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This paper mainly addresses the distributed consensus tracking problem for second-order nonlinear multiagent systems with a
specified reference trajectory. The dynamics of each follower consists of two terms: nonlinear inherent dynamics and a simple
communication protocol relying only on the position and velocity information of its neighbors.The consensus reference is taken as
a virtual leader, whose output is only its position and velocity information that is available to only a subset of a group of followers.
To achieve consensus tracking, a class of nonsmooth control protocols is proposed which reply on the relative information among
the neighboring agents. Then some corresponding sufficient conditions are derived. It is shown that if the communication graph
associated with the virtual leader and followers is connected at each time instant, the consensus can be achieved at least globally
exponentially with the proposed protocol. Rigorous proofs are given by using graph theory, matrix theory, and Lyapunov theory.
Finally, numerical examples are presented to illustrate the theoretical analysis.

1. Introduction

Consensus problem, one of the most important and funda-
mental issues in the cooperative control, has attracted great
attention from researchers in recent years because of broad
applications in various real-world multiagent systems, such
as cooperative control of unmanned (air) vehicles, formation
control of robots and aircrafts, and design of sensor networks,
to name a few (see the survey papers [1–7] and extensive
references therein). The consensus of multiagent systems
means to design a network distributed control policy based
on the local information obtained by each agent, such that
all agents reach an agreement on certain quantities of interest
by negotiating with their neighbors.The quantities of interest
might represent attitude, position, velocity, temperature,
voltage, and so on, depending on different applications.

Numerous interesting results for consensus problem have
been obtained in the past decade. In 1986, Reynolds [8] fist
proposed a computer animation model to simulate collective
behaviors of multiple agents. In [9], Vicsek et al. proposed
a discrete-time distributed model to simulate a group of

autonomous agents moving in the plane with the same speed
but different heading. In [10], Jadbabaie et al. gave a theoreti-
cal explanation for the consensus behavior of Vicsek’s model
based on graph and matrix theories. Ren and Beard [11]
extend the work of Jadbabaie et al. [10] to the case of directed
graphs and gave some more relaxed conditions. Olfati-Saber
and Murray [1] investigated a systematical framework of
consensus problems with directed interconnection graphs or
time-delay by Lyapunov-based approach.

Note from the literatures which were concerned with
consensus problem that the multiagent systems can usually
be classified into leaderless and leader-follower systems. In
a leaderless consensus problem [12–14], there does not exist
a (virtual) leader, while in a leader-following consensus
problem [15–19], there exists a (virtual) leader. The (virtual)
leader is a special agent whose motion is independent of all
the other agents and thus is followed by all the other ones.
Therefore, in recent literatures, a (virtual) leader-follower
approach has been widely used to the consensus problem
[20–25]. Such a consensus problem with a dynamic (virtual)
leader is commonly called consensus tracking problem.Most
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of the above works are based on the first-order control
protocols that control the velocities of agents rather than their
accelerations (which are commonly easier to control and are
especially meaningful for analysis of dynamical system in the
real world). Hence, it is necessary to study the consensus
tracking problem of second-order multiagent systems. In
[26], the consensus tracking problem of multiagent systems
with double-integrator dynamics was studied. However, [26]
requires the availability of the virtual leader’s acceleration
input to all followers. Compared with previous works of
[26]. Reference [20] studied a distributed leader-following
consensus problem with single-integrator dynamics and
double-integrator dynamics under fixed and switching com-
munication topologies. It was shown that the acceleration
measurements of the virtual leader and followers are not
required, and the consensus tracking can be achieved in finite
time. In [27], the authors studied the consensus inmultiagent
systems with second-order dynamics and sampled data. Note
also from the above literatures that most of common models
used to study the consensus tracking of the second-order
multiagent systems are double integrator models. However,
in reality, mobile agents may be governed bymore commonly
inherent nonlinear dynamics [15, 28–31]. References [15,
28] studied the leaderless consensus problems for second-
order multiagent systems with nonlinear dynamics under
fixed network topology. Reference [32] investigated second-
order leader-follower consensus of nonlinear multiagent sys-
tems via pinning control. Reference [33] investigated leader-
following consensus for second-order multiagent systems
with nonlinear inherent dynamics. However, in the above
literatures each agent’s state only depends on their common
inherent dynamics. It is difficult to track a time-varying
desired reference state for all agents.

Motivated by the above discussions, the main contribu-
tions of this paper lie in that we deal with the consensus
tracking for second-order nonlinear multiagent systems with
a specified reference state. The dynamics of each follower
consists of two terms: nonlinear inherent dynamics and a
simple communication protocol relying only on the position
and velocity information of its neighbors. The consensus
reference is taken as a virtual leader, whose output is only its
position and velocity information that is available to only a
subset of a group of followers. To achieve consensus tracking,
a class of nonsmooth control protocols is proposed which
reply on the relative information among the neighboring
agents. Then some corresponding sufficient conditions are
derived. It is shown that if the communication graph associ-
ated with the virtual leader and followers is connected at each
time instant, the consensus can be achieved at least globally
exponentially with the proposed protocol. Rigorous proofs
are given by using graph theory, matrix theory, and Lyapunov
theory. Compared with the existing results, this paper has
the following advantages. Firstly, with contrast of consensus
for multiagent systems with double-integrator dynamics [19,
20, 25–27], we investigate the consensus tracking problems
for multiagent systems with nonlinear inherent dynamics.
Secondly, in contrast to the existing results in [15, 28, 32, 33],
where each agent’s state only depends on their common
inherent dynamics, in this paper all agents can well track a

time varying desired reference state. Thirdly, in this paper
the consensus can be achieved globally exponentially with
the proposed protocol, while in [15, 27–31] the consensus
can be archived asymptotically. Finally, it is well known that
most of real-world systems, for example, biological systems,
autonomous vehicles systems, complex systems, and so on,
are time-varying systems [34, 35].Therefore, in this paper, we
consider the consensus tracking problems for time-varying
multiagent systems, where the states of all agents are time
varying.

