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This paper researches portfolio selection problem in fuzzy environment. We introduce a new simple method in which the
distance between fuzzy variables is used to measure the divergence of fuzzy investment return from a prior one. Firstly, two new
mathematical models are proposed by expressing divergence as distance, investment return as expected value, and risk as variance
and semivariance, respectively. Secondly, the crisp forms of the new models are also provided for different types of fuzzy variables.

Finally, several numerical examples are given to illustrate the effectiveness of the proposed approach.

1. Introduction

Portfolio selection is to select a combination of securities
among a large number of candidate securities which is the
best to meet the investors’ goal. Markowitz [1] applied proba-
bility theory to portfolio selection problem and proposed the
famous mean-variance model, in which expected return and
variance were used to describe investment return and risk,
respectively. Since then, variance has been widely accepted
as a risk measure, and a great number of extensions have
been proposed [2-5]. However, the mean-variance model has
limited generality since variance considers high returns as
equally undesirable as low returns. Variance becomes a defi-
cient measure of risk when security returns are asymmetrical.
Thus, Markowitz proposed semivariance as an improvement
measure of risk, and numerous models have been developed
based on semivariance such as models proposed in [6-10].

Generally speaking, the extension of Markowitz model
is defined by minimizing the risk and maximizing the
investment return. However, Kapur and Kesavan [11] intro-
duced an entropy maximization model and a cross entropy
minimization model. The objective of the entropy model is
to maximize the uncertainty of random return and that of
the cross entropy model is to minimize the divergence of the
random return from a prior one. After that, many scholars
accepted and explored these new models [12-15].

In the above literatures, security returns are considered
as random variables. Since the security market is complex,

in many cases, security returns are hard to be well reflected
by historical data. Therefore, many researches argued that we
should find another theory to solve the portfolio selection
problem in this situation. With the introduction of fuzzy
set theory and credibility theory, many scholars began to
employ them to describe and study fuzzy portfolio selection
problems. Numerous models containing fuzzy variables are
proposed. For example, Bilbao-Terol et al. [16], Gupta et
al. [17], and Zhang et al. [18] extended the mean-variance
model from different angles. Huang [19] developed fuzzy
mean-variance models and further proposed fuzzy mean-
semivariance portfolio selection models [20]. Li et al. [21]
employed skewness to describe asymmetry of fuzzy returns
and further established fuzzy mean-variance-skewness mod-
els. Bhattacharyvya et al. [22] proposed fuzzy mean-variance-
skewness portfolio selection models by interval analysis.
Huang [23] has used the entropy method to fuzzy environ-
ment to provide the fuzzy diversification models. In 2008,
Li and Liu [24] proposed a concept of fuzzy entropy for
measuring the uncertainty of fuzzy variables. Based on this
concept, Huang [25] researched Kapur entropy maximization
model in fuzzy environment. Moreover, the fuzzy cross
entropy was given in [26] for measuring the divergence of
fuzzy variables from a prior one. According to [26], Qin et al.
[27] extended the Kapur cross entropy minimization model
to fuzzy environment. These models in [27] were solved
by using a hybrid intelligent algorithm which is designed



by integrating numerical integration, fuzzy simulation, and
genetic algorithm.

Distance between fuzzy variables is an important concept
in fuzzy theory. Many scholars gave different definitions of
distance between fuzzy variables, such as Hamming distance,
Euclidean distance, and Minkowski distance. Recently, Tang
et al. [28] gave a kind of definition of distance based on
expected value operator of fuzzy variable. We define a new
distance between fuzzy variables based on distance measure
for interval numbers in this paper. Comparing to the distance
measure of [28], the proposed distance measure can be
calculated more easily.

In this paper, our motivation is that the divergence of
fuzzy investment return from a prior one is measured by
using the proposed distance between fuzzy variables. Based
on this idea, we establish two distance minimization models
by defining investment return as expected value and risk as
variance and semivariance, respectively. In addition, several
crisp and simple equivalents of the optimization models are
also proposed for different types of fuzzy variables. Finally, we
compare our method with the methods presented by Chen et
al. [29] and Wu and Liu [30] to demonstrate the effectiveness
of the proposed approach.

The remainder of the paper is organized as follows. Some
preliminary concepts of credibility theory are briefly recalled
in Section 2. The concept of distance between fuzzy variables
is introduced in Section 3. In Section 4, we will propose two
new models by minimizing distance between fuzzy variables.
In Section 5, the crisp forms of the new models will be
presented. Section 6 gives several numerical examples to
illustrate availability of the proposed approach. Finally, a brief
summary is given in Section 7.

