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3 Departamento de Ingenieŕıa Eléctrica, Electrónica y Computación-Percepción y Control Inteligente-Bloque Q, Facultad de Ingenieŕıa
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This work presents a dynamic analysis for an anaerobic digester, supported on the analytical application of the indirect Lyapunov
method. The mass-balance model considered is based on two biological reaction pathways and involves both Monod and Haldane
representations of the specific biomass growth rates. The dilution rate, the influent concentration of chemical oxygen demand
(COD), and the influent concentration of volatile fatty acids (VFA) are considered as stability parameters. Several characteristics
are determined analytically for the normal operation equilibrium point: (i) equilibrium coordinates, (ii) parameter conditions that
lead to positive values of the equilibrium state variables, (iii) parameter conditions for locally stable nature of the equilibrium,
(iv) coordinates for the local bifurcation points—fold and transcritical—, and (v) coordinates of the crossing between bifurcation
points. These factors are computed analytically and explicitly as expressions of the dilution rate and the influent concentrations of
COD and VFA.

1. Introduction

The anaerobic digestion processes have several advantages
with respect to aerobic digestion ones, for instance, lower
sludge production and higher pollution degradation [1–4].
The main drawback of anaerobic digestion processes is the
easy destabilization. Indeed, large variation of dilution rate
or the influent organic loadmay lead to the so-called biomass
washout. Washout phenomenon involves the inactivation of
biomass and the accumulation of volatile fatty acids [1, 3–6].
In practice, the dilution rate range is constrained in order to
avoid it (cf. [4, pp. 1615]).

The dependence of desired or undesired operation of
biological systems on model parameters is usually analyzed
by means of the indirect Lyapunov method (see [7–21]). This
method is based on the linearization of the vector field and
involves the definition of the following factors: (i) equilibrium
points, (ii) parameter constraints that lead to expected inter-
vals of the equilibrium state variables, (iii) Jacobian matrix,

eigenvalues, and stability of each equilibrium, (iv) coordi-
nates of local bifurcation points, and (v) parameter regions
that lead to either desired or undesired system operation.The
analytical development of the dynamics hasmany advantages
with respect to the graphical analysis, as can be noticed from
[4, 8, 20, 22, 23]: (i) it allows a fast computation of equilibrium
points, bifurcation points and other properties, (ii) it allows
an in-depth, complete, and efficient understanding of the
influence of model parameters on the equilibria, bifurcation
points and on other characteristics, specially in the case of
three or more bifurcation parameters. Indeed, when there are
three ormore bifurcation parameters, the graphical anlaysis is
cumbersome and the analytical results can be more practical.

In the case of anaerobic digesters, the application and
results of the method depend on the mass-balance con-
sidered. A mass balance model based on two biological
reaction pathways involves two biomass species and two
substrate concentrations. For instance, the model in [1] is
based on two pathways: acidogenesis and methanization.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 514797, 14 pages
http://dx.doi.org/10.1155/2014/514797



2 Mathematical Problems in Engineering

The acidogenesis pathway involves the concentration of
acidogenic biomass and the concentration of COD, whereas
the methanization pathway involves the concentration of
methanogenic biomass and the concentration of VFA. Each
of these four concentrations is associated with a differential
equation. The dilution rate, the influent COD concentration,
and the influent VFA concentration are considered as sta-
bility parameters (see [2, 4, 22–24]—model IV—, [25]). The
nonlinear nature of the specific biomass growth rate leads
to multiple equilibria, but only some branch sections corre-
spond to realistic process operation, either normal process
operation or biomass washout condition. One equilibrium
branch section corresponds to normal process operation, and
it involves positive concentrations. The other equilibrium
branch section corresponds to biomass washout, as one
of the two biomass concentrations is zero. These realistic
equilibrium branch sections have the following features: (i)
they involve nonnegative concentrations and (ii) they attract
the state trajectories if their initial state values are realistic
(see [4, 22]). The dynamic analysis results show the effect of
the dilution rate and the influent substrate concentrations on
the stability and values of the mentioned equilibrium branch
sections. Moreover, the dynamic analysis can also indicate
the constraints on the dilution rate that allow us to avoid
the biomass washout and keep the digester under normal
operation [4]. As it can be noticed from [22–24], the interval
of the dilution rate that leads to positive and stable features
of the equilibrium biomass concentration depends on the
influent substrate concentrations.