The rest of this paper is organized as follows. In Section 2,
the relevant notations and preliminaries are presented. In
Section 3, the consensus tracking problem to be solved in
this paper is described. The main results are presented
in Section 4. Numerical examples are shown in Section 5.
Finally, some conclusion remakes are given in Section 6.

2. Preliminaries

2.1. Notations. The following notations will be used through-
out this paper: Let 𝐼

𝑛
denote the 𝑛×𝑛 identity matrix, let 0

𝑚×𝑛

denote the 𝑚 × 𝑛 zero matrix, and let 1
𝑛
= [1, 1, . . . , 1]

𝑇

∈

𝑅
𝑛 (1 for short, when there is no confusion). 𝜆min(𝐴) and
𝜆max(𝐴) are the smallest and the largest eigenvalues of the
matrix 𝐴, respectively.

2.2. GraphTheoryNotions. Using graph theory, we canmodel
the interaction topology in multiagent systems consisting of
𝑛 agents. Let G = (V,E,A) be a weighted graph of order 𝑛
with the finite nonempty set of nodes V = {V

1
, . . . , V

𝑛
}, the

set of edges E ⊆ V × V, and a weighted adjacency matrix
A = (𝑎

𝑖𝑗
)
𝑛×𝑛

. Here, each node V
𝑖
inV corresponds to an agent

𝑖, and each edge (V
𝑖
, V
𝑗
) ∈ E in a weighted directed graph

corresponds to an information link from agent 𝑗 to agent 𝑖,
which means that agent 𝑖 can receive information from agent
𝑗. In contrast, the pairs of nodes inweighted undirected graph
are unordered, where an edge (V

𝑗
, V
𝑖
) ∈ E denotes that agent 𝑖

and 𝑗 can receive information from each other. The weighted
adjacency matrix A of a weighted directed graph is defined
such that 𝑎

𝑖𝑖
= 0 for any V

𝑖
∈ V, 𝑎

𝑖𝑗
> 0 if (V

𝑗
, V
𝑖
) ∈ E,

and 𝑎
𝑖𝑗
= 0 otherwise. The weighted adjacency matrixA of a

weighted undirected graph is defined analogously except that
𝑎
𝑖𝑗
= 𝑎
𝑗𝑖
, for all 𝑖 ̸= 𝑗, since (V

𝑖
, V
𝑗
) ∈ E implies (V

𝑗
, V
𝑖
) ∈ E. We

can say V
𝑖
is a neighbor vertex of V

𝑗
, if (V
𝑖
, V
𝑗
) ∈ E.

The Laplacian matrix 𝐿 = (𝑙
𝑖𝑗
)
𝑛×𝑛

of graphG is defined by
𝑙
𝑖𝑗
= −𝑎
𝑖𝑗
for 𝑖 ̸= 𝑗, and 𝑙

𝑖𝑖
= ∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
, 𝑖, 𝑗 ∈ {1, . . . , 𝑛}. For

an undirected graph, 𝐿 is symmetric positive semidefinite.
However, 𝐿 is not necessarily symmetric for a directed graph.

Lemma 1 (see [36]). AssumeG is a weighted undirected graph
with Laplacian matrix 𝐿; then the following two statements are
equivalent:

(i) the matrix 𝐿 has an eigenvalue zero with multiplicity
1 and corresponding eigenvector 1, and all other eigen-
values are positive;

(ii) G is connected.
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2.3. NonsmoothAnalysis Background. Consider the following
vector differential equation:

�̇� (𝑡) = 𝑓 (𝑥 (𝑡)) , (1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇 and 𝑓(𝑥(𝑡)) is not

necessarily continuous. A Filippov solution of (1) on [𝑡
0
, 𝑡
1
],

where 𝑡
1
could be∞, is absolutely continuous function 𝑥(𝑡)

satisfying the following differential inclusion:

�̇� (𝑡) ∈K [𝑓] (𝑥 (𝑡)) , (2)

where K[𝑓](𝑥(𝑡)) ≜ ⋂
𝛿>0
⋂
𝜇(𝑁)=0

co𝑓(𝑡,B(𝑥, 𝛿) \ 𝑁),
⋂
𝜇(𝑁)=0

denotes the intersection over all sets of Lebesgue
measure zeroes, B(𝑥, 𝛿) denotes the open ball of radius 𝛿
centered at 𝑥, and co(Ω) denotes the convex closure of the
convex hull of the setΩ.

