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Abstract. 
This paper is concerned with a novel methodology of smoothing analysis process of multicolor point relaxation by multigrid method for solving elliptically partial differential equations (PDEs). The objective was firstly focused on the two-color relaxation technique on the local Fourier analysis (LFA) and then generalized to the multicolor problem. As a key starting point of the problems under consideration, the mathematical constitutions among Fourier modes with various frequencies were constructed as a base to expand two-color to multicolor smoothing analyses. Two different invariant subspaces based on the 2h-harmonics for the two-color relaxation with two and four Fourier modes were constructed and successfully used in smoothing analysis process of Poisson’s equation for the two-color point Jacobi relaxation. Finally, the two-color smoothing analysis was generalized to the multicolor smoothing analysis problems by multigrid method based on the invariant subspaces constructed.
 

1. Introduction
Multigrid methods [1–6] are generally considered as one of the fastest numerical methods for solving complex partial differential equations (PDEs), for example, Navier-Stokes equation in computational fluid dynamics (CFD). As we know, the speed of the multigrid computational convergence depends closely on the numerical properties of the underlying problem of PDEs, for example, equating type and discretizing stencil. Meanwhile, a variety of algorithms for the components in multigrid are of great importance, for example, the processing methods based on smoothing, restriction, prolongation processes, and so on. So, an appropriate choice for the available components has a great impact on the overall performance for specific problems.
Local Fourier analysis (LFA) [5, 7–12] is a very useful tool to predict asymptotic convergence factors of the multigrid methods for PDEs with high order accuracy. Therefore it is widely used to design efficient multigrid algorithms. In LFA an infinite regular grid needs to be considered and boundary conditions need to be ignored. On an infinite grid, the discrete solutions and the corresponding errors are represented by linear combinations of certain complex exponential functions. Thus, Fourier modes are often used to form a unitary basis of the subspace of the grid functions with bounded norms [5, 7, 12]. The LFA monograph by Wienands and Joppich [11] provides an excellent background for experimenting with Fourier analysis. Recent advances in this context included LFA for triangular grids [13, 14], hexagonal meshes [15], semistructured meshes [16], multigrid with overlapping smoothers [17], multigrid with a preconditioner as parameters [18], and full multigrid method [19]. In [8], an LFA for multigrid methods on the finite element discretization of a 2D curl-curl equation with a quadrilateral grid was introduced.
A general definition on the multicolor relaxation was provided in [20]. Smoothing analysis of the two-color relaxation on LFA was given in [21–24], and the four-color relaxation with tetrahedral grids was presented in [16, 25]. In [26], a parallel multigrid method for solving Navier-Stokes equation was investigated and a multigrid Poisson equation solver was employed in [27]. A parallel successive overrelaxation (SOR) algorithm for solving the Poisson problem was discussed in [28], and multicolor SOR methods were studied in [29].
In the present paper, a novel smoothing analysis process of multicolor relaxation on LFA is provided with details. An important coupled relation among Fourier modes with various frequencies is constructed and expanded to the multicolor smoothing analysis. The roles of the Fourier modes with the high and low frequencies in the proposed method are well characterized. Thus, by the two invariant subspaces based on the 2h-harmonics the two-color smoothing analysis process is well generalized to the multicolor problems.
2. LFA in Multigrid
2.1. General Definition
A rigorous base of the local mode analysis in multigrid was elaborated [12]. Herein, we are following [11] as a starting point of our framework.
A generally linear scalar constant-coefficient system without boundary conditions is described with a discrete problem with infinite grid; that is,
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3. Smoothing Analysis of Two-Color Relaxation
To develop two different processes of LFA for the two-color relaxation, grid (2) is divided into two disjoint subsets 
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					From the process mentioned above, it is noted that the Fourier modes (4) are no longer eigenfunctions of (15) on grid (2) because the relaxation operator is used.
3.1. Invariant Subspaces for Two-Color Relaxation
A new smoothing analysis process of the two-color relaxation is proposed with details. The proposed process is different with [11, 20–24]. A novel constitution among the Fourier modes with various frequencies is developed as a base of the smoothing analysis process. The analysis process is proved to be valuable.
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				m
				o
				d
				2
				,
				−
				⇀
				𝑘
				∈
				ℤ
			

			

				2
			

			
				
				,
			

		
	

							where 
	
		
			
				𝛽
				=
				0
				,
				1
			

		
	
. According to (16), the subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics (9) is redefined as
								
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝐹
			

			
				2
				2
				ℎ
			

			
				
				𝜃
				
				
				𝜑
				−
				⇀
				∶
				=
				s
				p
				a
				n
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				0
			

			
				,
				𝑥
				
				−
				⇀
				,
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				1
			

			
				,
				𝑥
				−
				⇀
				
				
			

		
	

							with 
	
		
			
				−
				⇀
				𝜃
				=
				(
				𝜃
			

			

				1
			

			
				,
				𝜃
			

			

				2
			

			
				)
				∈
				Θ
			

			
				l
				o
				w
			

			
				=
				(
				−
				𝜋
				/
				2
				,
				𝜋
				/
				2
				]
			

			

				2
			

		
	
, where 
	
		
			
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				=
				(
				−
				⇀
				𝜃
				+
				(
				𝛼
				,
				𝛼
				)
				𝜋
				)
				m
				o
				d
				2
				𝜋
			

		
	
, 
	
		
			
				𝛼
				=
				0
				,
				1
			

		
	
. Thus, the constitutions among the various Fourier modes defined by (16) and (17) are presented as follows.
Proposition 1.  For 
	
		
			
				∀
				−
				⇀
				𝑥
				∈
				𝐺
			

			

				ℎ
			

		
	
, 
	
		
			
				∀
				(
				𝑘
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				)
				∈
				ℤ
			

			

				2
			

		
	
, and 
	
		
			
				∀
				𝛼
				∈
				{
				0
				,
				1
				}
			

		
	
, if 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				l
				o
				w
			

		
	
, then the following formulation holds:
									
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				
				
				𝑘
				−
				⇀
				=
				e
				x
				p
				𝑖
				𝜋
				𝛼
			

			

				1
			

			
				+
				𝑘
			

			

				2
			

			
				𝜑
				
				
			

			

				ℎ
			

			
				
				𝑥
				
				.
				−
				⇀
				𝜃
				,
				−
				⇀
			

		
	

Proof. From (4), for 
	
		
			
				∀
				−
				⇀
				𝑥
				∈
				𝐺
			

			

				ℎ
			

		
	
, it holds for 
	
		
			

				𝜑
			

			

				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝜃
				−
				⇀
				𝑥
				)
				=
				e
				x
				p
				(
				𝑖
				−
				⇀
			

			

				𝛼
			

			
				−
				⇀
				𝑘
				)
			

		
	
. From (17), 
	
		
			
				∃
				−
				⇀
				𝑛
				=
				(
				𝑛
			

			

				1
			

			
				,
				𝑛
			

			

				2
			

			
				)
				∈
				ℤ
			

			

				2
			

		
	
 is subjected to 
	
		
			
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				=
				(
				𝜃
			

			

				1
			

			
				+
				𝛼
				𝜋
				,
				𝜃
			

			

				2
			

			
				𝑛
				+
				𝛼
				𝜋
				)
				+
				2
				𝜋
				−
				⇀
			

		
	
. Then 
									
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				𝜃
				
				𝑘
				−
				⇀
				𝑘
				=
				−
				⇀
				−
				⇀
				𝑘
				+
				𝜋
				𝛼
			

			

				1
			

			
				+
				𝑘
			

			

				2
			

			
				
				𝑛
				𝑘
				+
				2
				𝜋
				−
				⇀
				−
				⇀
			

		
	

								holds. Thus,
									
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				
				𝑖
				𝜃
				−
				⇀
				=
				e
				x
				p
				−
				⇀
			

			

				𝛼
			

			
				𝑘
				
				
				
				𝑘
				−
				⇀
				=
				e
				x
				p
				𝑖
				𝜋
				𝛼
			

			

				1
			

			
				+
				𝑘
			

			

				2
			

			
				
				𝑖
				𝜃
				𝑘
				
				
				
				𝑘
				
				
				e
				x
				p
				−
				⇀
				−
				⇀
				=
				e
				x
				p
				𝑖
				𝜋
				𝛼
			

			

				1
			

			
				+
				𝑘
			

			

				2
			

			
				𝜑
				
				
			

			

				ℎ
			

			
				
				𝑥
				
				.
				−
				⇀
				𝜃
				,
				−
				⇀
			

		
	

								Proposition 1 follows.
Proposition 2.  For 
	
		
			
				∀
				𝛼
			

		
	
, 
	
		
			
				𝛽
				∈
				{
				0
				,
				1
				}
			

		
	
, and 
	
		
			
				∀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

		
	
, if 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				𝑙
				𝑜
				𝑤
			

		
	
, then the following formulation holds:
									
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				−
				⇀
				=
				e
				x
				p
				(
				𝑖
				𝜋
				𝛼
				𝛽
				)
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				.
				−
				⇀
				𝜃
				,
				−
				⇀
			

		
	

Proof. By Proposition 1 and 
	
		
			

				𝐺
			

			
				𝛽
				ℎ
			

			
				⊆
				𝐺
			

			

				ℎ
			

		
	
, for 
	
		
			
				∀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

		
	
, then
									
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				
				
				𝑘
				−
				⇀
				=
				e
				x
				p
				𝑖
				𝜋
				𝛼
			

			

				1
			

			
				+
				𝑘
			

			

				2
			

			
				𝜑
				
				
			

			

				ℎ
			

			
				
				𝑥
				
				,
				−
				⇀
				𝜃
				,
				−
				⇀
			

		
	

								where 
	
		
			
				(
				𝑘
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				)
				∈
				ℤ
			

			

				2
			

		
	
. For 
	
		
			
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

		
	
, from (16), 
	
		
			
				∃
				𝑝
				∈
				ℤ
			

		
	
 is subjected to 
	
		
			

				𝑘
			

			

				1
			

			
				+
				𝑘
			

			

				2
			

			
				=
				𝛽
				+
				2
				𝑝
			

		
	
; hence, 
									
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				[
				]
				𝜑
				−
				⇀
				=
				e
				x
				p
				𝑖
				𝜋
				𝛼
				(
				𝛽
				+
				2
				𝑝
				)
			

			

				ℎ
			

			
				
				𝑥
				
				−
				⇀
				𝜃
				,
				−
				⇀
				=
				e
				x
				p
				(
				𝑖
				𝜋
				𝛼
				𝛽
				)
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				.
				−
				⇀
				𝜃
				,
				−
				⇀
			

		
	

								Proposition 2 holds.
Subsequently, the smoothing analysis process of the two-color relaxation on the subspace of the 
	
		
			
				2
				ℎ
			

		
	
-harmonics (17) is conducted. By (15) and (16) and without loss of generality, let 
	
		
			

				𝐺
			

			
				0
				ℎ
			

		
	
 and 
	
		
			

				𝐺
			

			
				1
				ℎ
			

		
	
 correspond to 
	
		
			

				𝐺
			

			
				𝑅
				ℎ
			

		
	
 and 
	
		
			

				𝐺
			

			
				𝐵
				ℎ
			

		
	
, respectively; thus (15) is rewritten as 
								
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			

				𝑆
			

			
				ℎ
				0
				1
			

			
				(
				𝜔
				)
				=
				𝑆
			

			
				1
				ℎ
			

			
				(
				𝜔
				)
				𝑆
			

			
				0
				ℎ
			

			
				(
				𝜔
				)
				.
			