2. Necessary Knowledge about
Credibility Theory

After Zadeh [31] initiated the concept of fuzzy set by member-
ship function in 1965, he further indicated possibility theory
[32]. Many research scholars, such as Dubois and Prade
[33, 34], made their great contribution to its development. In
2002, B. Liu and Y.-K. Liu [35] defined a credibility measure
to describe a fuzzy event. In order to develop an axiom
system similar to the theory of probability, Liu founded the
credibility theory in [36], which is a branch of mathematics
for studying fuzzy phenomena. Further developments can be
found in [37, 38].

Let & be a fuzzy variable with membership function y. The
credibility measure is defined as [35]

Cr{feB}:%(ilélgy(x)+1—su§cy(x)> 1)

for any set B of real numbers. It is easy to see that credibility
is self-dual.
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In order to make a more general definition of expected
value of a fuzzy variable, according to the credibility measure,
B. Liu and Y.-K. Liu [35] defined the expected value of £ as

0

E[E]:jJrOOCr{Ezr}dr—J Cr{¢ <rtdr (2)

0 —00

provided that at least one of the two integrals is finite. If the
fuzzy variable & has a finite expected value, then its variance
is defined as [35]

V[E] =E[(E-E[E])]. (3)

Let & be a fuzzy variable with finite expected value. Then
the semivariance of £ is defined as [20]

sv[e] =E[((E-E[) )], (4)
where
 [e-E[g), fE<E[E
(£l = {0, if&> E[€]. ©

Generally speaking, expected value is used to measure the
return and variance or semivariance is used to reflect the risk
in portfolio selection problem.

Example 1. Suppose that & = (a,b,c) is a triangular fuzzy
variable, and its membership function is given by

iz:z)), ifa<x<b
px) = % ifb<x<c (6)
0, otherwise.
According to (1), we have
0, x<a
x—a
, <x<b
Cr{’q’gx}=<2(b_a)
x+c—2b cx<c
2(c-b)’
1, x>c
(7)
1, x<a
2b—a—x) <x<b
Crifzxp=4 2(b-a
i <x<c
2(c-b)’
0, x=>c
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By (2) and (4), it is easy to prove that

E[E]=e:%b+c)
'(e—a)3’ e
6(b-a)
SV [&] = 1 ((a_b)(C—b)(a+2b_3e)
(b - )} Bc—4b+¢))
‘X(6(C_b))7l’ iftb-a<c-b.
(8)

If & is a symmetric triangular fuzzy variable withb—a = c—b,
then E[¢] = band

_ 2
vig = 24“) . 9)

Example 2. Suppose that & = (a,b, ¢, d) is a trapezoidal fuzzy
variable, and its membership function is given by

((z:gz, ifa<x<b
p(x)=4L ifb<sx<c (10)
(x-d) .
, ife<sx<d.
«—d ifc<x
According to (1), we obtain
0, x<a
x—a
, <x<b
2b-a) =x=
! b
Crif<x}=172 sxsc
x+d-2c
, <d
2d-o > ==
1, x>d,
(11)
1, x<a
2b—a-x
, <b
Tb-a) %=
Cr{£2x}=<%, b<x<c
d-x
, <d
2d-o C5FF
0, xX=>c

3
From (2) and (4), it is easy to obtain that
B[] =e- a+b+c+d)
4
(e-a)’ .
sh-a) ife<b
2
(b*a)(3872b*a)+3(6*b)) fhee<c
SV[E] = 1 °
(b-a)(B3e—-2b—-a)+3(c-b)(2e-b-c¢)
6
+(cfe)2(3d74c+e)) fesc
6(d-c)
(12)

If € is a symmetric trapezoidal fuzzy variable with b—a = d—c,
then E[¢] = (a+d)/2 and V[E] = (1/24)(3(d - b)*+(d — ¢)*).

3. Distance Measure for Fuzzy Variables

3.1. Distance Measure for Interval Numbers

Definition 3 (see [39]). For any real numbers a, and a,, let
A =la,a,] = {x|a, <x<a,};then Ais called an interval
number.