Definition 2 (see [37]). For a locally Lipschitz continuous
function 𝑉, define the Clarke’s generalized gradient of 𝑉 by
𝜕𝑉 ≜ co{lim∇𝑉(𝑥) | 𝑥

𝑖
→ 𝑥, 𝑥

𝑖
∈ ΩV⋃𝑁}, where co

denotes the convex hull, ΩV is the set of Lebesgue measure
zero, where ∇𝑉 does not exist, and 𝑁 is an arbitrary set of
zero measure. The set-valued Lie derivative of𝑉 with respect
to (1) is defined as

LK𝑉 ≜ ⋂

𝜉∈𝜕𝑉

𝜉
𝑇

K [𝑓] (𝑥 (𝑡)) . (3)

In the following, a Lyapunov stability theorem in terms of
the set-valued mapLK𝑉 is stated.

Lemma3 (see [38]). Given (1), let𝑓(𝑥(𝑡)) be locally essentially
bounded and 0 ∈ K[𝑓](0) in a region 𝑄 ⊃ {𝑥 ∈ R𝑚 | ‖𝑥‖ <

𝑟} × 𝑡 | 𝑡
0
≤ 𝑡 < ∞, where 𝑟 > 0. Also, let 𝑉 : R𝑑 → R be

a regular function satisfying 𝑉(0, 𝑡) = 0 and 0 < 𝑉
1
(‖𝑥‖) ≤

𝑉 ≤ 𝑉
2
(‖𝑥‖), for 𝑧 ̸= 0, in 𝑄 for some 𝑉

1
and 𝑉

2
belonging to

class K. If there exists a class K function 𝑤(⋅) in 𝑄 such that
the set-valued Lie derivative of 𝑉(𝑥, 𝑡) satisfies

maxLK𝑉 ≤ −𝑤 (𝑥) < 0, 𝑓𝑜𝑟 𝑥 ̸= 0, (4)

then the solution 𝑥(𝑡) ≡ 0 is asymptotically stable.

3. Problem Description

Consider a multiagent system consisting of 𝑛 agents. In what
follows, all agents are assumed in one-dimensional space for
the simplicity of presentation. However, all results hereafter
are still valid for the𝑚-dimensional (𝑚 > 1) by theKronecker
product [39]. Here, the dynamics of each agent in the group
is given by

̇𝜉
𝑖
= V
𝑖
,

V̇
𝑖
= 𝑓 (𝑡, 𝜉

𝑖
, V
𝑖
) + 𝑢
𝑖
,

(5)

where 𝑖 (𝑖 = 1, . . . , 𝑛), 𝜉
𝑖
∈ 𝑅
𝑚 and V

𝑖
∈ 𝑅
𝑚 denote the

position and velocity vectors, 𝑓(𝑡, 𝜉
𝑖
, V
𝑖
) ∈ 𝑅

𝑚 denotes the
inherent nonlinear dynamics, and 𝑢

𝑖
(𝑡) denotes the control

input. When 𝑓(𝑡, 𝜉
𝑖
, V
𝑖
) ≡ 0, the multiagent system has

double-integrator dynamics.

The consensus problem of the multiagent system (5) is to
design control inputs 𝑢

𝑖
, 𝑖 = {1, . . . , 𝑛} such that

lim
𝑡→∞

𝜉𝑖 − 𝜉0
2
= 0,

lim
𝑡→∞

V𝑖 − V0
2
= 0,

(6)

for any 𝑖 = 1, 2, . . . , 𝑛, where 𝜉
0
∈ 𝑅
𝑚 and V

0
∈ 𝑅
𝑚 are,

respectively, the position vector and velocity vector of the
virtual leader, which does not have to be an actual agent but
is specified by

̇𝜉
0
= V
0
,

V̇
0
= 𝑓 (𝑡, 𝜉

0
, V
0
) + 𝑔 (𝑡, 𝜉

0
, V
0
) ,

(7)

where 𝑓(𝑡, 𝜉
0
, V
0
) ∈ 𝑅

𝑚 describes the nonlinear dynamics
of the virtual leader, and 𝑔(𝑡, 𝜉

0
, V
0
) ∈ 𝑅

𝑚 is responsible for
controlling trajectory of the virtual leader. We assume that
|𝑔(𝑡, 𝜉

0
, V
0
)| ≤ 𝐶

0
, where 𝐶

0
is a positive constant.

Hereafter, the 𝑛 agents in systems (5) are called followers,
and their communication topology is represented by the
graph G. Suppose that the virtual leader and all followers
share the same nonlinear inherent dynamics, and these non-
linear inherent dynamics satisfy a Lipchitz-type condition
given by Assumption 4 as follows, which is satisfied in many
well-known systems.

Assumption 4. There exist two nonnegative constants 𝑙
1
and

𝑙
2
such that
𝑓 (𝑡, 𝜉, V) − 𝑓 (𝑡, 𝜁, 𝛾)

2
≤ 𝑙
1

𝜉 − 𝜁
2
+ 𝑙
2

V − 𝛾
2
,

∀𝜉, V, 𝜁, 𝛾 ∈ 𝑅𝑚, ∀𝑡 ≥ 0.
(8)

Remark 5. Note from Assumption 4 that the Lipchitz con-
stants 𝑙

1
or 𝑙
2
may be chosen by zero. In order to satisfy the

requirements of designing consensus protocols, in this paper
we assume that 𝑟

1
= ⌊𝑙
1
⌋+1 and 𝑟

2
= ⌊𝑙
2
⌋+1, where ⌊⋅⌋ denotes

floor function (i.e., ⌊𝑥⌋ = max{𝑚 ∈ Z | 𝑚 ≤ 𝑥}, where Z is
the set of integers).

