜑
𝑖, if 𝜉

𝑡
= 𝑢

𝑖

𝑡
, and if 𝑉

1,𝑡
= 𝑉

𝑖

2,𝑡
= 𝐼, where 𝑖 = 1,

then the differential neural networks (14) and (27) coincide.
Hence, two new assumptions (corresponding toAssumptions
6 and 8) must be satisfied for this second differential neural
network.

Assumption 9. According (again) to Assumption 2, the
approximation or residual error of (27) corresponding to the
unidentified dynamics of (11) and that is given by

𝐺
𝑡
:= �̇�

𝑡
− [𝑊

3,0
𝛼 (𝑧

𝑡
) + 𝑊

4,0
𝛾 (𝑧

𝑡
) 𝜉

𝑡
] , (30)

where𝑊
3,0

and𝑊
4,0

are initial synaptic weights (when 𝑡 = 0),
is bounded and satisfies the inequality

[𝐺
𝑡
]
𝑇

Λ
𝐺
[𝐺

𝑡
] ≤ 𝐺

1
+ 𝐺

2
[𝑧

𝑡
]
𝑇

Λ
𝐺
[𝑧

𝑡
] , (31)

where 0 < Λ
𝐺
∈ R𝑛×𝑛 is a known constant and 0 < 𝐺

1
,

𝐺
2
∈ R.
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Remark 10. Similar to Remark 7, the constants 𝐺
1
and 𝐺

2

in (31) are not known a priori because they depend on the
performance of the differential neural network (27).

Assumption 11. If there exist values of Λ
�̃�
, Λ

𝛾
, Λ

𝐺
,𝑊

3,0
, and

𝑊
4,0

such that

[𝑊
4,0
] [Λ

𝛾
]
−1

[𝑊
4,0
]
𝑇

=

𝑁

∑

𝑖=1

[𝑊
𝑖

2,0
] [[Λ

𝑖

𝜑
]
−1

+ [Λ
𝑖

𝜑
]
−1

] [𝑊
𝑖

2,0
]
𝑇

,

𝑊
3,0

= 𝑊
1,0
,

Λ
�̃�
= Λ

𝜎
+ Λ

𝜎
 ,

Λ
𝐺
= Λ

𝐹

(32)

and values of Λ
𝛼
and Λ

𝛾
such that

𝑄 = Λ
𝛼
+ [ 𝜉 ]

2

Λ
𝛾
− Λ

𝜎
−

𝑁

∑

𝑖=1

[𝑢
𝑖

]
2

Λ
𝑖

𝜑
, (33)

then they provide a 0 < 𝑃 = [𝑃]
𝑇

∈ R𝑛×𝑛 solution to the
algebraic Riccati equation (23), where

𝐴 = 𝑊
3,0
𝐴, (34)

𝑅 = [𝑊
3,0
] [Λ

�̃�
]
−1

[𝑊
3,0
]
𝑇

+ [Λ
𝐺
]
−1

+ [𝑊
4,0
] [Λ

𝑖

𝜑
]
−1

[𝑊
4,0
]
𝑇

,

(35)

𝑄 = 𝑄 + Λ
𝛼
+ [ 𝜉 ]

2

Λ
𝛾
. (36)

Remark 12. Notice that the equalities (32) and (33) were
chosen in order to guarantee the same solution of the
algebraic Riccati equation (23) in Assumptions 8 and 11. Also,
notice that the first term of the right-hand side of (26) will
always be greater than the first term of the right-hand side of
(36); that is, 2𝑄 > 𝑄.

5. Main Result on Identification and Filtering

According to the above, the main result on identification and
filtering for the class of nonlinear differential games (1)–(4)
deals with both the development of an adaptive learning law
for the synaptic weights of the differential neural networks
(14) and (27) and the inference of a maximum value of
identification error for the dynamics (10) and (11).

Moreover, the establishment of a maximum value of fil-
tering error between the uncorrupted states and the identified
ones is obtained; namely, an error is defined by

𝑒
𝑡
:= 𝑥

𝑡
− 𝑥

𝑡
, (37)

where 𝑥
𝑡
∈ R𝑛 is given by noise canceling equation (13) and

𝑥
𝑡
∈ R𝑛 is given by the expected or uncorrupted vector state

(12).
More formally, the main obtained result is described in

the following three theorems.

Theorem 13. Let the class of continuous-time nonlinear
dynamic games (1)–(4) be such that Assumptions 1 to 4 are
fulfilled. Also, let the differential neural network (14) be such
that Assumptions 6 and 8 are satisfied. If the synaptic weights
of (14) are adjusted with the following learning law:

�̇�
1,𝑡
= −2𝐾

𝑊1
𝑃𝜀

𝑡
[𝜎]

𝑇

�̇�
1,𝑡
= − 𝐾

𝑉1
[2[𝐷

𝜎
]
𝑇

[𝑊
1,0
]
𝑇

𝑃𝜀
𝑡

+𝑙
𝜎
[Λ ]𝜎]

𝑇

�̃�
1,𝑡
𝑦
𝑡
] [𝑦

𝑡
]
𝑇

,

�̇�
𝑖

2,𝑡
= −2𝐾

𝑖

𝑊2

𝑃𝜀
𝑡
[𝑢

𝑖

𝑡
]
𝑇

[𝜑
𝑖

]
𝑇

,

�̇�
𝑖

2,𝑡
= −𝐾

𝑖

𝑉2

[2 ⟨𝐷
𝑖

𝜑
, 𝑢

𝑖

𝑡
⟩ [𝑊

𝑖

2,0
]
𝑇

𝑃𝜀
𝑡

+𝑙
𝑖

𝜑
[𝑢

𝑖

]
2

[Λ
𝑖

]𝜑]
𝑇

�̃�
𝑖

2,𝑡
𝑦
𝑡
] [𝑦

𝑡
]
𝑇

,

(38)

where
𝜀
𝑡
:= 𝑦

𝑡
− 𝑦

𝑡
(39)

denotes the identification error, �̃�
1,𝑡
:= 𝑉

1,𝑡
−𝑉

1,0
, �̃�𝑖

2,𝑡
:= 𝑉

𝑖

2,𝑡
−

𝑉
𝑖

2,0
, and 𝐾

𝑊1
, 𝐾

𝑉1
, 𝐾𝑖

𝑊2

, and 𝐾𝑖

𝑉2

are known symmetric and
positive-definite constant matrices, then it is possible to obtain
the nextmaximumvalue of identification error in average sense
𝐾