Definition 4 (see [40]). Suppose that A = [a;,a,] and B =
[by, b,] are two interval numbers; the distance between A and
B can be defined as follows:

D(A,B) = \j(al‘lﬁ)z;’(%‘bz)z' (13)

Equation (13) satisfies the properties of the distance metric.
In other words, let M be a set of interval numbers; then, for
every A, B,C € M, the following conditions hold:

(i) D(A,B)>0, D(A,B)=0 andif A=B; (14)

(ii) D(A,B)=D(B,A); 15)

(iii) D(A,B)<D(A,C)+D(C,B). (16)

3.2. Distance Measure for Fuzzy Variables. Suppose that & is
fuzzy variable with membership function p(x). Let uy = {x |
p(x) > A} be the A-cut of & for any real number A € [0, 1]; then
u, = [u;' (M), gz (V)] is an interval number, where g, ' (1) =
min{x | p(x) > A} and y};l(/\) = max({x | pu(x) > A}

Example 5. Let& = (a, b, c) be a triangular fuzzy variable with
membership function p(x) given by (6); then the A-cut of £ is
uy = [Ab-a)+a,Ab-c) +c] for every A € [0, 1].

Example 6. Suppose that & = (a,b, ¢, d) is a trapezoidal fuzzy
variable with membership function p(x) given by (10); then
the A-cut of & is uy = [A(b — a) + a, A(c — d) + d] for any real
number A € [0, 1].

According to the definition of the distance between
interval numbers, we can obtain the definition of the distance
between two fuzzy variables.



Definition 7. Suppose that & and # are fuzzy variables with
membership functions p(x) and v(x), and the A-cut of £ and
nisuy = [‘uil(/\),‘u;zl(/\)] and vy = [vzl(/\),vil(/\)] for all
A € [0, 1], respectively. Then the distance measure between &
and # can be defined by

D@m:JEmwwwﬁ. %

Theorem 8. Suppose that & n, and { are fuzzy variables.
Let D(.,-) be distance; then the D(:,-) satisfies the following
properties of a distance metric:

(a) D(&,n) =0, and D(&, 1) = 0 ifand only ifE = n;

(b) D, 1) = D(n,8);

(c) D, 1) < D, ) + D(C, n).
Proof. Based on the properties (i) and (ii) of the interval
numbers distance, the parts (a) and (b) follow immediately
from Definition 7. Now we prove the part (c). Suppose that
membership function of { is w(x); then the A-cut of { is

wy = [w;l(A),w;(/\)] for any real number A € [0, 1]. Based
on the inequality (16), we have

0<D (MA, V)L) <D (U)t, w/\) +D ('LUA, V/\) N

D* (up,vy) < (D (uwy) + D (wy, 1))’

1 1
J D2 (u/\, VA)dA < J (D (U}L, 'LU/\) +D(w/\, V)L))ZdA,
0 0

\“01 D% (uy,vy)dA < \/Ll (D (uy, wy) + D (wy,vy)) dA.

(18)
According to Minkowski inequality, we can obtain
! 2
J, (Do) + Dy m)dr
(19)
1 1
< J D2 (ul, wA) dA + J D2 (w)t, 'V)L) dA,
0 0
Form the above inequalities, we can get
1 1
J D2 (uA, VA) dA < j D2 (MA, wl) dA
0 0
(20)
1
+ \/J D2 (w/\, 'VA) dA
0
Thus
D(&n) < D& +D (). (21)
The theorem is proved. O
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4, Distance Minimization Models

Let x; be the investment proportions in securities i and &; the
fuzzy returns of the ith securities, i = 1,2,...,n, respectively.
Suppose that # is a prior fuzzy investment return for an
investor, and his/her objective is to minimize the divergence
of the fuzzy investment return from #. In addition, the return
remains above the minimum return level and the risk remains
below the maximum risk level. In this paper, we use the
distance to measure the degree of divergence and use the
expected value to reflect the return. The main problem is
how to measure the risk. If the fuzzy security returns ; are
symmetrical, we use variance to measure risk; then we have
the following model:

minimize D (xlfl +x,6 + -+ x,8,, ’7)
subject to  E [x,& +x,& +-+x,8,] >«
V[x & +x,6, +-+x,8,] < B (22)

X tx+-+x,=1

The first constraint ensures the expected return is no less than
some given value «, and the second one assures that risk does
not exceed some given level 3 the investor can bear. The last
two constraints imply that all capital will be invested in n
securities.