Remark 6. In recent reference [40], the robust cooperative
tracking for multiple nonidentical second-order nonlinear
systems is investigated. The nonlinear inherent dynamics
𝑓(𝑡, 𝜉
𝑖
, V
𝑖
) in this paper satisfies the Lipchitz condition (8),

while the nonlinear function 𝑓(𝑡, 𝜉
𝑖
, V
𝑖
) in [40] is required to

be continuously differentiable (the derivative ̇𝑓(𝑡, 𝜉
𝑖
, V
𝑖
) exists

in its domain and is itself a continuous function).

4. Consensus Tracking Protocols

To satisfy (6), the following control input (9) is proposed for
each follower:

𝑢
𝑖
(𝑡) = − 𝛼

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
[𝑟
1
(𝜉
𝑖
− 𝜉
𝑗
) + 𝑟
2
(V
𝑖
− V
𝑗
)]

− 𝛽sgn
{

{

{

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
[𝑟
1
(𝜉
𝑖
− 𝜉
𝑗
) + 𝑟
2
(V
𝑖
− V
𝑗
)]

}

}

}

,

(9)
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where 𝛼 is a nonnegative constant, 𝛽 is a positive constant,
𝑎
𝑖𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑛, is the (𝑖, 𝑗)th entry of the adjacency matrix

A associated with 𝐺, and sgn(⋅) is the signum function. In
addition, 𝑎

𝑖0
> 0 (𝑖 = 1, . . . , 𝑛) if the virtual leader’s position

is available to follower 𝑖, and 𝑎
𝑖0
= 0 otherwise.

Substituting (9) to (5) gives

̇𝜉
𝑖
= V
𝑖
,

V̇
𝑖
= 𝑓 (𝑡, 𝜉

𝑖
, V
𝑖
) − 𝛼

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
[𝑟
1
(𝜉
𝑖
− 𝜉
𝑗
) + 𝑟
2
(V
𝑖
− V
𝑗
)]

− 𝛽sgn
{

{

{

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
[𝑟
1
(𝜉
𝑖
− 𝜉
𝑗
) + 𝑟
2
(V
𝑖
− V
𝑗
)]

}

}

}

.

(10)

Let𝑀 = 𝐿 + diag(𝑎
10
, . . . , 𝑎

𝑛0
), where 𝐿 is the Laplacian

matrix ofG.

Lemma 7. Suppose that the communication graph G is
connected and at least one follower can receive information

from the virtual leader. Let 𝐻 = [

(𝛼𝑟
2
/2𝑟
1
)𝑀
2
(1/2𝑟
2
)𝑀

(1/2𝑟
2
)𝑀 (1/2𝑟

2
)𝑀

]

and 𝑄 = [

𝛼𝑀
2
(1/2)𝛼𝑀

2

(1/2)𝛼𝑀
2
𝛼𝑀
2
−(𝑟
1
/𝑟
2

2
)𝑀

]. If 𝛼 > (8𝑟
2

2
+ 2𝑟
1
+

2√Ω̂)𝜆max(𝑀)/3𝑟
2

2
𝜆
2

min(𝑀), then the matrices 𝐻 and 𝑄 are
symmetric positive definite, and 𝜆min(𝑄) > 2𝜆max(𝑀), where
Ω̂ = 4𝑟

4

2
+ 2𝑟
1
𝑟
2

2
+ 𝑟
2

1
.

Proof. Since the communication graph G is connected and
the virtual leader is a neighbor of at least one follower, it
follows that the matrix 𝑀 is symmetric positive definite.
Therefore, the matrix𝑀 can be diagonalized as𝑀 = 𝑇−1Δ𝑇,
where Δ = {𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑛
}, 𝜆
𝑖
> 0 with 𝜆

𝑖
being the 𝑖th

eigenvalue of𝑀. Then we can obtain a matrix Π such that

Π =

[
[
[
[
[

[

𝛼𝑟
2

2𝑟
1

Δ
2
1

2𝑟
2

Δ

1

2𝑟
2

Δ
1

2𝑟
2

Δ

]
]
]
]
]

]

= [
𝑇 0

𝑛×𝑛

0
𝑛×𝑛

𝑇
]𝐻[

𝑇
−1 0
𝑛×𝑛

0
𝑛×𝑛

𝑇
−1
] , (11)

where 0
𝑛×𝑛

is the 𝑛 × 𝑛 zero matrix. It is easy to see that Π is
symmetric and has the same eigenvalues as𝐻.