𝑖

𝑊2

as follows:

lim sup
𝑡→∞

(
1

𝑡
∫

𝑡

0

([𝜀
𝜏
]
𝑇

2𝑄 [𝜀
𝜏
]) 𝑑𝜏) ≤ 𝐹

1
. (40)

Proof. Taking into account the residual error (21), the differ-
ential equation (10) can be expressed as

̇𝑦
𝑡
= 𝑊

1,0
𝜎 (𝑉

1,0
𝑦
𝑡
) +

𝑁

∑

𝑖=1

𝑊
𝑖

2,0
𝜑
𝑖

(𝑉
𝑖

2,0
𝑦
𝑡
) 𝑢

𝑖

𝑡
+ 𝐹

𝑡
. (41)

Then, by substituting (14) and (41) into the derivative of (39)
with respect to 𝑡 and by adding and subtracting the terms
[𝑊

1,0
𝜎], [𝑊

1,0
𝜎(𝑉

1,0
𝑦
𝑡
)], [𝑊𝑖

2,0
𝜑
𝑖

𝑢
𝑖

𝑡
], and [𝑊𝑖

2,0
𝜑
𝑖

(𝑉
𝑖

2,0
𝑦
𝑡
)𝑢

𝑖

𝑡
], it

is easy to confirm that

̇𝜀
𝑡
= �̃�

1,𝑡
𝜎 +𝑊

1,0
�̃� + 𝑊

1,0
�̃�


− 𝐹
𝑡

+

𝑁

∑

𝑖=1

�̃�
𝑖

2,𝑡
𝜑
𝑖

𝑢
𝑖

𝑡
+

𝑁

∑

𝑖=1

𝑊
𝑖

2,0
𝜑
𝑖

𝑢
𝑖

𝑡
+

𝑁

∑

𝑖=1

𝑊
𝑖

2,0
𝜑
𝑖


𝑢
𝑖

𝑡
,

(42)

where �̃�
1,𝑡
:= 𝑊

1,𝑡
−𝑊

1,0
and �̃�𝑖

2,𝑡
:= 𝑊

𝑖

2,𝑡
−𝑊

𝑖

2,0
. Now, let the

Lyapunov (energetic) candidate function

𝐿
𝑡
:= 𝐸

𝑡
+ [𝜀

𝑡
]
𝑇

𝑃 [𝜀
𝑡
] +

1

2
tr ([�̃�

1,𝑡
]
𝑇

[𝐾
𝑊1
]
−1

[�̃�
1,𝑡
])

+
1

2
tr ([�̃�

1,𝑡
]
𝑇

[𝐾
𝑉1
]
−1

[�̃�
1,𝑡
])

+
1

2

𝑁

∑

𝑖=1

tr ([�̃�𝑖

2,𝑡
]
𝑇

[𝐾
𝑖

𝑊2

]
−1

[�̃�
𝑖

2,𝑡
])

+
1

2

𝑁

∑

𝑖=1

tr ([�̃�𝑖

2,𝑡
]
𝑇

[𝐾
𝑖

𝑉2

]
−1

[�̃�
𝑖

2,𝑡
])

(43)
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be such that the inequalities (8) are fulfilled (see
Assumption 3), and let

�̇�
𝑡
≤ −𝜆

1

𝑦𝑡


2

+ 2[𝜀
𝑡
]
𝑇

𝑃 [ ̇𝜀
𝑡
]

+ tr ([�̇�
1,𝑡
]
𝑇

[𝐾
𝑊1
]
−1

[�̃�
1,𝑡
])

+ tr ([�̇�
1,𝑡
]
𝑇

[𝐾
𝑉1
]
−1

[�̃�
1,𝑡
])

+

𝑁

∑

𝑖=1

tr ([�̇�𝑖

2,𝑡
]
𝑇

[𝐾
𝑖

𝑊2

]
−1

[�̃�
𝑖

2,𝑡
])

+

𝑁

∑

𝑖=1

tr ([�̇�𝑖

2,𝑡
]
𝑇

[𝐾
𝑖

𝑉2

]
−1

[�̃�
𝑖

2,𝑡
])

(44)

be the derivative of (43) with respect to 𝑡. Then, by substi-
tuting (42) into the second term of the right-hand side of
(44) and by adding and subtracting the term [2[𝜀

𝑡
]
𝑇

𝑃𝐴𝜀
𝑡
],

one may get

2[𝜀
𝑡
]
𝑇

𝑃 [ ̇𝜀
𝑡
] = 2[𝜀

𝑡
]
𝑇

𝑃𝑊
1,0
[�̃� − 𝐴𝜀

𝑡
] + 2[𝜀

𝑡
]
𝑇

𝑃𝑊
1,0
�̃�


+

𝑁

∑

𝑖=1

2[𝜀
𝑡
]
𝑇

𝑃𝑊
𝑖

2,0
𝜑
𝑖

𝑢
𝑖

𝑡

+

𝑁

∑

𝑖=1

2[𝜀
𝑡
]
𝑇

𝑃𝑊
𝑖

2,0
𝜑
𝑖


𝑢
𝑖

𝑡
− 2[𝜀

𝑡
]
𝑇

𝑃𝐹
𝑡

+ 2[𝜀
𝑡
]
𝑇

𝑃�̃�
1,𝑡
𝜎 +

𝑁

∑

𝑖=1

2[𝜀
𝑡
]
𝑇

𝑃�̃�
𝑖

2,𝑡
𝜑
𝑖

𝑢
𝑖

𝑡

+ [𝜀
𝑡
]
𝑇

[𝑃𝐴 + [𝐴 ]
𝑇

𝑃] [𝜀
𝑡
] .