		
	

Theorem 3.  The iteration operator 
	
		
			

				𝑆
			

			
				ℎ
				0
				1
			

			
				(
				𝜔
				)
			

		
	
 for the two-color relaxation leaves the subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics (17) to be invariant.
Proof. From the process of the two-color relaxation, the operator 
	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 of grid (16) is
									
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				−
				⇀
				𝜃
				,
				−
				⇀
			

			

				∼
			

			

				𝑆
			

			
				𝛽
				ℎ
			

			
				
				
				𝜑
				−
				⇀
				𝜃
				,
				𝜔
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∉
				𝐺
			

			
				𝛽
				ℎ
			

			

				,
			

		
	

								where 
	
		
			

				∼
			

			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				−
				⇀
				𝜃
				,
				𝜔
				)
			

		
	
 is Fourier symbol of 
	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 on grid (16) with 
	
		
			
				𝛽
				=
				0
				,
				1
			

		
	
. From (10) and (25), now it is proved that the subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics (17) is invariant for the iteration operator (24). Because of (17), we need to find out two complex numbers 
	
		
			

				𝑎
			

			

				0
			

		
	
 and 
	
		
			

				𝑎
			

			

				1
			

		
	
 with 
	
		
			
				∀
				𝛼
			

		
	
, 
	
		
			
				𝛽
				∈
				{
				0
				,
				1
				}
			

		
	
 and make them subjected to
									
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				−
				⇀
				=
				𝑎
			

			

				0
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				0
			

			
				,
				𝑥
				
				−
				⇀
				+
				𝑎
			

			

				1
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				1
			

			
				,
				𝑥
				
				.
				−
				⇀
			

		
	

								From (25), the right hand side of (26) is written as
									
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				−
				⇀
			

			

				∼
			

			

				𝑆
			

			
				𝛽
				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				
				𝜑
				,
				𝜔
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				∀
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				∀
				−
				⇀
				−
				⇀
				𝑥
				∉
				𝐺
			

			
				𝛽
				ℎ
			

			

				.
			

		
	

								By Propositions 1 and 2, the right hand side of (27) is expressed as
									
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				−
				⇀
			

			

				∼
			

			

				𝑆
			

			
				𝛽
				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				
				,
				𝜔
				e
				x
				p
				(
				𝑖
				𝛼
				𝛽
				𝜋
				)
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

			
				[
				]
				𝜑
				e
				x
				p
				𝑖
				𝛼
				(
				1
				−
				𝛽
				)
				𝜋
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∉
				𝐺
			

			
				𝛽
				ℎ
			

			

				.
			

		
	

								Taking 
	
		
			

				𝐴
			

			
				𝛽
				𝛼
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝜔
				)
			

		
	
, (28) is written as
									
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				𝐴
				−
				⇀
			

			
				𝛽
				𝛼
			

			
				e
				x
				p
				(
				𝑖
				𝛼
				𝛽
				𝜋
				)
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

			
				[
				]
				𝜑
				e
				x
				p
				𝑖
				𝛼
				(
				1
				−
				𝛽
				)
				𝜋
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∉
				𝐺
			

			
				𝛽
				ℎ
			

			

				.
			

		
	

								From Propositions 1 and 2, the left hand side of (26) is written as 
									
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			

				𝑎
			

			

				0
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				0
			

			
				,
				𝑥
				
				−
				⇀
				+
				𝑎
			

			

				1
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				1
			

			
				,
				𝑥
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				
				𝑎
				−
				⇀
			

			

				0
			

			
				+
				𝑎
			

			

				1
			

			
				
				𝜑
				e
				x
				p
				(
				𝑖
				𝛽
				𝜋
				)
			

			

				ℎ
			

			
				
				𝑥
				
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

			
				
				𝑎
			

			

				0
			

			
				+
				𝑎
			

			

				1
			

			
				[
				]
				
				𝜑
				e
				x
				p
				𝑖
				(
				1
				−
				𝛽
				)
				𝜋
			

			

				ℎ
			

			
				
				𝑥
				
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∉
				𝐺
			

			
				𝛽
				ℎ
			

			

				.
			

		
	

								Hence, from (26), (29), and (30), a set of two linear equations on 
	
		
			

				𝑎
			

			

				0
			

		
	
 and 
	
		
			

				𝑎
			

			

				1
			

		
	
 is given as
									
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			

				𝑎
			

			

				0
			

			
				+
				𝑎
			

			

				1
			

			
				e
				x
				p
				(
				𝑖
				𝛽
				𝜋
				)
				=
				𝐴
			

			
				𝛽
				𝛼
			

			
				𝑎
				e
				x
				p
				(
				𝑖
				𝛼
				𝛽
				𝜋
				)
			

			

				0
			

			
				+
				𝑎
			

			

				1
			

			
				[
				]
				[
				]
				,
				e
				x
				p
				𝑖
				(
				1
				−
				𝛽
				)
				𝜋
				=
				e
				x
				p
				𝑖
				𝛼
				(
				1
				−
				𝛽
				)
				𝜋
			

		
	

								where 
	
		
			

				𝛼
			

		
	
, 
	
		
			
				𝛽
				∈
				{
				0
				,
				1
				}
			

		
	
. Therefore, from (31), it is concluded that there exist two complex numbers 
	
		
			

				𝑎
			

			

				0
			

		
	
 and 
	
		
			

				𝑎
			

			

				1
			

		
	
 that are subjected to (26). From (10), (17), and (26), solving linear equation (31), the Fourier representations of the iteration operators 
	
		
			

				𝑆
			

			
				0
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 and 
	
		
			

				𝑆
			

			
				1
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 are obtained as
									
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				
				𝑆
			

			
				0
				ℎ
			

			
				
				
				=
				1
				−
				⇀
				𝜃
				,
				𝜔
			

			
				
			
			
				2
				⎛
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			
				0
				0
			

			
				+
				1
				𝐴
			

			
				0
				1
			

			
				𝐴
				−
				1
			

			
				0
				0
			

			
				−
				1
				𝐴
			

			
				0
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				𝑆
				+
				1
			

			
				1
				ℎ
			

			
				
				
				=
				1
				−
				⇀
				𝜃
				,
				𝜔
			

			
				
			
			
				2
				⎛
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			
				1
				0
			

			
				+
				1
				−
				𝐴
			

			
				1
				1
			

			
				+
				1
				−
				𝐴
			

			
				1
				0
			

			
				+
				1
				𝐴
			

			
				1
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				+
				1
			

		
	

								where 
	
		
			

				𝐴
			

			
				𝛽
				𝛼
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝜔
				)
			

		
	
 and 
	
		
			

				𝛼
			

		
	
, 
	
		
			
				𝛽
				∈
				{
				0
				,
				1
				}
			

		
	
. Furthermore, from (32), the Fourier representations of the two-color relaxation 
	
		
			

				𝑆
			

			
				ℎ
				0
				1
			

			
				(
				𝜔
				)
			

		
	
 are
									
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			
				
				𝑆
			

			
				ℎ
				0
				1
			

			
				
				
				=
				
				𝑆
				−
				⇀
				𝜃
				,
				𝜔
			

			
				1
				ℎ
			

			
				
				
				
				𝑆
				−
				⇀
				𝜃
				,
				𝜔
			

			
				0
				ℎ
			

			
				
				
				=
				1
				−
				⇀
				𝜃
				,
				𝜔
			

			
				
			
			
				2
				⎛
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			
				1
				0
			

			
				+
				1
				−
				𝐴
			

			
				1
				1
			

			
				+
				1
				−
				𝐴
			

			
				1
				0
			

			
				+
				1
				𝐴
			

			
				1
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				⋅
				1
				+
				1
			

			
				
			
			
				2
				⎛
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			
				0
				0
			

			
				+
				1
				𝐴
			

			
				0
				1
			

			
				𝐴
				−
				1
			

			
				0
				0
			

			
				−
				1
				𝐴
			

			
				0
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎠
				.
				+
				1
			

		
	

								From (10), Theorem 3 holds.
3.2. Invariant Subspaces on Four Fourier Modes for Two-Color Relaxation
We need to develop a Fourier representation of the two-color relaxation in the subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics with four Fourier modes. By following (9), for 2D system, another subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics is given as 
								
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			

				𝐹
			

			
				∗
				2
				ℎ
			

			
				
				𝜃
				
				
				𝜑
				−
				⇀
				∶
				=
				s
				p
				a
				n
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				∣
				
				𝛼
				−
				⇀
				−
				⇀
				𝛼
				=
			

			

				1
			

			
				,
				𝛼
			

			

				2
			

			
				
				,
				𝛼
			

			

				𝑚
			

			
				
				∈
				{
				0
				,
				1
				}
				,
				𝑚
				=
				1
				,
				2
			

		
	

							with 
	
		
			
				−
				⇀
				𝜃
				=
				(
				𝜃
			

			

				1
			

			
				,
				𝜃
			

			

				2
			

			
				𝜃
				)
				=
				−
				⇀
			

			
				(
				0
				,
				0
				)
			

			
				∈
				Θ
			

			
				l
				o
				w
			

			
				=
				(
				−
				𝜋
				/
				2
				,
				𝜋
				/
				2
				]
			

			

				2
			

		
	
, 
	
		
			
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				=
				𝜃
				−
				⇀
			

			
				(
				0
				,
				0
				)
			

			
				−
				(
				𝛼
			

			

				1
			

			
				s
				i
				g
				n
				(
				𝜃
			

			

				1
			

			
				)
				,
				𝛼
			

			

				2
			

			
				s
				i
				g
				n
				(
				𝜃
			

			

				2
			

			
				)
				)
				𝜋
			

		
	
.
For the sake of convenient analysis, taking 
	
		
			
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				=
				𝜃
				−
				⇀
			

			
				(
				𝛼
			

			

				1
			

			
				,
				𝛼
			

			

				2
			

			

				)
			

			
				=
				𝜃
				−
				⇀
			

			

				𝛼
			

			

				1
			

			

				𝛼
			

			

				2
			

		
	
, for example, 
	
		
			
				𝜃
				−
				⇀
			

			
				(
				0
				,
				0
				)
			

			
				=
				𝜃
				−
				⇀
			

			
				0
				0
			

		
	
, then 
	
		
			

				𝐹
			

			
				∗
				2
				ℎ
			

			
				(
				−
				⇀
				𝜃
				)
			

		
	
 is defined as
								
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			

				𝐹
			

			
				∗
				2
				ℎ
			

			
				