Let 𝛿 be an eigenvalue of Π. Because Δ is a diagonal
matrix, it follows from (11) that

𝛿
2

−
𝛼𝑟
2

2
𝜆
2

𝑖
+ 𝑟
1
𝜆
𝑖

2𝑟
1
𝑟
2

𝛿 +
𝛼𝑟
2

2
𝜆
3

𝑖
− 𝑟
1
𝜆
2

𝑖

4𝑟
1
𝑟
2

2

= 0. (12)

As the matrix Π is symmetric, it follows that the roots of
(12) are all real. Therefore, they are positive if and only if the
following conditions are satisfied:

𝛼𝑟
2

2
𝜆
2

𝑖
+ 𝑟
1
𝜆
𝑖

2𝑟
1
𝑟
2

> 0,
𝛼𝑟
2

2
𝜆
3

𝑖
− 𝑟
1
𝜆
2

𝑖

4𝑟
1
𝑟
2

2

> 0. (13)

And,𝐻 is positive definite if

𝛼 >
𝑟
1

𝑟
2

2
𝜆min (𝑀)

. (14)

Next, we consider the matrix 𝑄. Similarly with the
analysis of the matrix𝐻, there exists a matrix 𝐽 such that

𝐽 =
[
[

[

𝛼Δ
2

1

2
𝛼Δ
2

1

2
𝛼Δ
2

𝛼Δ
2

−
𝑟
1

𝑟
2

2

Δ

]
]

]

= [

𝑇 0
𝑛×𝑛

0
𝑛×𝑛

𝑇
]𝑄[

𝑇
−1 0
𝑛×𝑛

0
𝑛×𝑛

𝑇
−1

] .

(15)

𝐽 is symmetric and has the same eigenvalues as 𝑄.
Let 𝜀 be an eigenvalue of 𝐽. BecauseΔ is a diagonalmatrix,

it follows from (15) that 𝜀 satisfies

𝜀
2

− [2𝛼𝜆
2

𝑖
−
𝑟
1

𝑟
2

2

𝜆
𝑖
] 𝜀 + 𝛼𝜆

2

𝑖
(𝛼𝜆
2

𝑖
−
𝑟
1

𝑟
2

2

𝜆
𝑖
) −
1

4
𝛼
2

𝜆
4

𝑖
= 0.

(16)

Therefore, 𝜆min(𝑄) > 2𝜆max(𝑀) if and only if the following
inequations are satisfied:

2𝛼𝜆
2

𝑖
− (𝑟
1
/𝑟
2

2
) 𝜆
𝑖

2
> 2𝜆max (𝑀) ,

(17)

(2𝜆max (𝑀))
2

− [2𝛼𝜆
2

𝑖
−
𝑟
1

𝑟
2

2

𝜆
𝑖
] (2𝜆max (𝑀))

+ 𝛼𝜆
2

𝑖
(𝛼𝜆
2

𝑖
−
𝑟
1

𝑟
2

2

𝜆
𝑖
) −
1

4
𝛼
2

𝜆
4

𝑖
> 0.

(18)

From (17), it follows that

𝛼 >

(4𝑟
2

2
+ 𝑟
1
) 𝜆max (𝑀)

2𝑟
2

2
𝜆
2

min (𝑀)
≥
4𝑟
2

2
𝜆max (𝑀) + 𝑟1𝜆𝑖
2𝑟
2

2
𝜆
2

𝑖

. (19)

From (18), it follows that

𝛼 >
8𝑟
2

2
𝜆max (𝑀) + 2𝑟1𝜆𝑖 + 2√Ω

3𝑟
2

2
𝜆
2

𝑖

(20)

or

𝛼 <
8𝑟
2

2
𝜆max (𝑀) + 2𝑟1𝜆𝑖 − 2√Ω

3𝑟
2

2
𝜆
2

𝑖

, (21)

whereΩ = 4𝑟4
2
𝜆
2

max(𝑀) + 2𝑟1𝑟
2

2
𝜆
𝑖
𝜆max(𝑀) + 𝑟

2

1
𝜆
2

𝑖
.

Therefore,𝑄 is positive definite and 𝜆min(𝑄) > 2𝜆max(𝑀)
if

𝛼 >

(8𝑟
2

2
+ 2𝑟
1
+ 2√Ω̂) 𝜆max (𝑀)

3𝑟
2

2
𝜆
2

min (𝑀)
, (22)

where Ω̂ = 4𝑟4
2
+ 2𝑟
1
𝑟
2

2
+ 𝑟
2

1
.

Combining the results (14) and (22), the proof is com-
pleted.
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Theorem 8. Suppose that the communication graph G is
connected and the virtual leader is a neighbor of at least one
follower. If 𝛼 > (8𝑟2

2
+ 2𝑟
1
+ 2√Ω̂)𝜆max(𝑀)/3𝑟

2

2
𝜆
2

min(𝑀) and
𝛽 > 𝐶

0
, then second-order consensus tracking in system (10) is

achieved at least globally exponentially, where Ω̂ = 4𝑟4
2
+2𝑟
1
𝑟
2

2
+

𝑟
2

1
.