Remark 9. Suppose that the security returns &; (i = 1,2,...,
n) are fuzzy variables. It follows from Extension Principle of
Zadeh that & = x,&, + x,&, + - -+ + x,,§,,, which is also a fuzzy
variable. Let the membership functions of £ and # be u(x)
and v(x), respectively. Then the objective of model (22) can
be calculated as

D@m=JEmwwwﬂ. (23)

Though it is usually adopted that the security returns
are symmetrical, there do exist empirical evidences [41]
indicating that many security returns are not symmetrically
distributed. In the case where the fuzzy security returns are
asymmetrical, we can use semivariance to replace variance.
The semivariance is more suitable to measure risk because
it only punishes the investment return below the expected
value; thus we have the model as follows:

minimize D (x,&; + x,&, + -+ + x,,, 1)

subject to  E [x,& +x,& +--+x,8,] >«
SVI[x& + 0,6+ +x8,] < B (24)
X +xy+o+x,=1

x; 20,

i =

i=12,...,n,

where o and 8 are the predetermined confidence levels
accepted by the investor.
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5. Crisp Forms

In this section, we propose the crisp equivalents of the opti-
mization models. In order to simplify models, the objective
function D(x,&; + x,&, + -+- + x,,,, 1) of models (22) and
(24) is replaced by D*(x,&, + x,&, + -+ + x,&,,%) in crisp
forms.

Theorem 10. Assume that each security return is the symmet-
rical triangular fuzzy variable denoted by &; = (a;,b;,¢) (i =
1,2,...,n). Let the prior fuzzy investment returnyn = (a’,b',c")
be a triangular fuzzy variable; then the model (22) can be
transformed into the following crisp form:

n 2 n 2
I ! !
minimize Zaixi -—a | +2 Zbix,- -b
i=1 i=1

; 2
+ (Zcixi - c')
in1
+< bixi—b'>(Z(ai+ci)xi—a’—c'>
i=1 i-1

subject to Zb‘x >

=
i=1

n n 2
<Zc,-x,- - Zaixi> <24p
i=1 i=1

X txXy+-+x,=1

x;20, i=12...,n

(25)
Proof. Since & = (a,b,¢) (i = 1,2,...,n) are all sym-
metrical triangular fuzzy variables, it follows from Extension
Principle of Zadeh that & = x;& + x,&, + -+ + x,§, =
(YL, aix;, Yoo bixi, Y| 6x;), which is also a symmetrical
triangular fuzzy variable. According to (2) and (3), we have

E[§] = Z b;x;
i=1
(26)

V] = i(ZQ"Q‘Z‘WQ) .
i=1 i=1

In addition, according to Example 5, for any real number A €
[0, 1], we have the A-cut of &

uy = [’\ (ibixi - i“ixi> + ia,-xi,
i1 i1 i
i=1 i=1 i=1

27)

and A-cut of 5
n=[A0 -d)+a A (b =)+ ] (@28)

Thus, it is known from Definition 7 that

D’ (28, + %8, + -+ x,8,,m)

1
J 1)2 (u/\, 'V/\) dA,

0

n 2 n 2
é <Zaixi - a’) + 2<Zbixi - b’)
in1 i=1
" 2
+(Zcixi —c')
i=1
+é [(ibixi—b’> <i(ai+ci)xi —d —c’)] .
i=1 i=1

(29)

The proof is completed. O

When the investment return & = (a, b, ¢) is an asymmet-
rical triangular fuzzy variable, the investors focus on the case
c¢—b < b—a. Therefore, we only consider this situation in this

paper.

Theorem 11. Suppose that security returns & = (a;, b, ¢) (i =

7> Ui
1,2,...,n) are asymmetrical triangular fuzzy variables. Let the

prior fuzzy investment return n = (a',b',c) be a triangular
fuzzy variable. Then the model (24) can be converted into the
following crisp form:

n 2 n 2
I ! !
minimize Zaixi -a | +2 Zbixi -b
i=1 i=1

n 2 n

+ <ch-xi —c') + <Zb,»x,- - b’)
i=1 i=1

x( (ai+ci)xi—a'—c'>
i=1

n n n
subject to <Zal-xi + 2Zbixi + Zcix,-) > 4
i=1 i=1 i=1
n n n 3
(qui + 2Zbixi - 3Zaixi> (30)

i=1 i=1 i=1

n n
< 384p (Zbixi - Zaixi>

i=1 i=1

n n
Zczxi - Zbixi
i=1 i=1
n n
< Zbixi - Zalx,
i=1 i=1
X X+ +x,=1
x;20, i=12,...,n



Proof. According to (2) and (4), it can be proved that, for
an asymmetrical triangular fuzzy investment return & =
QL axi, Yo, bix;, Yoy 6x;), its expected value and semi-
variance are

1 n n n
E[¢]=e= n <Zaixi + ZZbixi + Zc,-x,-),
-1 i1 i1

(31)
3
€e— Zz a;x;
SV[E] = e Zm )
6 (Zi:l bix; - Zizl aixi)
respectively, when Y1, ¢x; - XL, bix; < XL, bixi — YL, apx;.