				𝜃
				
				
				𝜑
				−
				⇀
				∶
				=
				s
				p
				a
				n
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				0
				0
			

			
				,
				𝑥
				
				−
				⇀
				,
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				1
				1
			

			
				,
				𝑥
				
				,
				𝜑
				−
				⇀
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				1
				0
			

			
				,
				𝑥
				
				−
				⇀
				,
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				0
				1
			

			
				,
				𝑥
				.
				−
				⇀
				
				
			

		
	

							Meanwhile, the grid 
	
		
			

				𝐺
			

			

				ℎ
			

		
	
 is divided into four subsets [11] as 
								
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝐺
			

			

				ℎ
			

			
				=
				𝐺
			

			
				ℎ
				0
				0
			

			
				∪
				𝐺
			

			
				ℎ
				1
				1
			

			
				∪
				𝐺
			

			
				ℎ
				1
				0
			

			
				∪
				𝐺
			

			
				ℎ
				0
				1
			

			

				,
			

		
	

							where 
	
		
			

				𝐺
			

			
				𝜂
				ℎ
				−
				⇀
			

			
				=
				{
				−
				⇀
				𝑥
				=
				(
				𝑘
			

			

				1
			

			

				ℎ
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			

				ℎ
			

			

				2
			

			
				)
				∣
				𝑘
			

			

				𝑚
			

			
				=
				𝜂
			

			

				𝑚
			

			
				m
				o
				d
				2
				,
				𝑚
				=
				1
				,
				2
				}
			

		
	
 and 
	
		
			
				−
				⇀
				𝜂
				=
				(
				𝜂
			

			

				1
			

			
				,
				𝜂
			

			

				2
			

			
				)
				∈
				Λ
				=
				{
				0
				0
				,
				1
				1
				,
				1
				0
				,
				0
				1
				}
			

		
	
. The red and black grid points corresponding with 
	
		
			

				G
			

			

				ℎ
			

		
	
 are thus obtained as 
								
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝐺
			

			
				𝑅
				ℎ
			

			
				=
				𝐺
			

			
				ℎ
				0
				0
			

			
				∪
				𝐺
			

			
				ℎ
				1
				1
			

			
				,
				𝐺
			

			
				𝐵
				ℎ
			

			
				=
				𝐺
			

			
				ℎ
				1
				0
			

			
				∪
				𝐺
			

			
				ℎ
				0
				1
			

			

				.
			

		
	

							Therefore, a constitutive relationship among the various Fourier 2
	
		
			

				ℎ
			

		
	
-harmonics is constructed.
Proposition 4.  For 
	
		
			
				∀
				−
				⇀
				𝑥
				∈
				𝐺
			

			

				ℎ
			

		
	
, 
	
		
			
				∀
				−
				⇀
				𝑘
				=
				(
				𝑘
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				)
				∈
				ℤ
			

			

				2
			

		
	
, and 
	
		
			
				∀
				−
				⇀
				𝛼
				∈
				Λ
			

		
	
, if 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				𝑙
				𝑜
				𝑤
			

		
	
, the following equation is yielded as
									
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				
				𝛼
				𝑘
				
				𝜑
				−
				⇀
				=
				e
				x
				p
				−
				𝑖
				𝜋
				−
				⇀
				−
				⇀
			

			

				ℎ
			

			
				
				𝑥
				
				.
				−
				⇀
				𝜃
				,
				−
				⇀
			

		
	

Proposition 5.  For 
	
		
			
				∀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
				−
				⇀
			

		
	
, 
	
		
			
				∀
				−
				⇀
				𝑘
				=
				(
				𝑘
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				)
				∈
				ℤ
			

			

				2
			

		
	
, and 
	
		
			
				∀
				−
				⇀
				𝛼
				,
				−
				⇀
				𝛽
				∈
				Λ
			

		
	
, if 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				𝑙
				𝑜
				𝑤
			

		
	
, the following equation is yielded as 
									
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				
				𝛼
				𝛽
				
				𝜑
				−
				⇀
				=
				e
				x
				p
				−
				𝑖
				𝜋
				−
				⇀
				−
				⇀
			

			

				ℎ
			

			
				
				𝑥
				
				.
				−
				⇀
				𝜃
				,
				−
				⇀
			

		
	

								The proof of Propositions 5 and 4 is similar to Propositions 2 and 1.
Subsequently, a smoothing analysis process of the two-color relaxation on the subspace of the 
	
		
			
				2
				ℎ
			

		
	
-harmonics (35) is obtained.
Theorem 6.  The iteration operator (15) for the two-color relaxation leaves the subspace of the 2h-harmonics (35) to be invariant 0.
Proof. Similar to the proof of Theorem 3, from process of the two-color relaxation and (15), operators 
	
		
			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 and 
	
		
			

				𝑆
			

			
				𝐵
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 of the grid (37) are
									
	
 		
 			
				(
				4
				0
				)
			
 			
				(
				4
				1
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				−
				⇀
			

			

				∼
			

			

				𝑆
			

			
				𝑅
				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				
				𝜑
				,
				𝜔
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				∀
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝑅
				ℎ
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				∀
				−
				⇀
				−
				⇀
				𝑥
				∉
				𝐺
			

			
				𝑅
				ℎ
			

			

				𝑆
			

			
				𝐵
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				−
				⇀
			

			

				∼
			

			

				𝑆
			

			
				𝐵
				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				
				𝜑
				,
				𝜔
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				∀
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝐵
				ℎ
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				∀
				−
				⇀
				−
				⇀
				𝑥
				∉
				𝐺
			

			
				𝐵
				ℎ
			

			

				,
			

		
	

								where 
	
		
			

				∼
			

			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝜔
				)
			

		
	
 and 
	
		
			

				∼
			

			

				𝑆
			

			
				𝐵
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝜔
				)
			

		
	
 are Fourier symbols of 
	
		
			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 and 
	
		
			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 with 
	
		
			

				𝜑
			

			

				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				−
				⇀
				𝑥
				)
			

		
	
 on the corresponding grids (37), respectively, and 
	
		
			
				−
				⇀
				𝛼
				∈
				Λ
			

		
	
. From (15), in order to prove 
	
		
			

				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				(
				𝜔
				)
				∶
				𝐹
			

			
				∗
				2
				ℎ
			

			
				(
				−
				⇀
				𝜃
				)
				→
				𝐹
			

			
				∗
				2
				ℎ
			

			
				(
				−
				⇀
				𝜃
				)
			

		
	
 with 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				l
				o
				w
			

		
	
, we need to find out four complex numbers 
	
		
			

				𝑎
			

			
				0
				0
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				1
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				0
			

		
	
, and 
	
		
			

				𝑎
			

			
				0
				1
			

		
	
 subjected to 
									
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				−
				⇀
				=
				𝑎
			

			
				0
				0
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				0
				0
			

			
				,
				𝑥
				
				−
				⇀
				+
				𝑎
			

			
				1
				1
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				1
				1
			

			
				,
				𝑥
				
				−
				⇀
				+
				𝑎
			

			
				1
				0
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				1
				0
			

			
				,
				𝑥
				
				−
				⇀
				+
				𝑎
			

			
				0
				1
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				0
				1
			

			
				,
				𝑥
				
				.
				−
				⇀
			

		
	

								Meanwhile, we also need to find other four complex numbers 
	
		
			

				𝑏
			

			
				0
				0
			

		
	
, 
	
		
			

				𝑏
			

			
				1
				1
			

		
	
, 
	
		
			

				𝑏
			

			
				1
				0
			

		
	
, and 
	
		
			

				𝑏
			

			
				0
				1
			

		
	
 and make them subjected to
									
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝐵
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				−
				⇀
				=
				𝑏
			

			
				0
				0
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				0
				0
			

			
				,
				𝑥
				
				−
				⇀
				+
				𝑏
			

			
				1
				1
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				1
				1
			

			
				,
				𝑥
				
				−
				⇀
				+
				𝑏
			

			
				1
				0
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				1
				0
			

			
				,
				𝑥
				
				−
				⇀
				+
				𝑏
			

			
				0
				1
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				0
				1
			

			
				,
				𝑥
				
				.
				−
				⇀
			

		
	

								Firstly, we prove (42) as follows.From (36) and (40), as well as Propositions 5 and 4, the right and left hand sides of (42) are written as, respectively,
									
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				=
				⎧
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎩
				𝐴
				−
				⇀
			

			
				𝑅
				𝛼
				−
				⇀
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				ℎ
				0
				0
			

			

				𝐴
			

			
				𝑅
				𝛼
				−
				⇀
			

			
				
				
				𝛼
				e
				x
				p
				−
				𝑖
				𝜋
			

			

				1
			

			
				+
				𝛼
			

			

				2
			

			
				𝜑
				
				
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				ℎ
				1
				1
			

			
				
				e
				x
				p
				−
				𝑖
				𝜋
				𝛼
			

			

				1
			

			
				
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				ℎ
				1
				0
			

			
				
				e
				x
				p
				−
				𝑖
				𝜋
				𝛼
			

			

				2
			

			
				
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				ℎ
				0
				1
			

			
				,
				
			

			
				−
				⇀
				𝛼
				∈
				Λ
			

			

				𝑎
			

			
				𝛼
				−
				⇀
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝑥
				
				=
				⎧
				⎪
				⎪
				⎪
				⎨
				⎪
				⎪
				⎪
				⎩
				
				𝑎
				−
				⇀
			

			
				0
				0
			

			
				+
				𝑎
			

			
				1
				1
			

			
				+
				𝑎
			

			
				1
				0
			

			
				+
				𝑎
			

			
				0
				1
			

			
				
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				ℎ
				0
				0
			

			
				
				𝑎
			

			
				0
				0
			

			
				+
				𝑎
			

			
				1
				1
			

			
				−
				𝑎
			

			
				1
				0
			

			
				−
				𝑎
			

			
				0
				1
			

			
				
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				ℎ
				1
				1
			

			
				
				𝑎
			

			
				0
				0
			

			
				−
				𝑎
			

			
				1
				1
			

			
				−
				𝑎
			

			
				1
				0
			

			
				+
				𝑎
			

			
				0
				1
			

			
				
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				ℎ
				1
				0
			

			
				
				𝑎
			

			
				0
				0
			

			
				−
				𝑎
			

			
				1
				1
			

			
				+
				𝑎
			

			
				1
				0
			

			
				−
				𝑎
			

			
				0
				1
			

			
				
				𝜑
			

			

				ℎ
			

			
				
				𝑥
				
				∀
				−
				⇀
				𝜃
				,
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				ℎ
				0
				1
			

			

				,
			

		
	

								where 
	
		
			

				𝐴
			

			
				𝑅
				𝛼
				−
				⇀
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝜔
				)
			

		
	
, 
	
		
			
				−
				⇀
				𝛼
				=
				(
				𝛼
			

			

				1
			

			
				,
				𝛼
			

			

				2
			

			
				)
				∈
				Λ
			

		
	
. Hence, by using (42) and (44), linear equations with respect to the complex numbers 
	
		
			

				𝑎
			

			
				0
				0
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				1
			

		
	