Proof. Let 𝜉
𝑖
= 𝜉
𝑖
− 𝜉
0
, Ṽ
𝑖
= V
𝑖
− V
0
, 𝑖 ∈ {1, . . . , 𝑛}. From (7)

and (10),

̇̃
𝜉
𝑖
= Ṽ
𝑖
,

̇̃V
𝑖
= − 𝛼

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
[𝑟
1
(𝜉
𝑖
− 𝜉
𝑗
) + 𝑟
2
(Ṽ
𝑖
− Ṽ
𝑗
)]

− 𝛽sgn
{

{

{

𝑛

∑

𝑗=0

𝑎
𝑖𝑗
[𝑟
1
(𝜉
𝑖
− 𝜉
𝑗
) + 𝑟
2
(Ṽ
𝑖
− Ṽ
𝑗
)]

}

}

}

+ 𝑓 (𝑡, 𝜉
𝑖
, V
𝑖
) − 𝑓 (𝑡, 𝜉

0
, V
0
) + 𝑔 (𝑡, 𝜉

0
, V
0
) .

(23)

Let 𝜉 = [𝜉𝑇
1
, 𝜉
𝑇

2
, . . . , 𝜉

𝑇

𝑛
]
𝑇

, Ṽ = [Ṽ𝑇
1
, Ṽ𝑇
2
, . . . , Ṽ𝑇

𝑛
]
𝑇 and 𝐹(𝑡, 𝜉, Ṽ) =

[(𝑓(𝑡, 𝜉
1
, V
1
) − 𝑓(𝑡, 𝜉

0
, V
0
))
𝑇

, . . . , (𝑓(𝑡, 𝜉
𝑛
, V
𝑛
) − 𝑓(𝑡, 𝜉

0
, V
0
))
𝑇

]
𝑇.

Rewrite (23) in the matrix form as

̇̃
𝜉 = Ṽ,

̇̃V = 𝐹 (𝑡, 𝜉, Ṽ) − 𝛼𝑀(𝑟
1
𝜉 + 𝑟
2
Ṽ) − 𝛽sgn (𝑀(𝑟

1
𝜉 + 𝑟
2
Ṽ))

+ 1𝑔 (𝑡, 𝜉
0
, V
0
) .

(24)

Consider the Lyapunov function candidate

𝑉 (𝑡) = [𝑟
1
𝜉
𝑇

𝑟
2
Ṽ𝑇]𝐻[𝑟1𝜉

𝑟
2
Ṽ
] . (25)

According to Definition 2, in the following let us compute the
set-valued lie derivative of 𝑉 as

LK𝑉(𝜉, Ṽ) = ⋂

𝑥∈𝜕𝑉(
̃
𝜉,Ṽ)

𝑥
𝑇K [𝑓] (𝜉, Ṽ)

= ⋂

𝑥∈𝜕𝑉(
̃
𝜉,Ṽ)

𝑥
𝑇K[

𝑟
1
Ṽ

𝑟
2
{𝐹 (𝑡, 𝜉, Ṽ) − 𝛼𝑀(𝑟

1
𝜉 + 𝑟
2
Ṽ) − 𝛽sgn (𝑀(𝑟

1
𝜉 + 𝑟
2
Ṽ)) + 1𝑔 (𝑡, 𝜉

0
, V
0
)}
] ,

(26)

where 𝜕𝑉(𝜉, Ṽ) is the generalized gradient of 𝑉. Because 𝑉

is continuously differentiable, 𝜕𝑉(𝜉, Ṽ) = 𝐻[
𝑟
1
̃
𝜉

𝑟
2
Ṽ
]. Hence,

we have

LK𝑉(𝜉, Ṽ) = [
𝑟
1
𝜉

𝑟
2
Ṽ]
𝑇

𝐻
𝑇K[

𝑟
1
Ṽ

𝑟
2
{𝐹 (𝑡, 𝜉, Ṽ) − 𝛼𝑀(𝑟

1
𝜉 + 𝑟
2
Ṽ) − 𝛽sgn (𝑀(𝑟

1
𝜉 + 𝑟
2
Ṽ)) + 1𝑔 (𝑡, 𝜉

0
, V
0
)}
]

=K [− [𝑟
1
𝜉
𝑇

𝑟
2
Ṽ𝑇]𝑄 [𝑟1𝜉

𝑟
2
Ṽ] − 𝛽


(𝑟
1
𝜉
𝑇

+ 𝑟
2
Ṽ𝑇)𝑀

1
+ (𝜉
𝑇

𝑟
1
+ Ṽ𝑇𝑟
2
)𝑀𝐹 (𝑡, 𝜉, Ṽ)

+ (𝑟
1
𝜉
𝑇

+ 𝑟
2
Ṽ𝑇)𝑀1𝑔 (𝑡, 𝜉

0
, V
0
) ]

= {− [𝑟
1
𝜉
𝑇

𝑟
2
Ṽ𝑇]𝑄 [𝑟1𝜉

𝑟
2
Ṽ] − 𝛽


(𝑟
1
𝜉
𝑇

+ 𝑟
2
Ṽ𝑇)𝑀

1
+ (𝜉
𝑇

𝑟
1
+ Ṽ𝑇𝑟
2
)𝑀𝐹 (𝑡, 𝜉, Ṽ)

+ (𝑟
1
𝜉
𝑇

+ 𝑟
2
Ṽ𝑇)𝑀1𝑔 (𝑡, 𝜉

0
, V
0
) } ,

(27)

where the fact that 𝑥𝑇K[sign(𝑥)] = K[𝑥𝑇 sign(𝑥)] =
𝑥
𝑇 sign(𝑥) = ‖𝑥‖

1
has been used as the fact 𝑥𝑇K[sign(𝑥)] is

continuous. It then follows that the set-valued Lie derivative
LK𝑉 is a singleton, whose only element is actually �̇�. Since
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‖𝐹(𝑡, 𝜉, Ṽ)‖
2
≤ ‖𝑟