(45)

Next, by analyzing the first five terms of the right-hand side
of (45) with the following inequality:

[𝑋]
𝑇

𝑌 + [𝑌]
𝑇

𝑋 ≤ [𝑋]
𝑇

[Λ]
−1

[𝑋] + [𝑌]
𝑇

Λ [𝑌] (46)

which is valid for any pair of matrices 𝑋,𝑌 ∈ RΩ×Γ and for
any constant matrix 0 < Λ ∈ RΩ×Ω, where Ω and Γ are
positive integers (see [24]), the following is obtained.

(i) Using (46) and (17) in the first term of the right-hand
side of (45), then

2[𝜀
𝑡
]
𝑇

𝑃𝑊
1,0
[�̃� − 𝐴𝜀

𝑡
]

≤ [𝜀
𝑡
]
𝑇

[𝑃 [𝑊
1,0
] [Λ

𝜎
]
−1

[𝑊
1,0
]
𝑇

𝑃] [𝜀
𝑡
]

+ [𝜀
𝑡
]
𝑇

Λ
𝜎
[𝜀

𝑡
] .

(47)

(ii) Substituting (18) into the second term of the right-
hand side of (45) and using (46) and (19), then

2[𝜀
𝑡
]
𝑇

𝑃𝑊
1,0
�̃�


≤ 2[𝜀
𝑡
]
𝑇

𝑃𝑊
1,0
𝐷

𝜎
�̃�
1,𝑡
𝑦
𝑡

+ [𝜀
𝑡
]
𝑇

[𝑃 [𝑊
1,0
] [Λ

𝜎
]
−1

[𝑊
1,0
]
𝑇

𝑃] [𝜀
𝑡
]

+ 𝑙
𝜎
[�̃�

1,𝑡
𝑦
𝑡
]
𝑇

Λ ]𝜎 [�̃�1,𝑡𝑦𝑡] .

(48)

(iii) Using (46) and (17) in the third term of the right-hand
side of (45), then

𝑁

∑

𝑖=1

2[𝜀
𝑡
]
𝑇

𝑃𝑊
𝑖

2,0
𝜑
𝑖

𝑢
𝑖

𝑡

≤

𝑁

∑

𝑖=1

[𝜀
𝑡
]
𝑇

[𝑃 [𝑊
𝑖

2,0
] [Λ

𝑖

𝜑
]
−1

[𝑊
𝑖

2,0
]
𝑇

𝑃] [𝜀
𝑡
]

+

𝑁

∑

𝑖=1

[𝑢
𝑖

]
2

[𝜀
𝑡
]
𝑇

Λ
𝑖

𝜑
[𝜀

𝑡
] .

(49)

(iv) Substituting (18) into the fourth term of the right-
hand side of (45) and using (46) and (19), then

𝑁

∑

𝑖=1

2[𝜀
𝑡
]
𝑇

𝑃𝑊
𝑖

2,0
𝜑
𝑖


𝑢
𝑖

𝑡

≤

𝑁

∑

𝑖=1

2[𝜀
𝑡
]
𝑇

𝑃𝑊
𝑖

2,0
⟨𝐷

𝑖

𝜑
, 𝑢

𝑖

𝑡
⟩ �̃�

𝑖

2,𝑡
𝑦
𝑡

+

𝑁

∑

𝑖=1

[𝜀
𝑡
]
𝑇

[𝑃 [𝑊
𝑖

2,0
] [Λ

𝑖

𝜑
]
−1

[𝑊
𝑖

2,0
]
𝑇

𝑃] [𝜀
𝑡
]

+

𝑁

∑

𝑖=1

𝑙
𝑖

𝜑
[𝑢

𝑖

]
2

[�̃�
𝑖

2,𝑡
𝑦
𝑡
]
𝑇

Λ
𝑖

]𝜑 [�̃�
𝑖

2,𝑡
𝑦
𝑡
] .

(50)

(v) Using (46) and (22) in the fifth term of the right-hand
side of (45), then

−2[𝜀
𝑡
]
𝑇

𝑃𝐹
𝑡
≤ [𝜀

𝑡
]
𝑇

[𝑃[Λ
𝐹
]
−1

𝑃] [𝜀
𝑡
]

+ 𝐹
1
+ 𝐹

2
[𝑦

𝑡
]
𝑇

Λ
𝐹
[𝑦

𝑡
] .

(51)

So, by substituting (47)–(51) into the right-hand side of
(45) and by adding and subtracting the term [[𝜀

𝑡
]
𝑇

2𝑄[𝜀
𝑡
]],

inequality (44) can be expressed as

�̇�
𝑡
≤ [𝜀

𝑡
]
𝑇

[𝑃𝐴 + [𝐴 ]
𝑇

𝑃 + 𝑃𝑅𝑃 + 𝑄] [𝜀
𝑡
]

− [𝜀
𝑡
]
𝑇

2𝑄 [𝜀
𝑡
] + 𝐹

1
+ 𝐹

2

Λ 𝐹



𝑦𝑡


2

− 𝜆
1

𝑦𝑡


2

+ tr (Υ
𝑊1
) + tr (Υ

𝑉1
)

+

𝑁

∑

𝑖=1

tr (Υ𝑖

𝑊2

) +

𝑁

∑

𝑖=1

tr (Υ𝑖

𝑉2

) ,

(52)
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where the algebraic Riccati equation in the first term of the
right-hand side of (52) is described in (23) and in (24)–(26),
and