, 
	
		
			

				𝑎
			

			
				1
				0
			

		
	
, and 
	
		
			

				𝑎
			

			
				0
				1
			

		
	
 are obtained as
									
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			

				𝑎
			

			
				0
				0
			

			
				+
				𝑎
			

			
				1
				1
			

			
				+
				𝑎
			

			
				1
				0
			

			
				+
				𝑎
			

			
				0
				1
			

			
				=
				𝐴
			

			
				𝑅
				𝛼
				−
				⇀
			

			

				𝑎
			

			
				0
				0
			

			
				+
				𝑎
			

			
				1
				1
			

			
				−
				𝑎
			

			
				1
				0
			

			
				−
				𝑎
			

			
				0
				1
			

			
				=
				𝐴
			

			
				𝑅
				𝛼
				−
				⇀
			

			
				
				
				𝛼
				e
				x
				p
				−
				𝑖
				𝜋
			

			

				1
			

			
				+
				𝛼
			

			

				2
			

			
				𝑎
				
				
			

			
				0
				0
			

			
				−
				𝑎
			

			
				1
				1
			

			
				−
				𝑎
			

			
				1
				0
			

			
				+
				𝑎
			

			
				0
				1
			

			
				
				=
				e
				x
				p
				−
				𝑖
				𝜋
				𝛼
			

			

				1
			

			
				
				𝑎
			

			
				0
				0
			

			
				−
				𝑎
			

			
				1
				1
			

			
				+
				𝑎
			

			
				1
				0
			

			
				−
				𝑎
			

			
				0
				1
			

			
				
				=
				e
				x
				p
				−
				𝑖
				𝜋
				𝛼
			

			

				2
			

			
				
				.
			

		
	

								In the same way, equations with respect to the complex numbers 
	
		
			

				𝑏
			

			
				0
				0
			

		
	
, 
	
		
			

				𝑏
			

			
				1
				1
			

		
	
, 
	
		
			

				𝑏
			

			
				1
				0
			

		
	
, and 
	
		
			

				𝑏
			

			
				0
				1
			

		
	
 are obtained as
									
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			

				𝑏
			

			
				0
				0
			

			
				+
				𝑏
			

			
				1
				1
			

			
				+
				𝑏
			

			
				1
				0
			

			
				+
				𝑏
			

			
				0
				1
			

			
				𝑏
				=
				1
			

			
				0
				0
			

			
				+
				𝑏
			

			
				1
				1
			

			
				−
				𝑏
			

			
				1
				0
			

			
				−
				𝑏
			

			
				0
				1
			

			
				
				
				𝛼
				=
				e
				x
				p
				−
				𝑖
				𝜋
			

			

				1
			

			
				+
				𝛼
			

			

				2
			

			
				𝑏
				
				
			

			
				0
				0
			

			
				−
				𝑏
			

			
				1
				1
			

			
				−
				𝑏
			

			
				1
				0
			

			
				+
				𝑏
			

			
				0
				1
			

			
				=
				𝐴
			

			
				𝐵
				𝛼
				−
				⇀
			

			
				
				e
				x
				p
				−
				𝑖
				𝜋
				𝛼
			

			

				1
			

			
				
				𝑏
			

			
				0
				0
			

			
				−
				𝑏
			

			
				1
				1
			

			
				+
				𝑏
			

			
				1
				0
			

			
				−
				𝑏
			

			
				0
				1
			

			
				=
				𝐴
			

			
				𝐵
				𝛼
				−
				⇀
			

			
				
				e
				x
				p
				−
				𝑖
				𝜋
				𝛼
			

			

				2
			

			
				
				,
			

		
	

								where 
	
		
			

				𝐴
			

			
				𝐵
				𝛼
				−
				⇀
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				𝐵
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝜔
				)
			

		
	
, 
	
		
			
				−
				⇀
				𝛼
				=
				(
				𝛼
			

			

				1
			

			
				,
				𝛼
			

			

				2
			

			
				)
				∈
				Λ
			

		
	
. From (10), (35), (42), and (43), solving (45) and (46), the Fourier representations of the iteration operators 
	
		
			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 and 
	
		
			

				𝑆
			

			
				𝐵
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 are obtained as
									
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				
				𝑆
			

			
				𝑅
				ℎ
				−
				⇀
			

			
				
				
				=
				1
				−
				⇀
				𝜃
				,
				𝜔
			

			
				
			
			
				2
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			
				𝑅
				0
				0
			

			
				+
				1
				𝐴
			

			
				𝑅
				1
				1
			

			
				𝐴
				−
				1
				0
				0
			

			
				𝑅
				0
				0
			

			
				−
				1
				𝐴
			

			
				𝑅
				1
				1
			

			
				+
				1
				0
				0
				0
				0
				𝐴
			

			
				𝑅
				1
				0
			

			
				+
				1
				𝐴
			

			
				𝑅
				0
				1
			

			
				−
				1
				0
				0
				𝐴
			

			
				𝑅
				1
				0
			

			
				−
				1
				𝐴
			

			
				𝑅
				0
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				
				𝑆
				+
				1
			

			
				𝐵
				ℎ
			

			
				
				
				=
				1
				−
				⇀
				𝜃
				,
				𝜔
			

			
				
			
			
				2
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			
				𝐵
				0
				0
			

			
				+
				1
				−
				𝐴
			

			
				𝐵
				1
				1
			

			
				+
				1
				0
				0
				−
				𝐴
			

			
				𝐵
				0
				0
			

			
				−
				1
				𝐴
			

			
				𝐵
				1
				1
			

			
				+
				1
				0
				0
				0
				0
				𝐴
			

			
				𝐵
				1
				0
			

			
				+
				1
				−
				𝐴
			

			
				𝐵
				0
				1
			

			
				+
				1
				0
				0
				−
				𝐴
			

			
				𝐵
				1
				0
			

			
				+
				1
				𝐴
			

			
				𝐵
				0
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
				+
				1
			

		
	

								Furthermore, from (47), the Fourier representation of the iteration operators 
	
		
			

				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				(
				𝜔
				)
			

		
	
 is 
									
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				
				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				
				
				=
				
				𝑆
				−
				⇀
				𝜃
				,
				𝜔
			

			
				𝐵
				ℎ
			

			
				
				
				
				𝑆
				−
				⇀
				𝜃
				,
				𝜔
			

			
				𝑅
				ℎ
			

			
				
				
				=
				1
				−
				⇀
				𝜃
				,
				𝜔
			

			
				
			
			
				2
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			
				𝐵
				0
				0
			

			
				+
				1
				−
				𝐴
			

			
				𝐵
				1
				1
			

			
				+
				1
				0
				0
				−
				𝐴
			

			
				𝐵
				0
				0
			

			
				−
				1
				𝐴
			

			
				𝐵
				1
				1
			

			
				+
				1
				0
				0
				0
				0
				𝐴
			

			
				𝐵
				1
				0
			

			
				+
				1
				−
				𝐴
			

			
				𝐵
				0
				1
			

			
				+
				1
				0
				0
				−
				𝐴
			

			
				𝐵
				1
				0
			

			
				+
				1
				𝐴
			

			
				𝐵
				0
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				⋅
				1
				+
				1
			

			
				
			
			
				2
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝐴
			

			
				𝑅
				0
				0
			

			
				+
				1
				𝐴
			

			
				𝑅
				1
				1
			

			
				𝐴
				−
				1
				0
				0
			

			
				𝑅
				0
				0
			

			
				−
				1
				𝐴
			

			
				𝑅
				1
				1
			

			
				+
				1
				0
				0
				0
				0
				𝐴
			

			
				𝑅
				1
				0
			

			
				+
				1
				𝐴
			

			
				𝑅
				0
				1
			

			
				−
				1
				0
				0
				𝐴
			

			
				𝑅
				1
				0
			

			
				−
				1
				𝐴
			

			
				𝑅
				0
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				,
				+
				1
			

		
	

								where 
	
		
			

				𝐴
			

			
				𝑅
				𝛼
				−
				⇀
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				𝑅
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝜔
				)
			

		
	
, 
	
		
			

				𝐴
			

			
				𝐵
				𝛼
				−
				⇀
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				𝐵
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				,
				𝜔
				)
			

		
	
, 
	
		
			
				−
				⇀
				𝛼
				=
				(
				𝛼
			

			

				1
			

			
				,
				𝛼
			

			

				2
			

			
				)
				∈
				Λ
			

		
	
. Theorem 6 holds.
From Theorems 3 and 6, two ways to carry out smoothing analysis of the two-color relaxation are obtained.
4. Two-Color Jacobi Relaxation for 2D Poisson Equation
4.1. Poisson Equation and Optimal Smoothing Parameter
2D Poisson equation to be considered is stated as
								
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				
				𝑥
				−
				Δ
				𝑢
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				
				
				𝑥
				=
				𝑓
			

			

				1
			

			
				,
				𝑥
			

			

				2
			

			
				
				.
			

		
	

							For using uniform grids of mesh size 
	
		
			

				ℎ
			

		
	
 to solve this equation, a central discretization stencil is introduced as
								
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			

				𝐿
			

			

				ℎ
			

			
				=
				−
				Δ
			

			

				ℎ
			

			
				=
				1
			

			
				
			
			

				ℎ
			

			

				2
			

			
				⎡
				⎢
				⎢
				⎢
				⎢
				⎢
				⎣
				⎤
				⎥
				⎥
				⎥
				⎥
				⎥
				⎦
				−
				1
				−
				1
				4
				−
				1
				−
				1
			

			

				ℎ
			

			

				.
			

		
	

							From (3)–(6), the Fourier symbol of (50) is
								
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			

				∼
			

			

				𝐿
			

			

				ℎ
			

			
				
				𝜃
				
				=
				1
				−
				⇀
			

			
				
			
			

				ℎ
			

			

				2
			

			
				
				4
				−
				2
				c
				o
				s
				𝜃
			

			

				1
			

			
				−
				2
				c
				o
				s
				𝜃
			

			

				2
			

			
				
				.
			

		
	

							From [1], the damped Jacobi relaxation 
	
		
			

				𝑆
			

			
				J
				A
				C
			

			

				ℎ
			

		
	
 is defined as
								
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			

				𝑆
			

			
				J
				A
				C
			

			

				ℎ
			

			
				(
				𝜔
				)
				=
				𝐼
			

			

				ℎ
			

			
				−
				𝜔
				𝐷
			

			
				ℎ
				−
				1
			

			

				𝐿
			

			

				ℎ
			

			

				,
			

		
	

							where 
	
		
			

				𝐼
			

			

				ℎ
			

			
				=
				[
				1
				]
			

			

				ℎ
			

		
	
 is the identity operator, 
	
		
			

				𝜔
			

		
	
 is the smoothing parameter, and 
	
		
			

				𝐷
			

			

				ℎ
			

			
				=
				(
				1
				/
				ℎ
			

			

				2
			

			
				)
				[
				4
				]
			

			

				ℎ
			

		
	
 is the diagonal part of the discrete operator 
	
		
			

				𝐿
			

			

				ℎ
			

		
	
. Thus, the Fourier symbol of (52) is given as
								
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			

				∼
			

			

				𝑆
			

			
				J
				A
				C
			

			

				ℎ
			

			
				
				
				
				−
				⇀
				𝜃
				,
				𝜔
				=
				1
				−
				𝜔
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			

				1
			

			
				
			
			
				2
				+
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			

				2
			

			
				
			
			
				2
				
				.
			