1
𝜉‖
1
+ ‖𝑟
2
Ṽ‖
2
, |𝑔(𝑡, 𝜉

0
, V
0
)| < 𝐶

0
, and

‖(𝑟
1
𝜉
𝑇

+ 𝑟
2
Ṽ𝑇)𝑀‖

1
> ‖(𝑟
1
𝜉
𝑇

+ 𝑟
2
Ṽ𝑇)𝑀‖

2
, it follows that

maxLK𝑉 = �̇� ≤ −𝜆min (𝑄) (

𝑟
1
𝜉


2

2

+
𝑟2Ṽ


2

2
)

+ 𝜆max (𝑀) (

𝑟
1
𝜉
2
+
𝑟2Ṽ
2
)
2

− 𝛽

(𝑟
1
𝜉
𝑇

+ 𝑟
2
Ṽ𝑇)𝑀

2

+ 𝐶
0


(𝑟
1
𝜉
𝑇

+ 𝑟
2
Ṽ𝑇)𝑀

2

≤ − [𝜆min (𝑄) − 2𝜆max (𝑀)] (

𝑟
1
𝜉


2

2

+
𝑟2Ṽ


2

2
)

− (𝛽 − 𝐶
0
)

(𝑟
1
𝜉
𝑇

+ 𝑟
2
Ṽ𝑇)
2
.

(28)

Note 𝛼 > (8𝑟2
2
+2𝑟
1
+2√Ω̂)𝜆max(𝑀)/3𝑟

2

2
𝜆
2

min(𝑀) and𝛽 > 𝐶0;
it follows from Lemma 7 that maxLK𝑉 is negative definite.
Therefore, 𝜉

𝑖
(𝑡) → 0

𝑛
and Ṽ
𝑖
(𝑡) → 0

𝑛
as 𝑡 → ∞, where 0

𝑛

is 𝑛 × 1 zero vector. Equivalently, it follows that 𝜉
𝑖
(𝑡) → 𝜉

0
(𝑡)

and V
𝑖
(𝑡) → V

0
(𝑡) as 𝑡 → ∞.

Next, we prove that the consensus can be achieved at least
globally exponentially. Note that

𝑉 = [𝑟
1
𝜉
𝑇

𝑟
2
Ṽ𝑇]𝐻[𝑟1𝜉

𝑟
2
Ṽ
] ≤ 𝜆max (𝐻) (


𝑟
1
𝜉


2

2

+
𝑟2Ṽ


2

2
) .

(29)

From (28), �̇�(𝑡) satisfies that

maxLK𝑉 (𝑡) = �̇� (𝑡)

≤ − (𝜆min (𝑄) − 2𝜆max (𝑀)) (

𝑟
1
𝜉


2

2

+
𝑟2Ṽ


2

2
)

≤ −
(𝜆min (𝑄) − 2𝜆max (𝑀))

𝜆max (𝐻)
𝑉 (𝑡) .

(30)

Therefore, 𝑉(𝑡) ≤ 𝑉(0)𝑒−((𝜆min(𝑄)−2𝜆max(𝑀))/𝜆max(𝐻))𝑡. The proof
is completed.

Remark 9. In this paper, we assume that there exists a virtual
leader, which does not have to be an actual agent and can be
a specified reference state. In fact, the conclusion obtained in
this paper can also be extended to the leader-less case where
there exists no virtual leader. Because the proof is similar to
that of Theorem 8 in this paper, it is therefore omitted here.

5. Numerical Results

In order to demonstrate the effectiveness of the theoretic
results, some simulations are given in this section.

5.1. Leader-Follower Case

5.1.1. Dynamics of Agents. Consider a second-order multia-
gent system consisting of one virtual leader indexed by 0 and

0

1 2 3

4 5 6

(a)

1 2 3

4 5 6

(b)

Figure 1: The communication topologies for (a) a group of six
followers and one virtual, and (b) a group of six agents without
virtual leader.

six followers indexed by 1 to 6, respectively.The communica-
tion topology is given in Figure 1(a). The nonlinear inherent
dynamics of each follower is given as follows:

𝑓 (𝑡, 𝜉
𝑖
, V
𝑖
) = [

sin (𝜉
𝑖𝑥
) cos (𝑡) + cos (V

𝑖𝑥
) sin (𝑡)

cos (𝜉
𝑖𝑦
) sin (𝑡) + sin (V

𝑖𝑦
) cos (𝑡)

] ∈ 𝑅
2

.

(31)

It is easy to verify that𝑓(𝑡, 𝜉
𝑖
, V
𝑖
) satisfies Assumption 4. Here,

the Lipschitz constants are chosen as 𝑟
1
= 3 and 𝑟

2
= 3. The

trajectory of virtual leader is chosen as 𝜉
0
(𝑡) = [𝑡, sin(𝑡)]𝑇 ∈

𝑅
2. It follows that the dynamics of virtual leader is given as

𝑓 (𝑡, 𝜉
0
, V
0
) + 𝑔 (𝑡, 𝜉

0
, V
0
) = [

0

− sin (𝑡)] ∈ 𝑅
2

. (32)

Furthermore,

𝑔 (𝑡, 𝜉
0
, V
0
)

= [
− sin (𝜉

𝑖𝑥
) cos (𝑡) − cos (V

𝑖𝑥
) sin (𝑡)

− cos (𝜉
𝑖𝑦
) sin (𝑡) − sin (V

𝑖𝑦
) cos (𝑡) − sin (𝑡)] .