Furthermore, the objectives of model (30) and model (25) are
the same. Thus the proof is completed. O

According to above proof, we can also obtain Theorems
12-15 for different types of fuzzy variables.

Theorem 12. Assume that each security return is the
symmetrical trapezoidal fuzzy variable denoted by & =
(a,b,¢,d;) (i = 1,2,...,n). Let the prior fuzzy investment
return n = (a',b',c',d") be trapezoidal fuzzy variable. Then
the model (22) can be converted into the following crisp
form:

n 2 n 2
Y ! !
minimize Zaixi -a | + Zbixi -b
i=1 i=1

n 2 n 2
! !
+ Zcixi -c | + dix;—d
i=1

(32)

Theorem 13. Assume that each security return is the
symmetrical  trapezoidal fuzzy variable denoted by
& = (a5, b,¢,d) (i = 1,2,...,n). Let the prior fuzzy
investment return n = (a',b', ') be triangular fuzzy variable.
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Then the model (22) can be transformed into the following

crisp form:
n 2 n 2
minimize (Zaixi - a’) + (Zbixi - b')
i=1 i=1
n 2 n 2
+ <chx,» - b') + (Zdixi c’)
i=1 i=1
+ <ia,-xi - a') <ib,»x,- - b')
i=1 i=1
+ (iqxi - b') (Zn:dixi - c')
i=1 i=1
subject to <ia1xi + idixi> > 20
i=1 i=1

3<i(d1‘ _bi)xi> + <i(di -q) xi) <24p

X tx+--+x,=1
x;20, i=12,...,n
(33)
Theorem 14. Suppose that security returns &; (a5 b;, ¢,

d;) (i = 1,2,...,n) are asymmetrical trapezoidal fuzzy vari-
ables. Let the prior fuzzy investment return = (a',b',c',d')
be trapezoidal fuzzy variables. Then the model (24) can be
transformed into the following crisp form:

i (S )+ (S
(Fone) +(Bme)
o(Banmo) (B-v)
(B )(So- )

n n n n
subject to (Zaixi + Zbl-x,» + Zcixi + Zdixi) > 4o
i=1 i=1 i=1 i=1

Vix)<p
X +xy+o+x,=1
x;>20, i=12...,n,

(34)
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where
V(x)

(-2 “ixi)3
6 (Z?:1 (b - “i) x;)

é [(i(bz - a;) xi)

n
ife< Zbixi
i=1

= 9 é [(g(bi_ai)xi>
X <3e— (i(ai +2b,~)xi)>

+3($ -0

i=1

X (26 - ibixi - Zn:cixi>]
i=1 i=1

((5e)

X <3id,~x,~ - 4iqxi + e>>
i=1 i=1

{o(Fa-om))

e= l( (a,-+b,-+ci+d,-)xi>.
4 i=1

1

n
ife > Zcixi,
i=1

L

(35)

Theorem 15. Suppose that security returns & = (a;b;, ¢,
d) (i = 1,2,...,n) are asymmetrical trapezoidal fuzzy
variables. Let the prior fuzzy investment return n = (a',b',c")
be triangular fuzzy variable. Then the model (24) can be
transformed into the following crisp form:

n 2 n 2
I ! !
minimize Zaixi -a | + Zbixi -b
i=1 i=1

n 2 n 2
+ (Zcixi - b') + (Zdixi - c')
i=1 i=1

TABLE 1: The symmetrical fuzzy returns of 10 securities.