Some works on dynamic analysis for two biological reac-
tion pathways are discussed in the following. In [4], an ana-
lytical dynamic analysis is carried out, with determination of
several characteristics for the normal operation equilibrium
point: (i) the equilibrium state variables were established in
analytical way, considering the dilution rate constrained to
an interval such that biomass washout is avoided, (ii) the
positive values of the equilibrium state variables is proven,
and (iii) the local stability of the equilibrium is also proven.
Nevertheless, the parameter constraints that allow to avoid
the biomass washout, and the coordinates of the bifurcation
points were not established. In [22], the equilibrium stability
is analyzed in analytical way, taking into account the fact
that the dynamics of the acidogenesis pathway is independent
of the dynamics of the methanization pathway. This fact
implies that the stability of each pathway can be analyzed
separately on the basis of its differential equations. They
consider the case that the normal operation equilibrium of
the first biological pathway is globally asymptotically stable,
and other cases of this pathway are not considered. The fol-
lowing characteristics are determined, for the dynamics of the
second biological pahway: (i) the equilibrium points, (ii) the
stability of the equilibrium points corresponding to washout
and nonwashout of methanogenic bacteria, in terms of the
magnitude of the dilution rate. They prove the following: (i)
the normal operation equilibrium point of the acidogenesis
step is stable for certain interval of the dilution rate, (ii) the
normal operation equilibrium point of the methanization
step is globally stable or locally stable for certain intervals
of the dilution rate, and (iii) the washout equilibrium point

of the methanization step is locally stable or globally stable
for certain intervals of the dilution rate. Nevertheless, (i)
the results are only valid for the case that the nonwashout
equilibrium of the first biological pathway is globally stable,
(ii) the case that the non-washout equilibrium of the first
biological pathway is locally stable, is not considered, and
(iii) the bifurcation points are not analyzed. In [25], one- and
two-parameter bifurcation diagrams are shown. It is assumed
that the acidogenesis step is faster than the methanization
step, which allows considering only the dynamics of the
methanization step and simplifies the stability analysis. The
drawback is that the concentration of VFA at the influent
is not taken into account. In addition, the bifurcation coor-
dinates are established numerically instead of analytically.
In [2], a linear state transformation is used in order to
obtain a canonical state space representation. This allows to
reduce the order of the dynamic system, thus simplifying
the dynamic analysis, specially the definition of the eigen-
values. The following characteristics are determined: (i) the
equilibrium points and its eigenvalues and (ii) the parameter
conditions for the stability or unstability of each equilibrium
points. Nevertheless, the conditions of the dilution rate that
lead to stable nature of the normal operation equilibrium
point are not explicitly expressed in terms of the influent
concentrations of COD andVFA. In addition, the bifurcation
points and bifurcation coexistence points are not analyzed. In
[24], a dynamic analysis is developed for several bioreactor
models, based on two biological reaction pathways, being
the anaerobic digestion model corresponding to the so-
called model IV. A linear state transformation is carried
out to obtain a canonical state space representation. This
allows the reduction of the dynamic order, thus simplifying
the stability analysis. The bifurcation parameter coordinates
are established and the corresponding bifurcation diagrams
are developed, indicating the intervals on the dilution rate
and the influent COD concentration that lead to locally
stable nature of the normal operation equilibrium point.
Nevertheless, the concentration of intermediate substrate in
the influent is defined as zero, which implies a zero influent
VFA concentration. In addition, the state coordinates of the
bifurcation points and bifurcation coexistence points are
not established. In [26], an analytical dynamic analysis is
developed, leading to the following results: (i) the six possible
equilibrium points including that for normal operation are
determined, (ii) the hyperbolic or nonhyperbolic nature and
the local stability of each equilibrium point are determined
for different parameter conditions, (iii) the bifurcation points
are determined, and (iv) one-parameter bifurcation diagrams
are developed for the six equilibrium points. In order to
compute the stability, the cascade structure of the model was
used; that is, the equations for the first biological reaction
pathway do not depend on the equations for the second
biological pathway. The conditions for the stability of the
equilibriumpoints are defined through of lumped parameters
that are functions of the influent concentrations and the
dilution rate. Nevertheless, (i) the parameter constraints
that allow avoiding the biomass washout are not established
in an explicit way as expressions on the dilution rate and
influent concentrations, (ii) the coordinates of the bifurcation
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points are not established in an explicit way as functions
of the dilution rate and influent concentrations, and (iii)
the coordinates of the crossing between bifurcations are not
established analytically.