(33)

From (33), let us take 𝐶
0
= 3.

5.1.2. Determinations of 𝛼 and 𝛽. In this simulation, we
suppose that 𝑎

𝑖𝑗
= 1 if agent 𝑖 can receive information from

agent 𝑗, 𝑎
𝑖𝑗
= 0 otherwise, 𝑖 ∈ {1, . . . , 𝑛} and 𝑗 ∈ {0, 1, . . . , 𝑛}.

Therefore, the matrix 𝑀 can be derived from the topology
given in Figure 1(a):

𝑀 =

[
[
[
[
[
[
[

[

2 −1 0 −1 0 0

−1 4 −1 0 −1 0

0 −1 2 0 0 −1

−1 0 0 1 0 0

0 −1 0 0 2 −1

0 0 −1 0 −1 2

]
]
]
]
]
]
]

]

. (34)

It is easy to obtain that 𝜆min(𝑀) = 0.1284. By Theorem 8,
when 𝛼 ≤ ((8𝑟2

2
+ 2𝑟
1
) + 2√(𝑟

1
+ 𝑟
2

2
)
2

+ 3𝑟
4

2
)/3𝑟
2

2
𝜆min(𝑀) =

31.4657, and 𝛽 > 𝐶
0
= 3, the consensus tracking can be

achieved. Here we choose 𝛼 = 32, 𝛽 = 4.
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Figure 2: Position states of the followers and virtual leader under the communication topology of Figure 1(a).
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Figure 3: (a) Position tracking errors along 𝑥-axis; (b) position tracking errors along 𝑦-axis.

5.1.3. Simulation Results. Figure 2 shows the position states
of the virtual leader and followers. Figures 3(a) and 3(b)
show the position tracking errors along 𝑥-axis and 𝑦-axis.
Figures 4(a) and 4(b) show the velocity tracking errors along
𝑥-axis and 𝑦-axis, respectively. Here, the initial position and
velocity states of followers are randomly chosen from the
cubes [−3, 3] × [−3, 3] and [−2, 2] × [−2, 2], respectively, and
the initial position and velocity states of the virtual leader
are 𝜉
0
(0) = [0, 0]

𝑇 and V
0
(0) = [1, 1]

𝑇. It can be seen that
all followers ultimately track the virtual leader. Simulation
results verify the theoretical analysis very well.

5.2. Leaderless Case. In this part, let us consider a group of six
agents without virtual leader.The communication topology is
given in Figure 1(b). In order to compare with leader-follower
case, the nonlinear inherent dynamics of each agent is chosen
as (31), which is the same as that in leader-follower case. 𝛼 and
𝛽 are also chosen as 32 and 4, respectively; the initial position
and velocity states of six agents are still randomly chosen from
the cubes [−3, 3] × [−3, 3] and [−2, 2] × [−2, 2], respectively,

Figure 5 shows the position states of six agents
under communication topology in Figure 1(b) .
Figures 6(a) and 6(b) show the position tracking errors
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Figure 4: (a) Velocity tracking errors along 𝑥-axis; (b) velocity tracking errors along 𝑦-axis.
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Figure 5: Position states of six agents.

along 𝑥-axis and 𝑦-axis. Figures 7(a) and 7(b) show the
velocity tracking errors along 𝑥-axis and 𝑦-axis, respectively.
It can be seen from Figures 6 and 7 that the tracking errors
ultimately converge to zero. We see from Figure 5 that
consensus tracking is achieved.

Remark 10. For the leaderless consensus case, the final
states of each agent are determined by the communication
topology, the control gains, and the initial value of each agent.
The final states of each agent cannot be specified. However,
for the leader-follower case, there exists a virtual leader that

determines the final state, and the control objective is to
guarantee that the final states of all agents reach the state of
the virtual leader. From the above simulations, the conclusion
obtained in this paper can be extended to the leaderless case.

6. Conclusion

The consensus tracking problem for second-ordermultiagent
systemswith nonlinear inherent dynamics and a time varying
reference state has been studied in this paper. A class of
nonsmooth control protocols has been proposed, and the
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Figure 6: (a) Position tracking errors along 𝑥-axis; (b) position tracking errors along 𝑦-axis.
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Figure 7: (a) Velocity tracking errors along 𝑥-axis; (b) velocity tracking errors along 𝑦-axis.

corresponding sufficient conditions have been obtained. It
is found that if the communication graph associated with
the virtual leader and followers is connected, the consensus
can be achieved globally exponentially with the proposed
protocol.

There are still a number of related interesting problems
that deserve further infestation, for example, the consensus
tracking problem for high-order multiagent systems with
nonlinear inherent dynamics, the consensus tracking prob-
lem under directed communication topology and with time
delays, and so on, some of which will be studied in the near
future.
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