Υ
𝑊1

= [�̇�
1,𝑡
]
𝑇

[𝐾
𝑊1
]
−1

[�̃�
1,𝑡
] + 2𝜎[𝜀

𝑡
]
𝑇

𝑃�̃�
1,𝑡

Υ
𝑉1
= [�̇�

1,𝑡
]
𝑇

[𝐾
𝑉1
]
−1

[�̃�
1,𝑡
] + 2𝑦

𝑡
[𝜀

𝑡
]
𝑇

𝑃𝑊
1,0
𝐷

𝜎
�̃�
1,𝑡

+ 𝑙
𝜎
𝑦
𝑡
[𝑦

𝑡
]
𝑇

[�̃�
1,𝑡
]
𝑇

Λ ]𝜎 [�̃�1,𝑡] ,

Υ
𝑖

𝑊2

= [�̇�
𝑖

2,𝑡
]
𝑇

[𝐾
𝑖

𝑊2

]
−1

[�̃�
𝑖

2,𝑡
] + 2𝜑

𝑖

𝑢
𝑖

𝑡
[𝜀

𝑡
]
𝑇

𝑃�̃�
𝑖

2,𝑡
,

Υ
𝑖

𝑉2

= [�̇�
𝑖

2,𝑡
]
𝑇

[𝐾
𝑖

𝑉2

]
−1

[�̃�
𝑖

2,𝑡
]

+ 2𝑦
𝑡
[𝜀

𝑡
]
𝑇

𝑃𝑊
𝑖

2,0
⟨𝐷

𝑖

𝜑
, 𝑢

𝑖

𝑡
⟩ �̃�

𝑖

2,𝑡

+ 𝑙
𝑖

𝜑
[𝑢

𝑖

]
2

𝑦
𝑡
[𝑦

𝑡
]
𝑇

[�̃�
𝑖

2,𝑡
]
𝑇

Λ
𝑖

]𝜑 [�̃�
𝑖

2,𝑡
] .

(53)

Thereby, by equating (53) to zero, that is

Υ
𝑊1

= Υ
𝑉1
= Υ

𝑖

𝑊2

= Υ
𝑖

𝑉2

= 0, (54)

and by, respectively, solving for �̇�
1,𝑡
, �̇�

1,𝑡
, �̇�𝑖

2,𝑡
, and �̇�𝑖

2,𝑡
, the

learning law given by (38) is obtained. Now, by choosing

Λ 𝐹

 ≤
𝜆
1

𝐹
2

(55)

and by solving the algebraic Riccati equation (23), one may
get

�̇�
𝑡
≤ − [𝜀

𝑡
]
𝑇

2𝑄 [𝜀
𝑡
] + 𝐹

1
. (56)

Thus, by integrating both sides of (56) on the time interval
[0, 𝑡], the following is obtained:

∫

𝑡

0

([𝜀
𝜏
]
𝑇

2𝑄 [𝜀
𝜏
]) 𝑑𝜏

≤ 𝐿
0
− 𝐿

𝑡
+ [𝐹

1
] 𝑡 ≤ 𝐿

0
+ [𝐹

1
] 𝑡,

(57)

and by dividing (57) by 𝑡, it is easy to verify that

1

𝑡
∫

𝑡

0

([𝜀
𝜏
]
𝑇

2𝑄 [𝜀
𝜏
]) 𝑑𝜏 ≤

𝐿
0

𝑡
+ 𝐹

1
. (58)

Finally, by calculating the upper limit as 𝑡 → ∞, the max-
imum value of identification error in average sense is the one
described in (40). This means that the identification error is
bounded between zero and (40), and, therefore, this means
that 𝜀

𝑡
is stable in the sense of Lyapunov.

Theorem 14. Let the class of continuous-time nonlinear
dynamic games (1)–(4) be such that Assumptions 1 to 4 are
fulfilled. Also, let the differential neural network (27) be such
that Assumptions 9 and 11 are satisfied. If the synaptic weights
of (27) are adjusted with the following learning law:

�̇�
3,𝑡
= −2𝐾

𝑊3
𝑀𝜖

𝑡
[𝛼 (�̂�

𝑡
)]

𝑇

,

�̇�
𝑖

4,𝑡
= −2 𝐾

𝑖

𝑊4

𝑀𝜖
𝑡
[𝜉

𝑡
]
𝑇

[𝛾 (�̂�
𝑡
)]

𝑇

,

(59)

where

𝜖
𝑡
:= �̂�

𝑡
− 𝑧

𝑡
(60)

denotes the identification error and 𝐾
𝑊3

and 𝐾𝑖

𝑊4

are known
symmetric and positive-definite constant matrices, then it is
possible to obtain the next maximum value of identification
error in average sense 𝐾𝑖

𝑊2

as follows:

lim sup
𝑡→∞

(
1

𝑡
∫

𝑡

0

([𝜖
𝜏
]
𝑇

𝑄 [𝜖
𝜏
]) 𝑑𝜏) ≤ 𝐺

1
. (61)

Proof. Taking into account the residual error (30), the differ-
ential equation (11) can be expressed as

�̇�
𝑡
= 𝑊

3,0
𝛼 (𝑧

𝑡
) + 𝑊

4,0
𝛾 (𝑧

𝑡
) 𝜉

𝑡
+ 𝐺

𝑡
. (62)

Then, by substituting (27) and (62) into the derivative of (60)
with respect to 𝑡, and by adding and subtracting the terms
[𝑊

3,0
𝛼(�̂�)] and [𝑊

4,0
𝛾(�̂�)𝜉

𝑡
], it is easy to confirm that

̇𝜖
𝑡
= �̃�

3,𝑡
𝛼 (�̂�) + 𝑊

3,0
�̃� + �̃�

4,𝑡
𝛾 (�̂�) 𝜉

𝑡
+𝑊

4,0
𝛾𝜉

𝑡
− 𝐺

𝑡
, (63)

where �̃�
3,𝑡
:= 𝑊

3,𝑡
−𝑊

3,0
and �̃�

4,𝑡
:= 𝑊

4,𝑡
−𝑊

4,0
. Now, let the

Lyapunov (energetic) candidate function

𝑀
𝑡
:= 𝐸

𝑡
+ [𝜖

𝑡
]
𝑇

𝑃 [𝜖
𝑡
] +

1

2
tr ([�̃�

3,𝑡
]
𝑇

[𝐾
𝑊3
]
−1

[�̃�
3,𝑡
])