		
	

For the operators 
	
		
			

				𝑆
			

			

				ℎ
			

			
				(
				𝜔
				)
			

		
	
 and 
	
		
			

				𝑄
			

			
				𝐻
				ℎ
			

		
	
 in (14) with a relaxation parameter 
	
		
			

				𝜔
			

		
	
 and according to the optimal one-stage relaxation [11], smoothing parameter and a related smoothing factor are given by
								
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			

				𝜔
			

			
				o
				p
				t
			

			
				=
				2
			

			
				
			
			
				2
				−
				𝑆
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				i
				n
			

			
				,
				𝜌
			

			
				o
				p
				t
			

			
				=
				𝑆
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				i
				n
			

			
				
			
			
				2
				−
				𝑆
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				i
				n
			

			

				,
			

		
	

							where 
	
		
			

				𝑆
			

			
				m
				a
				x
			

		
	
 and 
	
		
			

				𝑆
			

			
				m
				i
				n
			

		
	
 are the maximum and minimum eigenvalues of the matrix 
	
		
			
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				𝑆
			

			

				ℎ
			

			
				(
				−
				⇀
				𝜃
				,
				1
				)
			

		
	
 for 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				l
				o
				w
			

			
				=
				(
				−
				𝜋
				/
				2
				,
				𝜋
				/
				2
				]
			

			

				2
			

		
	
 and 
	
		
			
				
				𝑆
			

			

				ℎ
			

			
				(
				−
				⇀
				𝜃
				,
				1
				)
			

		
	
 is the Fourier representation of 
	
		
			

				𝑆
			

			

				ℎ
			

			
				(
				𝜔
				)
			

		
	
 with 
	
		
			
				𝜔
				=
				1
			

		
	
.
4.2. Two-Color Relaxation on (17)
According to (32), (33), and (53), for point Jacobi relaxation, 
	
		
			

				𝐴
			

			
				𝛽
				𝛼
			

		
	
 in (17) is expressed as
								
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			

				𝐴
			

			
				0
				𝛼
			

			
				=
				𝐴
			

			
				1
				𝛼
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				0
				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				
				=
				,
				𝜔
			

			

				∼
			

			

				𝑆
			

			
				1
				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				
				=
				,
				𝜔
			

			

				∼
			

			

				𝑆
			

			
				J
				A
				C
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				
				
				,
				𝜔
				=
				1
				−
				𝜔
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			
				𝛼
				1
			

			
				
			
			
				2
				+
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			
				𝛼
				2
			

			
				
			
			
				2
				
			

		
	

							which denotes that both red and black points are swept by the Jacobi point relaxation method, where 
	
		
			

				𝛼
			

		
	
, 
	
		
			
				𝛽
				=
				0
			

		
	
, 
	
		
			

				1
			

		
	
 and 
	
		
			

				𝜔
			

		
	
 is the smoothing parameter. Further, when 
	
		
			
				𝜔
				=
				1
			

		
	
, (55) is rewritten as 
								
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			

				𝐴
			

			
				0
				𝛼
			

			
				=
				𝐴
			

			
				1
				𝛼
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				J
				A
				C
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				
				
				,
				1
				=
				1
				−
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			
				𝛼
				1
			

			
				
			
			
				2
				+
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			
				𝛼
				2
			

			
				
			
			
				2
				
				,
			

		
	

							where 
	
		
			
				𝛼
				=
				0
			

		
	
, 
	
		
			

				1
			

		
	
. For simplification, let
								
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			

				𝑠
			

			

				1
			

			
				=
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			
				0
				1
			

			
				
			
			
				2
				=
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			

				1
			

			
				
			
			
				2
				,
				𝑠
			

			

				2
			

			
				=
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			
				0
				2
			

			
				
			
			
				2
				=
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			

				2
			

			
				
			
			
				2
				.
			

		
	

							By substituting (56) and (57) into (33), (56) is given as
								
	
 		
 			
				(
				5
				8
				)
			
 			
				(
				5
				9
				)
			
 		
	

	
		
			

				𝐴
			

			
				0
				0
			

			
				=
				𝐴
			

			
				1
				0
			

			
				
				𝑠
				=
				1
				−
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				,
				𝐴
			

			
				0
				1
			

			
				=
				𝐴
			

			
				1
				1
			

			
				=
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				𝑆
				−
				1
				,
			

			
				ℎ
				0
				1
			

			
				
				
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				−
				⇀
				𝜃
				,
				1
				1
				−
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				1
				1
				−
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				⎞
				⎟
				⎟
				⎟
				⎠
				⋅
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				1
				−
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				−
				1
				−
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				⎞
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

							Further, by using (13) and (17), the Fourier representation of 
	
		
			

				𝑄
			

			
				𝐻
				ℎ
			

		
	
 is given as 
	
		
			
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				=
				d
				i
				a
				g
				(
				0
				,
				1
				)
			

		
	
. From (59), the product of 
	
		
			
				
				𝑄
			

			
				𝐻
				ℎ
			

		
	
 and (59) is
								
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				𝑆
			

			
				ℎ
				0
				1
			

			
				
				
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				1
				−
				⇀
				𝜃
				,
				1
				0
				0
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				
				1
				−
				𝑠
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				⎞
				⎟
				⎟
				⎟
				⎠
				.
				−
				1
			

		
	

							Therefore, a unique nonzero eigenvalue of the matrix 
	
		
			
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				𝑆
			

			
				ℎ
				0
				1
			

			
				(
				−
				⇀
				𝜃
				,
				1
				)
			

		
	
 is yielded as
								
	
 		
 			
				(
				6
				1
				)
			
 		
	

	
		
			
				𝜆
				
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				
				=
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				.
				−
				1
			

		
	

							Because of 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				l
				o
				w
			

			
				=
				(
				−
				𝜋
				/
				2
				,
				𝜋
				/
				2
				]
			

			

				2
			

		
	
, thus, from (57), we know 
	
		
			
				(
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				)
				∈
				[
				0
				,
				1
				/
				2
				]
			

			

				2
			

		
	
. So, by using (54), the optimal smoothing parameters for the two-color relaxation are given as
								
	
 		
 			
				(
				6
				2
				)
			
 			
				(
				6
				3
				)
			
 		
	

	
		
			

				𝑆
			

			
				m
				a
				x
			

			
				=
				m
				a
				x
			

			
				(
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				)
				∈
				[
				0
				,
				1
				/
				2
				]
			

			

				2
			

			
				𝜆
				
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				
				|
				|
				|
			

			
				−
				⇀
				𝜃
				=
				(
				𝜋
				/
				2
				,
				𝜋
				/
				2
				)
			

			
				𝑆
				=
				0
				,
			

			
				m
				i
				n
			

			
				=
				m
				i
				n
			

			
				(
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				)
				∈
				[
				0
				,
				1
				/
				2
				]
			

			

				2
			

			
				𝜆
				
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				
				|
				|
				|
			

			
				−
				⇀
				𝜃
				=
				(
				0
				,
				𝜋
				/
				2
				)
			

			
				1
				=
				−
			

			
				
			
			
				8
				,
				𝜔
			

			
				o
				p
				t
			

			
				=
				2
			

			
				
			
			
				2
				−
				𝑆
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				i
				n
			

			
				=
				1
				6
			

			
				
			
			
				,
				𝜌
				1
				7
			

			
				o
				p
				t
			

			
				=
				𝑆
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				i
				n
			

			
				
			
			
				2
				−
				𝑆
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				i
				n
			

			
				=
				1
			

			
				
			
			
				.
				1
				7
			

		
	

4.3. Two-Color Jacobi Relaxation on (35)
By using (48) and (53), for point Jacobi relaxation, 
	
		
			

				𝐴
			

			
				𝑅
				𝛼
				−
				⇀
			

		
	
 and 
	
		
			

				𝐴
			

			
				𝐵
				𝛼
				−
				⇀
			

		
	
 for (35) are expressed as
								
	
 		
 			
				(
				6
				4
				)
			
 		
	

	
		
			

				𝐴
			

			
				𝑅
				𝛼
				−
				⇀
			

			
				=
				𝐴
			

			
				𝐵
				𝛼
				−
				⇀
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				𝑅
				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				
				=
				,
				𝜔
			

			

				∼
			

			

				𝑆
			

			
				𝐵
				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				
				=
				,
				𝜔
			

			

				∼
			

			

				𝑆
			

			
				J
				A
				C
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝛼
				−
				⇀
			

			
				
				
				,
				𝜔
				=
				1
				−
				𝜔
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			

				𝛼
			

			

				1
			

			

				1
			

			
				
			
			
				2
				+
				s
				i
				n
			

			

				2
			

			

				𝜃
			

			

				𝛼
			

			

				2
			

			

				2
			

			
				
			
			
				2
				
			

		
	

							which denotes that both red and black points are swept by the Jacobi point relaxation method, where 
	
		
			
				−
				⇀
				𝛼
				=
				(
				𝛼
			

			

				1
			

			
				,
				𝛼
			

			

				2
			

			
				)
				∈
				Λ
			

		
	
. Further, substituting (57) into (64), when 
	
		
			
				𝜔
				=
				1
			

		
	
, (64) is written as
								
	
 		
 			
				(
				6
				5
				)
			
 		
	

	
		
			

				𝐴
			

			
				𝑅
				0
				0
			

			
				=
				𝐴
			

			
				𝐵
				0
				0
			

			
				
				𝑠
				=
				1
				−
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				𝐴
			

			
				𝑅
				1
				1
			

			
				=
				𝐴
			

			
				𝐵
				1
				1
			

			
				=
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝐴
				−
				1
			

			
				𝑅
				1
				0
			

			
				=
				𝐴
			

			
				𝐵
				1
				0
			

			
				=
				𝑠
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			

				𝐴
			

			
				𝑅
				0
				1
			

			
				=
				𝐴
			

			
				𝐵
				0
				1
			

			
				
				𝑠
				=
				−
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				
				.
			