Securityi  Fuzzy return§; Security i Fuzzy return &;
1 (~0.4,1.5,3.4) 2 (~0.1,1.2,2.5)
3 (-0.2,2.0,4.2) 4 (-0.5,1.2,2.9)
5 (-0.6,1.4,3.4) 6 (-0.1,1.8,3,7)
7 (-0.3,1.6,3.5) 8 (=0.1,2.2,4.5)
9 (-0.7,1.0,2.7) 10 (-0.2,1.8,3.8)

+ <iaix,- - a') (ib,-xi - b'>
i=1 i=1

+ <icixi - b') (idixi - c')
i=1 i=1

n n n n
subject to <Za,-x,- + Zb,-x,- + Zcixi + Zdix,) > 4o
i=1 i=1 i=1 i=1

Vix)<p

(36)

6. Numerical Examples

In this section, some numerical examples are given to
illustrate the availability of the two new models. Examples
1-3 consider the case in which there are 10 or 30 securities
from different industries. Let &; be the return of the ith
security determined as &; = (p; + f; — p;)/p;> where p; is the
estimated closing price of the ith security in the next period,
p; the closing price of the ith security at present, and f; the
estimated dividends of the ith security during the next period.
It is clear that p; and f; are unknown at present. In other
words, the predictions of security returns have to be given
mainly based on expert’s judgments and estimations.

Example 1. Assume that each security return is the symmet-
rical triangular fuzzy variable denoted by &; = (a;,b,,¢;) (i =
1,2,...,10), where the parameters g;, b, and ¢; are determined
based on the estimated values of financial experts. The data
set is given in Table 1. Suppose that the minimum expected
return the investor can accept is 1.95 and the bearable
maximum risk is 1.0. In addition, the prior fuzzy investment
return is # = (-0.2,1.9,4.0). From the model (25), we can
obtain a simple and crisp optimization model and employ
fmincon in MATLAB 7.1 to solve this model. The numerical
results are given in Table 2.

In order to obtain the minimized distance of the invest-
ment return from # when the portfolio satisfies the return and
risk constraints, the investor should allocate his or her money
according to Table 2. The corresponding objective value is
0.0150; the expected return and variance of the portfolio are
1.951 and 0.739, respectively. Furthermore, the investment
return is & = (-0.15,1.95,4.05). The graphic comparison of
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TABLE 2: Investment proportion of 10 securities (%).

Security i 1 2 3 4

5 6 7 8 9 10

Allocation of money 0.3 2.9 47.9 0.6

0.2 26.7 0.5 20.1 0.3 0.6

TaBLE 3: The asymmetrical fuzzy returns of 10 securities.

Security i Fuzzy return ¢; Security i Fuzzy return ¢;

1 (-0.4,2.7,3.4) 2 (-0.1,1.9,2.6)

3 (-0.2,3.0,4.0) 4 (-0.5,2.0,2.9)

5 (-0.6,2.2,3.3) 6 (-0.1,2.5,3.6)

7 (=0.3,2.4,3.5) 8 (=0.1,3.3,4.5)

9 (-0.7,1.1,2.7) 10 (-0.2,2.1,3.8)
TABLE 4: Investment proportion of 10 securities (%).

Security i 1 2 3 4 5 6 7 8 9 10
Allocation of money 0 0.4 6.8 0 1.6 0 0 35.2 1.2 54.9
TaBLE 5: The trapezoidal fuzzy returns of 30 securities.

Security i Fuzzy return & Security i Fuzzy return ¢

1 (1.000, 1.003, 1.007, 1.008) 2 (1.001, 1.004, 1.009, 1.012)
3 (1.001, 1.004, 1.009, 1.012) 4 (0.996,1.008, 1.009, 1.022)
5 (0.995,1.007,1.012,1.023) 6 (0.994,1.015, 1.024, 1.026)
7 (0.999,1.019, 1.023, 1.038) 8 (1.005,1.026, 1.032, 1.046)
9 (1.008, 1.021, 1.035, 1.046) 10 (1.017, 1.020, 1.026, 1.060)
11 (1.010, 1.027,1.038, 1.055) 12 (1.013,1.033,1.045, 1.058)
13 (1.011,1.039, 1.044, 1.062) 14 (1.015,1.030, 1.044, 1.071)
15 (1.037,1.053,1.084, 1.096) 16 (1.042,1.047,1.070,1.113)
17 (1.034,1.055,1.088,1.100) 18 (1.039,1.051, 1.088, 1.105)
19 (1.031,1.067,1.091,1.108) 20 (1.048,1.061, 1.067, 1.135)
21 (1.020, 1.089, 1.095, 1.107) 22 (1.043,1.063,1.092,1.121)
23 (1.038,1.073,1.078,1.132) 24 (1.051,1.063,1.104, 1.124)
25 (1.044,1.076,1.095, 1.134) 26 (1.039,1.088,1.097,1.139)
27 (1.036,1.089, 1.114, 1.127) 28 (1.054,1.076, 1.089, 1.155)
29 (1.058,1.070,1.101, 1.150) 30 (1.056,1.071,1.126,1.132)

the obtained investment return & and the prior one 7 is shown
in Figure 1.