+
1

2
tr ([�̃�

4,𝑡
]
𝑇

[𝐾
𝑊4
]
−1

[�̃�
4,𝑡
])

(64)

be such that the inequalities (8) are fulfilled (see
Assumption 3), and let

�̇�
𝑡
≤ −𝜆

1

𝑧𝑡


2

+ 2[𝜖
𝑡
]
𝑇

𝑃 [ ̇𝜖
𝑡
]

+ tr ([�̇�
3,𝑡
]
𝑇

[𝐾
𝑊3
]
−1

[�̃�
3,𝑡
])

+ tr ([�̇�
4,𝑡
]
𝑇

[𝐾
𝑊4
]
−1

[�̃�
4,𝑡
])

(65)

be the derivative of (64) with respect to 𝑡. Then, by substitut-
ing (63) into the second term of the right-hand side of (65)
and by adding and subtracting the term [2[𝜖

𝑡
]
𝑇

𝑃𝐴 𝜖
𝑡
], one

may get

2[𝜖
𝑡
]
𝑇

𝑃 [ ̇𝜖
𝑡
] = 2[𝜖

𝑡
]
𝑇

𝑃𝑊
3,0
[�̃� − 𝐴𝜖

𝑡
]

+ 2[𝜖
𝑡
]
𝑇

𝑃𝑊
4,0
𝛾𝜉

𝑡
− 2[𝜖

𝑡
]
𝑇

𝑃𝐺
𝑡

+ 2[𝜖
𝑡
]
𝑇

𝑃�̃�
3,𝑡
𝛼 (�̂�)

+ 2[𝜖
𝑡
]
𝑇

𝑃�̃�
4,𝑡
𝛾 (�̂�) 𝜉

𝑡

+ [𝜖
𝑡
]
𝑇

[𝑃𝐴 + [𝐴 ]
𝑇

𝑃] [𝜖
𝑡
] .

(66)



8 Mathematical Problems in Engineering

Next, by analyzing the first three terms of the right-hand side
of (66) with the inequality (46), the following is obtained.

(i) Using (46) and (28) in the first term of the right-hand
side of (66), then

2[𝜖
𝑡
]
𝑇

𝑃𝑊
3,0
[�̃� − 𝐴𝜖

𝑡
]

≤ [𝜖
𝑡
]
𝑇

[𝑃 [𝑊
3,0
] [Λ

�̃�
]
−1

[𝑊
3,0
]
𝑇

𝑃] [𝜖
𝑡
]

+ [𝜖
𝑡
]
𝑇

Λ
𝛼
[𝜖

𝑡
] .

(67)

(ii) Using (46) and (28) in the second term of the right-
hand side of (66), then

2[𝜖
𝑡
]
𝑇

𝑃𝑊
4,0
𝛾𝜉

𝑡

≤ [𝜖
𝑡
]
𝑇

[𝑃 [𝑊
4,0
] [Λ

𝛾
]
−1

[𝑊
4,0
]
𝑇

𝑃] [𝜖
𝑡
]

+ [𝜉]
2

[𝜖
𝑡
]
𝑇

Λ
𝛾
[𝜖

𝑡
] .

(68)

(iii) Using (46) and (31) in the third term of the right-hand
side of (66), then

−2[𝜖
𝑡
]
𝑇

𝑃𝐺
𝑡
≤ [𝜖

𝑡
]
𝑇

[𝑃[Λ
𝐺
]
−1

𝑃] [𝜖
𝑡
]

+ 𝐺
1
+ 𝐺

2
[𝑧

𝑡
]
𝑇

Λ
𝐺
[𝑧

𝑡
] .

(69)

So, by substituting (67)–(69) into the right-hand side of
(66) and by adding and subtracting the term [[𝜖

𝑡
]
𝑇

𝑄[𝜖
𝑡
]],

inequality (65) can be expressed as

�̇�
𝑡
≤ [𝜖

𝑡
]
𝑇

[𝑃𝐴 + [𝐴 ]
𝑇

𝑃 + 𝑃𝑅𝑃 + 𝑄] [𝜖
𝑡
]

− [𝜖
𝑡
]
𝑇

𝑄 [𝜖
𝑡
] + 𝐺

1
+ 𝐺

2

Λ𝐺



𝑧𝑡


2

− 𝜆
1

𝑧𝑡


2

+ tr (Ψ
𝑊3
) + tr (Ψ

𝑊4
) ,

(70)

where the algebraic Riccati equation in the first term of the
right-hand side of (70) is described in (23) and in (34)–(36),
and

Ψ
𝑊3

= [�̇�
3,𝑡
]
𝑇

[𝐾
𝑊3
]
−1

[�̃�
3,𝑡
] + 2𝛼 (�̂�) [𝜖

𝑡
]
𝑇

𝑃�̃�
3,𝑡
, (71)

Ψ
𝑊4

= [�̇�
4,𝑡
]
𝑇

[𝐾
𝑊4
]
−1

[�̃�
4,𝑡
] + 2𝛾 (�̂�) 𝜉

𝑡
[𝜖

𝑡
]
𝑇

𝑃�̃�
4,𝑡
. (72)

Thereby, by equating (71) and (72) to zero (Ψ
𝑊3

= Ψ
𝑊4

= 0)
and by, respectively, solving for �̇�

3,𝑡
and �̇�

4,𝑡
, the learning law

given by (59) is obtained. Now, by choosing

Λ𝐺

 ≤
𝜆
1

𝐺
2

(73)

and by solving the algebraic Riccati equation (23), one may
get

�̇�
𝑡
≤ − [𝜖

𝑡
]
𝑇

𝑄 [𝜖
𝑡
] + 𝐺

1
. (74)