		
	

							Substituting (65) into (48), the Fourier representation of 
	
		
			

				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				(
				𝜔
				)
			

		
	
 with 
	
		
			
				𝜔
				=
				1
			

		
	
 is expressed as 
								
	
 		
 			
				(
				6
				6
				)
			
 		
	

	
		
			
				
				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				
				
				
				
				𝑆
				−
				⇀
				𝜃
				,
				1
				=
				d
				i
				a
				g
			

			
				1
				1
			

			
				,
				
				𝑆
			

			
				2
				2
			

			
				
				,
			

		
	

							where
								
	
 		
 			
				(
				6
				7
				)
			
 		
	

	
		
			
				
				𝑆
			

			
				1
				1
			

			
				=
				⎛
				⎜
				⎜
				⎝
			

			

				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				−
				1
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				−
				1
				−
				2
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				−
				1
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				−
				1
				−
				2
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				−
				1
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				−
				1
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			

				
			

			
				⎞
				⎟
				⎟
				⎠
				,
			

			
				
				𝑆
			

			
				2
				2
			

			
				=
				⎛
				⎜
				⎜
				⎝
			

			

				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				−
				1
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				−
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				𝑠
				+
				1
				
				
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				2
			

			
				−
				𝑠
			

			

				1
			

			
				𝑠
				+
				1
				
				
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				
				−
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				2
			

			
				−
				𝑠
			

			

				1
			

			
				𝑠
				+
				1
				
				
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			

				
			

			
				⎞
				⎟
				⎟
				⎠
				.
			

		
	

							From (13) and (35), the Fourier representation of operator 
	
		
			

				𝑄
			

			
				𝐻
				ℎ
			

		
	
 is given as 
								
	
 		
 			
				(
				6
				8
				)
			
 		
	

	
		
			
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				
				𝑄
				=
				d
				i
				a
				g
			

			
				1
				1
			

			
				,
				
				𝑄
			

			
				2
				2
			

			
				
				,
			

		
	

							where 
	
		
			
				
				𝑄
			

			
				1
				1
			

			
				=
				d
				i
				a
				g
				(
				0
				,
				1
				)
			

		
	
, 
	
		
			
				
				𝑄
			

			
				2
				2
			

			
				=
				d
				i
				a
				g
				(
				1
				,
				1
				)
			

		
	
. Therefore, the product of (66) and (68) is obtained as 
								
	
 		
 			
				(
				6
				9
				)
			
 		
	

	
		
			
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				
				
				
				
				𝑄
				−
				⇀
				𝜃
				,
				1
				=
				d
				i
				a
				g
			

			
				1
				1
			

			
				
				𝑆
			

			
				1
				1
			

			
				,
				
				𝑄
			

			
				2
				2
			

			
				
				𝑆
			

			
				2
				2
			

			
				
				,
			

		
	

							in which the diagonal blocks are expressed as 
								
	
 		
 			
				(
				7
				0
				)
			
 			
				(
				7
				1
				)
			
 		
	

	
		
			
				
				𝑄
			

			
				1
				1
			

			
				
				𝑆
			

			
				1
				1
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				−
				
				𝑠
				0
				0
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				−
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				−
				1
			

			
				
			
			
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				,
				
				𝑄
			

			
				2
				2
			

			
				
				𝑆
			

			
				2
				2
			

			
				=
				⎛
				⎜
				⎜
				⎜
				⎝
				
				𝑠
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				𝑠
				
				
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				
				+
				1
			

			
				
			
			
				2
				−
				
				𝑠
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				𝑠
				
				
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				
				+
				1
			

			
				
			
			
				2
				
				𝑠
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				𝑠
				
				
			

			

				2
			

			
				−
				𝑠
			

			

				1
			

			
				
				+
				1
			

			
				
			
			
				2
				−
				
				𝑠
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			
				𝑠
				
				
			

			

				2
			

			
				−
				𝑠
			

			

				1
			

			
				
				+
				1
			

			
				
			
			
				2
				⎞
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

							The eigenvalues of the matrix (69) are obtained as 
								
	
 		
 			
				(
				7
				2
				)
			
 		
	

	
		
			

				𝜆
			

			

				1
			

			
				=
				0
				,
				𝜆
			

			

				2
			

			
				=
				
				𝑠
			

			

				1
			

			
				−
				𝑠
			

			

				2
			

			

				
			

			

				2
			

			
				,
				𝜆
			

			

				3
			

			
				=
				0
				,
				𝜆
			

			

				4
			

			
				=
				
				𝑠
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				𝑠
				
				
			

			

				1
			

			
				+
				𝑠
			

			

				2
			

			
				
				−
				1
			

			
				
			
			
				2
				.
			

		
	

							When 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				l
				o
				w
			

		
	
, the maximum and minimum eigenvalues of the matrix 
	
		
			
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				(
				−
				⇀
				𝜃
				,
				1
				)
			

		
	
 are as follows:
								
	
 		
 			
				(
				7
				3
				)
			
 			
				(
				7
				4
				)
			
 		
	

	
		
			

				𝜆
			

			
				m
				a
				x
			

			
				
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				
				−
				⇀
				𝜃
				,
				1
				
				
				=
				m
				a
				x
			

			
				(
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				)
				∈
				[
				0
				,
				1
				/
				2
				]
			

			

				2
			

			
				
				𝜆
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				,
				𝜆
			

			

				3
			

			
				,
				𝜆
			

			

				4
			

			
				
				=
				m
				a
				x
			

			
				(
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				)
				∈
				[
				0
				,
				1
				/
				2
				]
			

			

				2
			

			

				𝜆
			

			

				2
			

			
				=
				1
			

			
				
			
			
				4
				,
				𝜆
			

			
				m
				i
				n
			

			
				
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				
				−
				⇀
				𝜃
				,
				1
				
				
				=
				m
				i
				n
			

			
				(
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				)
				∈
				[
				0
				,
				1
				/
				2
				]
			

			

				2
			

			
				
				𝜆
			

			

				1
			

			
				,
				𝜆
			

			

				2
			

			
				,
				𝜆
			

			

				3
			

			
				,
				𝜆
			

			

				4
			

			
				
				=
				m
				i
				n
			

			
				(
				𝑠
			

			

				1
			

			
				,
				𝑠
			

			

				2
			

			
				)
				∈
				[
				0
				,
				1
				/
				2
				]
			

			

				2
			

			

				𝜆
			

			

				4
			

			
				1
				=
				−
			

			
				
			
			
				8
				.
			

		
	

							Therefore, by using (54), the values of the optimal smoothing parameters for the Poisson equation are obtained as
								
	
 		
 			
				(
				7
				5
				)
			
 			
				(
				7
				6
				)
			
 		
	

	
		
			

				𝑆
			

			
				m
				a
				x
			

			
				=
				𝜆
			

			
				m
				a
				x
			

			
				
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				
				|
				|
				|
				−
				⇀
				𝜃
				,
				1
				
				
			

			
				−
				⇀
				𝜃
				=
				(
				0
				,
				𝜋
				/
				2
				)
			

			
				=
				1
			

			
				
			
			
				4
				,
				𝑆
			

			
				m
				i
				n
			

			
				=
				𝜆
			

			
				m
				i
				n
			

			
				
				
				𝑄
			

			
				𝐻
				ℎ
			

			
				
				𝑆
			

			
				ℎ
				𝑅
				𝐵
			

			
				
				|
				|
				|
				−
				⇀
				𝜃
				,
				1
				
				
			

			
				−
				⇀
				𝜃
				=
				(
				𝜋
				/
				2
				,
				0
				)
			

			
				1
				=
				−
			

			
				
			
			
				8
				,
				𝜔
			

			
				o
				p
				t
			

			
				=
				2
			

			
				
			
			
				2
				−
				𝑆
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				i
				n
			

			
				=
				1
				6
			

			
				
			
			
				,
				𝜌
				1
				5
			

			
				o
				p
				t
			

			
				=
				𝑆
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				i
				n
			

			
				
			
			
				2
				−
				𝑆
			

			
				m
				a
				x
			

			
				−
				𝑆
			

			
				m
				i
				n
			

			
				=
				1
			

			
				
			
			
				5
				.
			

		
	

5. Extending Two-Color to Multicolor Relaxation
Herein, the proposed smoothing analysis process of two-color relaxation is generalized to a 3D system. The Fourier representation of the smoothing operator for two-color relaxation is still a 2-order square matrix in (17). The result in (35) for a 3D case is changed to a 
	
		
			

				2
			

			

				3
			

			
				×
				2
			

			

				3
			

		
	
 diagonal block matrix.
For a 
	
		
			

				𝑚
			

		
	
-color relaxation (
	
		
			
				𝑚
				>
				2
			

		
	
), the infinite grid 
	
		
			

				𝐺
			

			

				ℎ
			

		
	
 is subdivided into 
	
		
			

				𝑚
			

		
	
 types of the grid points 
	
		
			

				𝐺
			

			
				0
				ℎ
			

			
				,
				𝐺
			

			
				1
				ℎ
			

			
				,
				…
				,
				𝐺
			

			
				ℎ
				𝑚
				−
				1
			

		
	
 for presenting 
	
		
			

				𝑚
			

		
	
 different colors [11, 20]. Thus a complete analyzing step of the 
	
		
			

				𝑚
			

		
	
-color relaxation consists of 
	
		
			

				𝑚
			

		
	
 substeps: at the 
	
		
			

				𝛽
			

		
	
th step (
	
		
			
				𝛽
				=
				0
				,
				1
				,
				…
				,
				𝑚
				−
				1
			

		
	
), the unknowns located at only 
	
		
			
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

		
	
 are changed by using updated data at the previous step. For example, for the 
	
		
			

				𝑚
			

		
	
-color relaxation of a 2D system, the infinite grid 
	
		
			

				𝐺
			

			

				ℎ
			

		
	
 is stated as
						
	
 		
 			
				(
				7
				7
				)
			
 		
	

	
		
			

				𝐺
			

			

				ℎ
			

			

				=
			

			
				𝑚
				−
				1
			

			

				
			

			
				𝛽
				=
				0
			

			

				𝐺
			

			
				𝛽
				ℎ
			

			

				,
			

		
	

					with
						
	
 		
 			
				(
				7
				8
				)
			
 		
	

	
		
			

				𝐺
			

			
				𝛽
				ℎ
			

			
				=
				
				
				𝑘
				−
				⇀
				𝑥
				=
			

			

				1
			

			

				ℎ
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			

				ℎ
			

			

				2
			

			
				
				∣
				𝑘
			

			

				1
			

			
				+
				𝑘
			

			

				2
			

			
				
				𝑘
				=
				𝛽
				m
				o
				d
				𝑚
				,
			

			

				1
			

			
				,
				𝑘
			

			

				2
			

			
				
				∈
				ℤ
			

			

				2
			

			
				
				,
			

		
	

					where 
	
		
			
				𝛽
				∈
				Λ
			

			

				𝑚
			

			
				∶
				=
				{
				0
				,
				1
				,
				…
				,
				𝑚
				−
				1
				}
			

		
	
. In the subdivisions of the infinite grids 
	
		
			

				𝐺
			

			

				ℎ
			

		
	
, there are 
	
		
			
				∀
				𝑗
			

		
	
, 
	
		
			
				𝑛
				∈
				Λ
			

			

				𝑚
			

		
	
, 
	
		
			
				𝑗
				≠
				𝑛
			

		
	
, and 
	
		
			

				𝐺
			

			
				𝑗
				ℎ
			

			
				∩
				𝐺
			

			
				𝑛
				ℎ
			

			
				=
				𝜙
			

		
	