From Figure 1, we see that the obtained investment return
& is close to the prior one 7. It shows that the new approach is
feasible.

Example 2. In this example, all data is from [27]. The
asymmetrical fuzzy returns of 10 securities are shown in
Table 3. The maximum risk level and the minimum return
level are 0.7 and 2.25, respectively. The prior fuzzy return
isn = (=0.2,2.3,4). From the model (30), we can obtain a
simple and crisp optimization model and employ fmincon in
MATLAB 7.1 to solve this model. The numerical results are
given in Table 4.

In order to obtain the minimized distance of the invest-
ment return from the prior return # when the portfolio satis-
fies the return and risk constraints, the investor should assign
his or her capital according to Table 4. The corresponding
objective value is 0.165; the expected return and semivariance
of the portfolio are 2.253 and 0.612, respectively. In addition,
the investment return is & = (-0.18,2.58,4.03). { = (-0.20,
2.63,3.95) denotes the investment return calculated by [27].
The graphic comparison of the investment returns &, { and
the prior one # is shown in Figure 2.

From Figure 2, we can see that the investment returns
obtained by our model and model of [27] are similar.
However, solving our model is easier than solving the model
of [27].
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FIGURE 2: Comparison of the investment returns &, ¢ and the prior one #.
TABLE 6: Investment proportion of 30 securities (%).
Security i 14 18 23 26 27 28 29
Allocation of money 10.17 0.12 4.9 33.01 17.85 0.23 33.69
TABLE 7: Investment proportion of 30 securities under different risk level constraints with « = 1.0732 (%).
B 0.000245 0.000255 0.000265 0.000275 0.000315 0.000345 0.000475
Ob;. 0.0012 9.7681e — 004 4.7702e — 004 1.6635e — 004 1.5111e - 005 1.3800e — 005 9.7857e — 006
X, 19.01 5.45 3.25 3.16 0 0 0
X, 1.08 2.62 0.64 1.10 0 0 0
Xy 0 0.61 0 0 0 0 0
X10 4.02 17.96 12.63 11.91 0.61 0.50 0
X 0 0.8 0.11 0 0 0 0
X1 0 0 0 0 2.44 1.87 10.17
X8 0 0 0 0 1.12 0.35 0.12
X0 0 0 0 0 130 10.83 0
X5 0 0 0 0 3.67 0 0
X, 0 0 0 0 0 22.29 0
Xy 0 0 0 0 0.40 0.50 0
Xy3 0 0 0 0 30.63 1.79 4.9
Xps 0 0 0 0 L1 0.32 0
Xy 0 0 32.94 26.41 29.73 22.44 33.01
Xy 0 0 0 0 145 1.53 17.85
Xag 0 0 0 32.16 0.63 0.18 0.23
X5 0 0 0 1.49 9.98 36.48 33.69
X30 75.88 72.55 50.43 23.76 16.91 0.91 0
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TABLE 8: Investment proportion of 30 securities under different return level constraints with 8 = 0.000475 (%).
o 1.0732 1.0865 1.0885 1.0898 1.919 1.0953 1.0962
Ob;. 9.7857e — 006 1.0206e — 005 3.7685e — 005 1.5338e — 004 2.0983e — 004 4.6784e — 004 0.0011
X1 10.17 49 0.48 0.38 0.23 1.40 0
X6 0 0 0.14 0.40 0 0 0
PN 0.12 0 0.17 0 0 0 0
X1 0 8.53 0.32 0 0 0 0
X5 0 0 14.92 17.33 1.35 2.15 0
Xy 0 0 8.98 0.46 0 0.49 0
Xy 0 0 0 1.0 0 0 0
Xy3 4.9 16.17 3.63 1.51 0.41 0 0
X5 0 0 0.23 2.43 1.38 0 0
Xy 33.01 20.37 20.5 20.14 55.28 4.25 0
Xy 17.85 17.74 1715 26.63 0 0 0
Xag 0.23 1.51 0 0 10.2 19.29 0.11
X5 33.69 30.65 18.06 0 0 0 0
X30 0 0.14 15.4 29.73 31.16 72.42 99.89
TaBLE 9: Optimal portfolios produced by model (23) of [29] under different risk level constraints (%).
Sy 0.002 0.0025 0.0045 0.0050 0.0075 0.0095 0.0125
X, 93.34 92.49 79.11 74.8 58.37 44.54 21.99
X, 3.46 0.14 0.06 0.52 0.74 1.44 3.87
X3 0 0 0 0.45 0.29 0 0.34
X4 0 0 0 0.88 0 0.32 0
X5 0 0 0 0 0.35 0 0
X3 3.18 7.36 20.83 23.34 40.24 53.68 73.75