Thus, by integrating both sides of (74) on the time interval
[0, 𝑡], the following is obtained:

∫

𝑡

0

([𝜖
𝜏
]
𝑇

𝑄 [𝜖
𝜏
]) 𝑑𝜏

≤ 𝑀
0
−𝑀

𝑡
+ [𝐺

1
] 𝑡 ≤ 𝑀

0
+ [𝐺

1
] 𝑡,

(75)

and by dividing (75) by 𝑡, it is easy to verify that

1

𝑡
∫

𝑡

0

([𝜖
𝜏
]
𝑇

𝑄 [𝜖
𝜏
]) 𝑑𝜏 ≤

𝑀
0

𝑡
+ 𝐺

1
. (76)

Finally, by calculating the upper limit as 𝑡 → ∞, the
maximum value of identification error in average sense is the
one described in (61).

Theorem 15. Let the class of continuous-time nonlinear
dynamic games (1)–(4) be such that Assumptions 1 to 4 are
fulfilled. Also, let the differential neural networks (14) and (27)
be such that the Assumptions 6 and 8 and Assumptions 9 and
11 are satisfied. If the synaptic weights of (14) and (27) are,
respectively, adjusted with the learning laws (38) and (59), then
it is possible to obtain the following maximum value of filtering
error in average sense:

lim sup
𝑡→∞

(
1

𝑡
∫

𝑡

0

([𝑒
𝜏
]
𝑇

𝑄 [𝑒
𝜏
]) 𝑑𝜏) ≤ 𝐹

1
− 𝐺

1

if 𝐹
1
> 𝐺

1
,

(77)

lim sup
𝑡→∞

(
1

𝑡
∫

𝑡

0

([𝑒
𝜏
]
𝑇

𝑄 [𝑒
𝜏
]) 𝑑𝜏) = 0

if 𝐹
1
≤ 𝐺

1
,

(78)

where 𝑒
𝑡
is given by (37).

Proof. Consider the following Lyapunov (energetic) candi-
date function:

Φ
𝑡
:= [𝑒

𝑡
]
𝑇

𝑃 [𝑒
𝑡
] , (79)

where 𝑃 is the solution of the algebraic Riccati equation (23)
with 𝐴, 𝑅, and 𝑄 defined by (24)–(26) or (34)–(36). Then,
by calculating the derivative of (79) with respect to 𝑡 and by
considering the equations (37), (13), and (12), it can be verified
that

Φ̇
𝑡
= 2[𝑒

𝑡
]
𝑇

𝑃 [ ̇𝜀
𝑡
− ̇𝜖

𝑡
] , (80)

and, taking into account (42), (63), and the proofs of
Theorems 13 and 14, one may get

Φ̇
𝑡
≤ − [𝑒

𝑡
]
𝑇

2𝑄 [𝑒
𝑡
] + 𝐹

1
− [− [𝑒

𝑡
]
𝑇

𝑄 [𝑒
𝑡
] + 𝐺

1
]

≤ − [𝑒
𝑡
]
𝑇

[2𝑄 − 𝑄] [𝑒
𝑡
] + 𝐹

1
− 𝐺

1

≤ − [𝑒
𝑡
]
𝑇

𝑄 [𝑒
𝑡
] + 𝐹

1
− 𝐺

1
.

(81)



Mathematical Problems in Engineering 9

Thus, by integrating both sides of (81) on the time interval
[0, 𝑡], the following is obtained:

∫

𝑡

0

([𝑒
𝜏
]
𝑇

𝑄 [𝑒
𝜏
]) 𝑑𝜏 ≤ Φ

0
− Φ

𝑡
+ [𝐹

1
− 𝐺

1
] 𝑡

≤ Φ
0
+ [𝐹

1
− 𝐺

1
] 𝑡,

(82)

and by dividing (82) by 𝑡, it is easy to confirm that

1

𝑡
∫

𝑡

0

([𝑒
𝜏
]
𝑇

𝑄 [𝑒
𝜏
]) 𝑑𝜏 ≤

Φ
0

𝑡
+ 𝐹

1
− 𝐺

1
. (83)

By calculating the upper limit as 𝑡 → ∞, equation (83) can
be expressed as

lim sup
𝑡→∞

(
1

𝑡
∫

𝑡

0

([𝑒
𝜏
]
𝑇

𝑄 [𝑒
𝜏
]) 𝑑𝜏) ≤ 𝐹

1
− 𝐺

1
(84)

and, finally, it is clear that

(i) if 𝐹
1
> 𝐺

1
, the maximum value of filtering error in

average sense is the one described in (77);
(ii) if 𝐹

1
≤ 𝐺

1
, the maximum value of filtering error in

average sense is the one described in (78) given that
the left-hand side of the inequality (84) cannot be
negative.

Hence, the theorem is proved.

6. Illustrating Example

Example 16. Consider a 2-player nonlinear differential game
given by

�̇�
𝑡
= 𝑓 (𝑥

𝑡
) +

2

∑

𝑖=1

𝑔
𝑖

(𝑥
𝑡
) 𝑢

𝑖

𝑡
+ 𝐻𝜉

𝑡
(85)

subject to the change of variables (10) and (11) (𝑖 = 2), where
the control actions of each player are

𝑢
1

𝑡
= [

0.5 sawtooth (0.5𝑡)
H (𝑡)

] ,

𝑢
2

𝑡
= [

H (𝑡)

0.5 sawtooth (0.5𝑡)] .
(86)

The undesired deterministic perturbations are

𝜉
𝑡
= [

sin (10𝑡)
sin (10𝑡)] (87)

and H(𝑡) denotes the Heaviside step function or unit step
signal. Then, under Assumptions 1–4, 6, 8, 9 and 11, it is pos-
sible to obtain a filtered feedback (perfect state) information
pattern 𝜂𝑖

𝑡
= {𝑥

𝑡
}.