.
For the standard coarsening [11, 20], the subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics is defined as
						
	
 		
 			
				(
				7
				9
				)
			
 		
	

	
		
			

				𝐹
			

			
				𝑚
				2
				ℎ
			

			
				
				𝜑
				∶
				=
				s
				p
				a
				n
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				0
			

			
				,
				𝑥
				
				−
				⇀
				,
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				1
			

			
				,
				𝑥
				
				𝜑
				−
				⇀
				,
				…
				,
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			
				𝑚
				−
				1
			

			
				,
				𝑥
				,
				−
				⇀
				
				
			

		
	

					where 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				l
				o
				w
			

		
	
, 
	
		
			
				∀
				𝛼
				∈
				Λ
			

			

				𝑚
			

		
	
, and 
	
		
			
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				=
				(
				−
				⇀
				𝜃
				+
				(
				2
				𝜋
				/
				𝑚
				)
				(
				𝛼
				,
				𝛼
				)
				)
				(
				m
				o
				d
				2
				𝜋
				)
			

		
	
.
In order to obtain a Fourier representation of the 
	
		
			

				𝑚
			

		
	
-color point relaxation, let 
	
		
			

				𝑆
			

			
				ℎ
				𝑚
				𝑐
			

			
				(
				𝜔
				)
			

		
	
 be the above complete 
	
		
			

				𝑚
			

		
	
-color point relaxation operator and let 
	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 be the 
	
		
			

				𝛽
			

		
	
th subrelaxation (
	
		
			
				𝛽
				∈
				Λ
			

			

				𝑚
			

		
	
); thus, the 
	
		
			

				𝑚
			

		
	
-color point relaxation is expressed as
						
	
 		
 			
				(
				8
				0
				)
			
 		
	

	
		
			

				𝑆
			

			
				ℎ
				𝑚
				𝑐
			

			
				(
				𝜔
				)
				=
			

			
				𝑚
				−
				1
			

			

				
			

			
				𝛽
				=
				0
			

			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
			

		
	

					with
						
	
 		
 			
				(
				8
				1
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				𝐴
				−
				⇀
			

			
				𝛽
				𝛼
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				−
				⇀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				−
				⇀
				−
				⇀
				𝑥
				∉
				𝐺
			

			
				𝛽
				ℎ
			

			

				,
			

		
	

					where 
	
		
			

				𝐴
			

			
				𝛽
				𝛼
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝜔
				)
			

		
	
 denotes the Fourier symbol of 
	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
			

		
	
, 
	
		
			

				𝛼
			

		
	
, 
	
		
			
				𝛽
				∈
				Λ
			

			

				𝑚
			

		
	
. The proof of this process is analogous to the two-color case. In fact, as we know, the subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics 
	
		
			

				𝐹
			

			
				𝑚
				2
				ℎ
			

		
	
 with 
	
		
			

				𝑚
			

		
	
 Fourier modes remains to be invariant for 
	
		
			

				𝑚
			

		
	
-color point relaxation operator 
	
		
			

				𝑆
			

			
				ℎ
				𝑚
				𝑐
			

			
				(
				𝜔
				)
			

		
	
; that is, 
	
		
			

				𝑆
			

			
				ℎ
				𝑚
				𝑐
			

			
				(
				𝜔
				)
				∶
				𝐹
			

			
				𝑚
				2
				ℎ
			

			
				→
				𝐹
			

			
				𝑚
				2
				ℎ
			

		
	
. So, the Fourier representation of the 
	
		
			

				𝑚
			

		
	
-color point relaxation (80) is given as 
	
		
			
				
				𝑆
			

			
				ℎ
				𝑚
				𝑐
			

			
				∏
				(
				𝜔
				)
				=
			

			
				𝑚
				−
				1
				𝛽
				=
				0
			

			
				
				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
			

		
	
, where 
	
		
			
				
				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 is a Fourier representation of 
	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
			

		
	
 in 
	
		
			

				𝐹
			

			
				𝑚
				2
				ℎ
			

		
	
.
Proposition 7.  For 
	
		
			
				∀
				𝛼
			

		
	
, 
	
		
			
				𝛽
				∈
				Λ
			

			

				𝑚
			

		
	
, 
	
		
			
				∀
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

		
	
, if 
	
		
			
				−
				⇀
				𝜃
				∈
				Θ
			

			
				l
				o
				w
			

		
	
, the following equation holds: 
							
	
 		
 			
				(
				8
				2
				)
			
 		
	

	
		
			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				
				𝑖
				−
				⇀
				=
				e
				x
				p
				2
				𝜋
			

			
				
			
			
				𝑚
				
				𝜑
				𝛼
				𝛽
			

			

				ℎ
			

			
				
				𝑥
				
				.
				−
				⇀
				𝜃
				,
				−
				⇀
			

		
	

						The proof is similar to Proposition 1.
Theorem 8.  The iteration operator (80) for 
	
		
			

				𝑚
			

		
	
-color point relaxation makes the subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics (79) invariant. The proof is similar to Theorem 3. In fact, in order to prove 
	
		
			

				𝑆
			

			
				ℎ
				𝑚
				𝑐
			

			
				(
				𝜔
				)
				∶
				𝐹
			

			
				𝑚
				2
				ℎ
			

			
				→
				𝐹
			

			
				𝑚
				2
				ℎ
			

		
	
, one only needs to do 
	
		
			
				∀
				𝛽
				∈
				Λ
			

			

				𝑚
			

		
	
, 
	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
				∶
				𝐹
			

			
				𝑚
				2
				ℎ
			

			
				→
				𝐹
			

			
				𝑚
				2
				ℎ
			

		
	
, which is equivalent to finding out 
	
		
			

				𝑚
			

		
	
 complex numbers 
	
		
			

				𝑎
			

			

				𝑗
			

		
	
, 
	
		
			
				𝑗
				∈
				Λ
			

			

				𝑚
			

		
	
, subject to 
							
	
 		
 			
				(
				8
				3
				)
			
 		
	

	
		
			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				=
				−
				⇀
			

			
				𝑚
				−
				1
			

			

				
			

			
				𝛼
				=
				0
			

			

				𝑎
			

			

				𝛼
			

			

				𝜑
			

			

				ℎ
			

			
				
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝑥
				
				.
				−
				⇀
			

		
	
 Being similar to the proof of Theorems 3 and 6 and according to (81), (83) and Proposition 7, 
	
		
			

				𝑚
			

		
	
 linear equations on 
	
		
			

				𝑎
			

			

				𝑗
			

		
	
 are obtained as
							
	
 		
 			
				(
				8
				4
				)
			
 		
	

	
		
			

				𝑎
			

			

				0
			

			
				+
				𝑎
			

			

				1
			

			
				+
				𝑎
			

			

				2
			

			
				+
				⋯
				+
				𝑎
			

			
				𝑚
				−
				1
			

			
				=
				1
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				0
				ℎ
			

			

				𝑎
			

			

				0
			

			
				+
				𝑎
			

			

				1
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
			

			
				
			
			
				𝑚
				
				+
				𝑎
			

			

				2
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				⋅
				2
			

			
				
			
			
				𝑚
				
				+
				⋯
				+
				𝑎
			

			
				𝑚
				−
				1
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				(
				𝑚
				−
				1
				)
			

			
				
			
			
				𝑚
				
				
				𝑖
				=
				e
				x
				p
				2
				𝜋
				𝛼
			

			
				
			
			
				𝑚
				
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				1
				ℎ
			

			

				𝑎
			

			

				0
			

			
				+
				𝑎
			

			

				1
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				⋅
				2
			

			
				
			
			
				𝑚
				
				+
				𝑎
			

			

				2
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				⋅
				4
			

			
				
			
			
				𝑚
				
				+
				⋯
				+
				𝑎
			

			
				𝑚
				−
				1
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				(
				𝑚
				−
				1
				)
				⋅
				2
			

			
				
			
			
				𝑚
				
				
				𝑖
				=
				e
				x
				p
				2
				𝜋
				⋅
				2
				𝛼
			

			
				
			
			
				𝑚
				
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				2
				ℎ
			

			
				⋮
				𝑎
			

			

				0
			

			
				+
				𝑎
			

			

				1
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				⋅
				𝛽
			

			
				
			
			
				𝑚
				
				+
				𝑎
			

			

				2
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				⋅
				2
				𝛽
			

			
				
			
			
				𝑚
				
				+
				⋯
				+
				𝑎
			

			
				𝑚
				−
				1
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				(
				𝑚
				−
				1
				)
				⋅
				𝛽
			

			
				
			
			
				𝑚
				
				=
				𝐴
			

			
				𝛽
				𝛼
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				⋅
				𝛼
				𝛽
			

			
				
			
			
				𝑚
				
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				𝛽
				ℎ
			

			
				⋮
				𝑎
			

			

				0
			

			
				+
				𝑎
			

			

				1
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				(
				𝑚
				−
				1
				)
			

			
				
			
			
				𝑚
				
				+
				𝑎
			

			

				2
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				⋅
				2
				(
				𝑚
				−
				1
				)
			

			
				
			
			
				𝑚
				
				+
				⋯
				+
				𝑎
			

			
				𝑚
				−
				1
			

			
				
				𝑖
				e
				x
				p
				2
				𝜋
				(
				𝑚
				−
				1
				)
				⋅
				(
				𝑚
				−
				1
				)
			

			
				
			
			
				𝑚
				
				
				𝑖
				=
				e
				x
				p
				2
				𝜋
				(
				𝑚
				−
				1
				)
				⋅
				𝛼
			

			
				
			
			
				𝑚
				
				−
				⇀
				𝑥
				∈
				𝐺
			

			
				ℎ
				𝑚
				−
				1
			

			

				.
			

		
	

						Letting 
	
		
			
				𝜂
				=
				2
				𝜋
				/
				𝑚
			

		
	
, 
	
		
			

				𝜉
			

			

				𝑛
			

			
				=
				e
				x
				p
				(
				𝑖
				𝑛
				𝜂
				)
			

		
	
 with 
	
		
			
				𝑛
				∈
				Λ
			

			

				𝑚
			

		
	
, the equations are simplified as
							
	
 		
 			
				(
				8
				5
				)
			
 		
	

	
		
			
				𝑁
				𝑏
				−
				⇀
				𝑎
				=
				−
				⇀
			

			

				𝛽
			

			

				,
			

		
	

						where 
	
		
			
				−
				⇀
				𝑎
				=
				(
				𝑎
			

			

				0
			

			
				,
				𝑎
			

			

				1
			

			
				,
				…
				,
				𝑎
			

			
				𝑚
				−
				1
			

			

				)
			

			

				𝑇
			

		
	
, 
	
		
			
				𝑏
				−
				⇀
			

			

				𝛽
			

			
				=
				(
				𝜉
			

			

				0
			

			
				,
				𝜉
			

			

				1
			

			
				,
				…
				,
				𝐴
			

			
				𝛽
				𝛼
			

			

				𝜉
			

			
				1
				𝛼
				𝛽
			

			
				,
				…
				,
				𝜉
			

			
				𝛼
				𝑚
				−
				1
			

			

				)
			

			

				𝑇
			

		
	
, 
	
		
			

				𝑇
			

		
	
 denotes transposition of matrix or vector, and 
	
		
			

				𝑁
			

		
	
 is the Vander monde matrix; namely,
							
	
 		
 			
				(
				8
				6
				)
			
 		
	

	
		
			
				⎛
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎜
				⎝
				𝜉
				𝑁
				=
				1
				1
				⋯
				1
			

			

				0
			

			

				𝜉
			

			

				1
			

			
				⋯
				𝜉
			

			
				𝑚
				−
				1
			

			
				𝜉
				⋮
				⋮
				⋱
				⋮
			

			
				0
				𝑚
				−
				1
			

			

				𝜉
			

			
				1
				𝑚
				−
				1
			

			
				⋯
				𝜉
			

			
				𝑚
				−
				1
				𝑚
				−
				1
			

			
				⎞
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎟
				⎠
				.
			