Example 3. Assume that each security return is trapezoidal
fuzzy variable denoted by §; = (a;,b,,¢,,d;) (i = 1,2,...,30).
The data set from [30] is shown in Table 5. The maximum
risk level and the minimum return level are 0.000475 and
1.0732, respectively. In addition, the prior fuzzy return is 5 =
(1.040, 1.075,1.095,1.135) for an investor. From the model
(34), we can obtain a simple and crisp optimization model
and use gravitation search algorithm (GSA) [42] to solve this
model. The numerical results are given in Table 6.

The results show that among 30 securities, satisfying the
constraints, in order to minimize distance of the investment
return from the prior return #, the investor should allocate
his or her money according to Table 6. The corresponding
objective value is 9.7857e — 006. In addition, the investment
return is § = (1.0424, 1.0754, 1.0950, 1.1333).

In order to examine the sensitivity of the predetermined
confidence level, we adjust the 3 value and do the experiment.
The results are shown in Table 7. It is seen that as maximum
risk level increases, the optimal objective will decrease.

In addition, we also examine the sensitivity of the return
level o to optimal objective in the same way. The results are
given in Table 8. The results indicate that as expected return
level increases, the minimal distance will increase.

Furthermore, in order to examine the availability of the
new approach, we compare the proposed method with the
methods of [29, 30]. Based on the data in Table 5, we use GSA

to solve the models (18) and (23) of [29] for different return
level r, and risk level s,. The numerical results are given in
Tables 9 and 10. In addition, Tables 11 and 12 show the results
of models (21) and (22) of [30], which are from [30].

From Tables 7 to 12, it is seen that the computational
results about optimal allocation proportion to 30 securities
are different, and the optimal portfolios produced by our
model are more diversified than the optimal portfolio pro-
duced by models of [29, 30].

7. Conclusions

In this paper, a concept of distance between fuzzy variables
was introduced for measuring the divergence of fuzzy invest-
ment returns from a prior one. By defining the risk as variance
and semivariance, two distance minimization models were
proposed. In addition, crisp equivalents of the optimization
models have also been provided. Finally, the results of the
numerical examples illustrated the availability of the new
method.
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TABLE 10: Optimal portfolios produced by model (18) of [29] under different return level constraints (%).
7, 1.0732 1.0885 1.0898 1.0919 1.0953 1.0962
b 6.69 0 0 0 0 0
X, 1.64 0 0 0 0 0
X5 61.01 13.96 3.13 0 2.83 0
X1 30.6 173 3.75 0 0.61 0
X5 0 2.83 0.14 1.52 0 0
Xy 0 80.78 92.65 75.03 0 0
Xy 0 0 0 0 8.4 134
X30 0 0 0 23.44 88.06 98.66
TasLE 11: Optimal portfolios produced by model (21) of [30] under different risk level constraints (%).
] 0.000025 0.000475 0.000654 0.000779 0.000858 0.000932 0.000989
X, 91.326 11.338 0 0 0 0
X5 0 44.196 27.026 0 0 0
X5 6.045 24.411 33.617 34.866 20.38 3.097 0
Xy 2.629 20.055 28.889 28.094 10.128 0 0
Xy 0 0 0 8.539 40.933 62.456 9.515
Xog 0 0 0 0 4.976 36.367
X30 0 0 10.469 28.501 28.56 29.471 54.118
TABLE 12: Optimal portfolios produced by model (22) of [30] under different return level constraints (%).
p 1.0732 1.0898 1.0919 1.0953 1.0962 1.09625
x, 0 0 0 0 0 0
X5 44.39 0 0 0 0 0
X5 29.887 15.421 4.392 0 0 0
X1 25.732 3.979 0 0 0 0
X6 0 52.021 62.61 0 0 0
Xy 0 0 3.419 34,545 1.818 0
X30 0 28.58 29.58 65.454 98.182 100
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