Remark 17. As told before, the functions 𝑓(⋅) and 𝑔
𝑖

(⋅) as
well as the matrix 𝐻 are unknown, but in order to make
an example of (85) and its simulation, the values of these

“unknown” parameters will be shown in the Appendix of this
paper.

Thereby, consider now a first differential neural network
given by

̇̂𝑦
𝑡
= 𝑊

1,𝑡
𝜎 (𝑉

1,𝑡
𝑦
𝑡
) +

2

∑

𝑖=1

𝑊
𝑖

2,𝑡
𝜑
𝑖

(𝑉
𝑖

2,𝑡
𝑦
𝑡
) 𝑢

𝑖

𝑡
, (88)

where

𝑊
1,0

= [
0.5 0.1 0 2

0.2 0.5 0.6 0
] ,

𝑉
1,0

= [
1 0.3 0.5 0.2

0.5 1.3 1 0.6
]

𝑇

,

𝑊
1

2,0
= [

0.5 0.1

0 0.2
] , 𝑊

2

2,0
= [

1.3 0.8

0.8 1.3
] ,

𝑉
1

2,0
= [

1 0.1

0.1 2
] , 𝑉

2

2,0
= [

0.5 0.7

0.9 0.1
]

(89)

and the activation functions are

𝜎
𝑝
(𝑤) =

4.5

1 + 𝑒−0.5𝑤
− 3

𝑤=𝑉1,𝑡𝑦𝑡

, 𝑝 = 1, 2, 3, 4,

𝜑
1

𝑝𝑞
(𝑤

1

) =
4.5

1 + 𝑒−0.5𝑤
1
− 3

𝑤1=𝑉1
2,𝑡
𝑦𝑡

, 𝑝 = 𝑞 = 1, 2,

𝜑
2

𝑝𝑞
(𝑤

2

) =
4.5

1 + 𝑒−0.5𝑤
2
− 3

𝑤2=𝑉2
2,𝑡
𝑦𝑡

, 𝑝 = 𝑞 = 1, 2.

(90)

By proposing the values described in Assumption 8 as

Λ
𝜎
= Λ

1

𝜑
= Λ

2

𝜑
= [

13 0

0 13
] ,

Λ
1

]𝜑 = Λ
2

]𝜑 = [
0.8 0

0 0.8
] ,

Λ
1

𝜑
= Λ

2

𝜑
= Λ

1

𝜑
 = Λ

2

𝜑
 = [

13 0

0 13
]

−1

,

Λ
𝐹
= [

0.1 0

0 0.1
]

−1

,

Λ
𝜎
= Λ

𝜎
 =

[
[
[

[

13 0 0 0

0 13 0 0

0 0 13 0

0 0 0 13

]
]
]

]

−1

,

Λ ]𝜎 =
[
[
[

[

0.8 0 0 0

0 0.8 0 0

0 0 0.8 0

0 0 0 0.8

]
]
]

]

,

𝐴 =

[
[
[

[

−1.3963 −2.2632

0.0473 −6.1606

0.426 −7.4451

−6.1533 0.8738

]
]
]

]

, 𝑄 = [
10 0

0 10
] ,

𝑙
𝜎
= 𝑙

1

𝜑
= 𝑙

2

𝜑
= 1.3, 𝑢

1

= 𝑢
2

= 5

(91)
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Figure 1: Comparison between 𝑦
𝑡
and 𝑦

𝑡
for the 2-player nonlinear differential game (85).

and by choosing 𝐾
𝑊1

= 100 and 𝐾
𝑉1
= 𝐾

1

𝑊2

= 𝐾
2

𝑊2

= 𝐾
1

𝑉2

=

𝐾
2

𝑉2

= 1, the solution of the algebraic Riccati equation (23)
results in

𝑃 = [
2.0524 −0.6374

−0.6374 3.1842
] . (92)

Then, by applying the learning law (38) described in
Theorem 13, the value of the identification error in average
sense (40) on a time period of 25 seconds is

lim sup
𝑡→25

(
1

𝑡
∫

𝑡

0

([𝜀
𝜏
]
𝑇

2𝑄 [𝜀
𝜏
]) 𝑑𝜏) = 0.03145. (93)

Remark 18. Even though 0.03145 is the value of 𝐹
1
on the

time interval [0, 25], it is not the global minimum value that
𝐹
1
can take since 𝑡does not tend to infinity. So, in order to find

this global minimum value, it would be required to simulate
an arbitrarily large time.

On the other hand, let a second differential neural net-
work given by

̇̂𝑧
𝑡
= 𝑊

3,𝑡
𝛼 (�̂�

𝑡
) + 𝑊

4,𝑡
𝛾 (�̂�

𝑡
) 𝜉

𝑡
(94)

be such that the equalities (32) and (33) are fulfilled; that is,

𝑊
3,0

= [
0.5 0.1 0 2

0.2 0.5 0.6 0
] , 𝑊

4,0
= [

1 0

0 1
] ,

Λ
𝛼
= [

173 0

0 173
] , Λ

𝛾
= [

20 0

0 20
] ,

Λ
�̃�
=

[
[
[

[

26 0 0 0

0 26 0 0

0 0 26 0

0 0 0 26

]
]
]

]

−1

,

Λ
𝛾
= [

67.34 54.6

54.6 61.62
]

−1

,

Λ
𝐺
= [

0.1 0

0 0.1
]

−1

, 𝜉 = 5,

(95)

and the activation functions are

𝛼
𝑝
(𝑤) =

4.5

1 + 𝑒−0.5𝑤
− 3

𝑤=�̂�𝑡

, 𝑝 = 1, 2, 3, 4,

𝛾
𝑝𝑞
(𝑤) =

4.5

1 + 𝑒−0.5𝑤
1
− 3

𝑤=�̂�𝑡

, 𝑝 = 𝑞 = 1, 2.