		
	

						Because of  
	
		
			
				∀
				𝑗
				≠
				𝑛
				∈
				Λ
			

			

				𝑚
			

		
	
, 
	
		
			

				𝜉
			

			

				𝑗
			

			
				≠
				𝜉
			

			

				𝑛
			

		
	
, the determinant of the matrix 
	
		
			

				𝑁
			

		
	
 is nonzero. Therefore, from (83)–(86), for 
	
		
			
				∀
				𝛼
			

		
	
, 
	
		
			
				𝛽
				∈
				Λ
			

			

				𝑚
			

		
	
, the Fourier representation of the 
	
		
			

				𝛽
			

		
	
th substep relaxation in 
	
		
			

				𝐹
			

			
				𝑚
				2
				ℎ
			

		
	
 is obtained as
							
	
 		
 			
				(
				8
				7
				)
			
 		
	

	
		
			
				
				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜔
				)
				=
				𝑁
			

			
				−
				1
			

			

				𝑁
			

			

				𝛽
			

		
	

						in which 
	
		
			

				𝑁
			

			

				𝛽
			

		
	
 is a square matrix which is obtained by substituting 
	
		
			
				𝜉
				−
				⇀
			

			

				𝛽
			

			
				=
				(
				𝐴
			

			
				𝛽
				𝛼
			

			

				𝜉
			

			
				𝛽
				0
			

			
				,
				𝐴
			

			
				𝛽
				𝛼
			

			

				𝜉
			

			
				𝛽
				1
			

			
				,
				…
				,
				𝐴
			

			
				𝛽
				𝛼
			

			

				𝜉
			

			
				𝛽
				𝑚
				−
				1
			

			

				)
			

		
	
 for the 
	
		
			

				𝛽
			

		
	
th row of the matrix 
	
		
			

				𝑁
			

		
	
, and 
	
		
			

				𝐴
			

			
				𝛽
				𝛼
			

			

				=
			

			

				∼
			

			

				𝑆
			

			
				𝛽
				ℎ
			

			
				(
				𝜃
				−
				⇀
			

			

				𝛼
			

			
				,
				𝜔
				)
			

		
	
. Therefore, from (80) and (87), the Fourier representation of the 
	
		
			

				𝑚
			

		
	
-color point relaxation in the subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics 
	
		
			

				𝐹
			

			
				𝑚
				2
				ℎ
			

		
	
 is stated as
							
	
 		
 			
				(
				8
				8
				)
			
 		
	

	
		
			
				
				𝑆
			

			
				ℎ
				𝑚
				𝑐
			

			
				(
				𝜔
				)
				=
			

			
				𝑚
				−
				1
			

			

				
			

			
				𝛽
				=
				0
			

			

				𝑁
			

			
				−
				1
			

			

				𝑁
			

			

				𝛽
			

			

				.
			

		
	

						Theorem 8 holds.
6. Conclusions
A novel smoothing analysis process of the two-color point relaxation for a 2D system is presented. The results are generalized to the 
	
		
			

				𝑚
			

		
	
-color point relaxation and extended to a 3D system. The applications to the 2D and 3D Poisson equations show that the computational domain over multigrids needs to be divided into the multisubsets to correspond with the different frequency modes in partial differential equations and to use the corresponding discretizing stencils. Meanwhile, the definition of the subspace based on the 2
	
		
			

				ℎ
			

		
	
-harmonics has to be agreeable to the subdomains of the multigrids. It is an important fact that establishes a mathematical constitution among the various Fourier modes with the different 2
	
		
			

				ℎ
			

		
	
-harmonics and constructs a usable Fourier representation of the 
	
		
			

				𝑚
			

		
	
-color point relaxation in subspace of the 2
	
		
			

				ℎ
			

		
	
-harmonics.
Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.
Acknowledgments
The authors were supported by the National Natural Science Foundation of China (NSFC) (Grant no. 51279071) and the Doctoral Foundation of Ministry of Education of China (Grant no. 20135314130002).
References
	W. L. Briggs, V. E. Henson, and S. McCormick, A Multigrid Tutorial, Society for Industrial and Applied Mathematics, 2nd edition, 2000.
	W. Hackbusch, Multigrid Methods and Applications, Springer, Berlin, Germany, 1985.
	U. Trottenberg, C. W. Oosterlee, and A. schuller, Multigrid, Academic Press, New York, NY, USA, 2001.
	P. Wesseling, An Introduction to Multigrid Methods, John Wiley, Chichester , UK, 1992.
	K. Stüben and U. Trottenberg, “Multigrid methods: fundamental algorithms, model problem analysis and applications,” in Multigrid Methods, W. Hackbusch and U. Trottenberg, Eds., vol. 960 of Lecture Notes in Mathematics, pp. 1–176, Springer, Berlin, Germany, 1982.
	A. Brandt and O. E. Livne, 1984 Guide to Multigrid Development in Multigrid Methods, Society for Industrial and Applied Mathematics, 2011.
	A. Brandt, “Multi-level adaptive solutions to boundary-value problems,” Mathematics of Computation, vol. 31, no. 138, pp. 333–390, 1977.
	T. Boonen, J. van lent, and S. Vandewalle, “Local Fourier analysis of multigrid for the curl-curl equation,” SIAM Journal on Scientific Computing, vol. 30, no. 4, pp. 1730–1755, 2008.
	S. Vandewalle and G. Horton, “Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods,” Computing, vol. 54, no. 4, pp. 317–330, 1995.
	R. Wienands and C. W. Oosterlee, “On three-grid Fourier analysis for multigrid,” SIAM Journal on Scientific Computing, vol. 23, no. 2, pp. 651–671, 2001.
	R. Wienands and W. Joppich, Practical Fourier Analysis for Multigrid Methods, CRC Press, 2005.
	A. Brandt, “Rigorous quantitative analysis of multigrid—I: constant coefficients two-level cycle with &-norm,” SIAM Journal on Numerical Analysis, vol. 31, pp. 1695–1730, 1994.
	C. Rodrigo, P. Salinas, F. J. Gaspar, and F. J. Lisbona, “Local Fourier analysis for cell-centered multigrid methods on triangular grids,” Journal of Computational and Applied Mathematics, vol. 259, pp. 35–47, 2014.
	F. J. Gaspar, J. L. Gracia, and F. J. Lisbona, “Fourier analysis for multigrid methods on triangular grids,” SIAM Journal on Scientific Computing, vol. 31, no. 3, pp. 2081–2102, 2009.
	G. Zhou and S. R. Fulton, “Fourier analysis of multigrid methods on hexagonal grids,” SIAM Journal on Scientific Computing, vol. 31, no. 2, pp. 1518–1538, 2009.
	B. Gmeiner, T. Gradl, F. Gaspar, and U. Rüde, “Optimization of the multigrid-convergence rate on semi-structured meshes by local Fourier analysis,” Computers & Mathematics with Applications, vol. 65, no. 4, pp. 694–711, 2013.
	S. P. MacLachlan and C. W. Oosterlee, “Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs,” Numerical Linear Algebra with Applications, vol. 18, no. 4, pp. 751–774, 2011.
	S. Cools and W. Vanroose, “Local Fourier analysis of the complex shifted Laplacian preconditioner for Helmholtz problems,” Numerical Linear Algebra with Applications, vol. 20, no. 4, pp. 575–597, 2013.
	C. Rodrigo, F. J. Gaspar, C. W. Oosterlee, and I. Yavneh, “Accuracy measures and Fourier analysis for the full multigrid algorithm,” SIAM Journal on Scientific Computing, vol. 32, no. 5, pp. 3108–3129, 2010.
	O. E. Livne and A. Brandt, “Local mode analysis of multicolor and composite relaxation schemes,” Computers & Mathematics with Applications, vol. 47, no. 2-3, pp. 301–317, 2004.
	C. J. Kuo and T. F. Chan, “Two-color Fourier analysis of iterative algorithms for elliptic problems with red/black ordering,” SIAM Journal on Scientific and Statistical Computing, vol. 11, no. 4, pp. 767–793, 1990.
	I. Yavneh, “On red-black SOR smoothing in multigrid,” SIAM Journal on Scientific Computing, vol. 17, no. 1, pp. 180–192, 1996.
	C. J. Kuo and B. C. Levy, “Two-color Fourier analysis of the multigrid method with red-black Gauss-Seidel smoothing,” Applied Mathematics and Computation, vol. 29, no. 1, pp. 69–87, 1989.
	I. Yavneh, “Multigrid smoothing factors for red-black Gauss-Seidel relaxation applied to a class of elliptic operators,” SIAM Journal on Numerical Analysis, vol. 32, no. 4, pp. 1126–1138, 1995.
	C. Rodrigo, F. J. Gaspar, and F. J. Lisbona, “Multicolor Fourier analysis of the multigrid method for quadratic FEM discretizations,” Applied Mathematics and Computation, vol. 218, no. 22, pp. 11182–11195, 2012.
	T. N. Venkatesh, V. R. Sarasamma, S. Rajalakshmy, K. C. Sahu, and R. Govindarajan, “Super-linear speed-up of a parallel multigrid Navier-Stokes solver on Flosolver,” Current Science, vol. 88, no. 4, pp. 589–593, 2005.
	K. C. Sahu and R. Govindarajan, “Stability of flow through a slowly diverging pipe,” Journal of Fluid Mechanics, vol. 531, pp. 325–334, 2005.
	L. M. Adams and H. F. Jordan, “Is SOR color-blind?” SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 2, pp. 490–506, 1986.
	Landon Boyd, Solving the Poisson Problem in Parallel with S.O.R., http://www.cs.ubc.ca/~blandon/cpsc521/cpsc521boyd.pdf


OEBPS/page-template.xpgt
 

   


     
	 
    

     
	 
    


     
	 
    


     
         
             
             
             
        
    

  





OEBPS/pageMap.xml
 
                                 
                                



OEBPS/Fonts/xits-italic.otf


OEBPS/Fonts/xits-bolditalic.otf


OEBPS/Fonts/xits-regular.otf


OEBPS/Fonts/xits-math.otf