(96)

By choosing 𝐾
𝑊3

= 100000 and 𝐾
𝑊4

= 1, the solution of the
algebraic Riccati equation (23) results in the matrix (92), and
by applying the learning law (59) described in Theorem 14,
the value of the identification error in average sense (61) on a
time period of 25 seconds is

lim sup
𝑡→25

(
1

𝑡
∫

𝑡

0

([𝜖
𝜏
]
𝑇

𝑄 [𝜖
𝜏
]) 𝑑𝜏) = 0.00006645. (97)

Remark 19. As in Remark 18, in order to find the global
minimum value of 𝐺

1
, it would be required to simulate an

arbitrarily large time.

Finally, taking into account the identification errors (93)
and (97), the value of the filtering error in average sense (77)-
(78) on a time period of 25 seconds is

lim sup
𝑡→25

(
1

𝑡
∫

𝑡

0

([𝑒
𝜏
]
𝑇

𝑄 [𝑒
𝜏
]) 𝑑𝜏) = 0.03139. (98)

The simulation of this example wasmade using theMATLAB
and Simulink platforms and its results are shown in Figures
1–4.

As is seen in Figure 1, the differential neural network
(88) can perform the identification of the continuous-time
nonlinear dynamic game (85), where 𝑦

1,𝑡
and 𝑦

2,𝑡
(or, simi-

larly, 𝑥
1,𝑡

and 𝑥
2,𝑡
) denote the state variables with undesired

perturbations and 𝑦
1,𝑡

and 𝑦
2,𝑡

indicate their state estimates.
On the other hand, according to Figure 2, the differential

neural network (94) identifies the dynamics of the additive
deterministic noises or, in other words, the dynamics of �̇� =
𝐻𝜉

𝑡
. Thus, 𝑧

1,𝑡
and 𝑧

2,𝑡
represent the state variables of the

above differential equation and �̂�
1,𝑡

and �̂�
2,𝑡

are their state
estimates.

In this way, Figure 3 shows the performance of the
filtering process (13) in the nonlinear differential game (85);
that is to say, it shows the comparison between the expected
or uncorrupted state variables 𝑥

1,𝑡
and 𝑥

2,𝑡
and the filtered

state estimates 𝑥
1,𝑡

and 𝑥
2,𝑡
.
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for the 2-player nonlinear differential game (85).
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for the 2-player nonlinear differential game (85).
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Figure 4: Comparison between 𝑥
𝑡
and 𝑥

𝑡
for the 2-player nonlinear differential game (85).

Finally, Figure 4 also exhibits the described filtering
process but comparing the real state variables 𝑥

1,𝑡
and 𝑥

2,𝑡

with filtered state estimates 𝑥
1,𝑡

and 𝑥
2,𝑡
.

7. Results Analysis and Discussion

Although the differential neural networks (14) and (27) can
perform the identification of the differential equations (10)
and (11), it is important to remember that their performance
depends on the number of neurons used and on the proposi-
tion of all the constant values (or free parameters) that were
described in Assumptions 8 and 11. Therefore, the values of
𝐹
1
and 𝐺

1
(at a fixed time) can change according to this fact.

In other words, due to the fact that the differential neural
networks are an approximation of a dynamic system (or
game), there always will be a residual error that will depend
on this approximation.

Thus, in the particular case shown in Example 16, the
design of (88) was made using only eight neurons, four for
the layer of perceptrons without any relation to the players
and two for the layer of perceptrons of each player. Similarly,
for the design of (94) (which is subject to the equalities (32)-
(33)), six neurons were used.

On the other hand, it is important to mention that
(14) and (27) will operate properly only if Assumptions 1–
4, 6, 8, 9 and 11 are satisfied; that is to say, there is no
guarantee that these differential neural networks perform
good identification and filtering processes if, for example,
the class of nonlinear differential games (1)–(4) has a stochas-
tic nature.

Finally, although this paper presents a new approach for
identification and filtering of nonlinear dynamic games, it
should be emphasized that there exist other techniques that
might solve the problem treated here, for example, the cited
publications in Section 1.
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8. Conclusions and Future Work

According to the results of this paper, the differential neural
networks (14) and (27) solve the problem of identifying and
filtering the class of nonlinear differential games (1)–(4).

However, there is no guarantee that (14) and (27) identify
and filter the states of (1)–(4) if Assumptions 1–4, 6, 8, 9 and
11 are not met.

Thereby, the proposed learning laws (38) and (59) obtain
the maximum values of identification error in average sense
(40) and (61), that is to say, the maximum value of filtering
error (77)-(78).

Nevertheless, these errors depend on both the number of
neurons used in the differential neural networks (14) and (27)
and the proposed values applied in their design conditions.

On the other hand, according to the simulation results
of the illustrating example, the effectiveness of (14) and (27)
is shown and the applicability of Theorems 13, 14, and 15 is
verified.

Finally, speaking of future work in this research field,
one can analyze and discuss the use of (14) and (27) for the
obtaining of equilibrium solutions in the class of nonlinear
differential games (1)–(4), that is to say, the use of differential
neural networks for controlling nonlinear differential games.

Appendix

The values of the “unknown” nonlinear functions 𝑓(⋅), 𝑔1(⋅),
and 𝑔2(⋅) and the “unknown” constant matrix𝐻, used in (85)
of Example 16, are shown as follows:

𝑓 (𝑥
𝑡
) = [

𝑥
2,𝑡

sin (𝑥
1,𝑡
)
] ,

𝑔
1

(𝑥
𝑡
)

= [
− 𝑥

1,𝑡
cos (𝑥

1,𝑡
) 0

0 𝑥
2,𝑡
sin (𝑥

1,𝑡
) − 𝑥

1,𝑡
cos (𝑥

2,𝑡
)
] ,

𝑔
2

(𝑥
𝑡
) = [

sin (𝑥
1,𝑡
) 0

0 − [𝑥
1,𝑡
+ 𝑥

2,𝑡
]
] ,

𝐻 = [
0.5 0

0 0.5
] .

(A.1)
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