In the aforementioned works, the major drawback is the
lack of an explicit and analytical definition of parameter
conditions for the realistic nature of the normal operation
equilibrium point (NOP). In the present work, a dynamic
analysis is developed for an anaerobic digester, using a
dynamical model with the assumption of two biological
reaction pathways. The effect of the influent concentration
of volattile fatty acids (VFA) and chemical oxygen demand
(COD) is taken into account. Several characteristics of the
normal operation equilibrium operation point are deter-
mined analytically: (i) the conditions for the realistic nature
of the equilibrium, including parameter conditions that lead
to positive values of the equilibrium state variables and locally
stable nature of the equilibrium point and (ii) the coordinates
of bifurcation values and bifurcation coexistence points.
Those results are explicitly expressed through the dilution
rate, the influent COD concentration, and influent VFA
concentration. This is the main contribution with respect to
closely related previous works.

The rest of the paper is organized as follows. In Section 2,
the plant model, the equilibrium point, and the contidions
to guarantee the existence of the normal operation point
are found. In Section 3 the conditions that lead to locally
stable nature of the NOP are presented. Section 4 shows the
computation of the coordinates of local bifurcation points
and the crossing between bifurcations, as well as numerical
simulations for different scenarios. Finally, in Section 5
conclusions are presented.

2. Plant Model and Normal Operation Point

Weconsider the upflow anaerobic fixed bed reactor of [1].The
anaerobic digestion can be explained as follows: the biomass
degrades the organic substrate to produce biogas (a mixture
of CO

2
and CH

4
) and for growth. The mass balance model is

(cf. [27])
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where 𝑋
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biomass, 𝑆
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characterized by its chemical oxygen demand, and 𝑆
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represents the concentration of volatile fatty acids (VFA). In

addition,𝐷 represents the dilution rate and 𝛼 the proportion
of biomass not attached to the reactor. On current operation
of the bioreactor the concentrations 𝑋
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excessive increase, the washout phenomenon occurs. In this
case 𝑋
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= 0 or 𝑋

2
= 0 or both 𝑋

1
= 0 and 𝑋

2
= 0. Just

the value that induces the changes of the behaviour between
the NOP to washout operation point is the value for which
the bifurcation occurs, and this phenomenon is called a
bifurcation. In this undesired state the active biomass flows
outside the reactor, such that biological degradation of the
influent organic matter does not occur anymore. Thus, it
is necessary to inoculate the biomass again, what may take
several months. Nomenclature section shows the parameters
used in this work. We refer the reader to [1, 3, 27] for further
details on the process.

The goal of the dynamic analysis is to establish the
following characteristics of the NOP: (i) the parameter
conditions that lead to positive values of the equilibrium
state variables, (ii) the parameter conditions that lead to
locally stable nature of the equilibrium point, and (iii) the
coordinates of bifurcation points and bifurcation coexistence
points. Those results are explicitly expressed in terms of the
dilution rate (𝐷) and influent concentrations of volatile fatty
acids (VFA) and chemical oxygen demand (COD).

The dynamical system (1) has six equilibrium points,
but only one of them, the so-called normal operation point
(NOP), describes the normal operation of the digester (see
[23, 26]). The other ones play an important role in the
system dynamics and their interactions explain the different
behaviors in the bioreactor and its transitions from stable
operation to washout phenomena.The equilibrium condition
for the NOP is found by imposing a null the vector field.
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Normal operation implies that the reactor concentrations are
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3. Stability Analysis of the Normal
Operation Point (NOP)

This section shows the analytical conditions that lead to
locally stable nature of the NOP (8)–(11). The conditions
are explicitly and analytically expressed as functions of the
dilution rate and influent concentrations. The stability of
the normal equilibrium point is determined by indirect
Lyapunovmethod [28–30].The Jacobian of the system (1)-(2)
is given by
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When the Jacobian matrix is evaluated at the NOP (i.e., (8)–
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+ 𝑆

eq
2

+ (𝑆

eq
2
/𝐾

𝐼
)

2

)

2
. (39)

Note that 𝜇
1
> 0 and 𝜇



2
> 0 for 𝑆

eq
2

∈ [0, 𝐾

𝐼
√𝐾

𝑆2
] (see (16)).

Similarly, 𝐽
11

= 0 by (3) and 𝐽

22
= 0 by (4).The eigenvalues of

the linearized system are (see [4, 23])

𝜆

1
=

𝑡

1

2

+

√

(

𝑡

1

2

)

2

− 𝑑

1
,

(40)

𝜆

2
=

𝑡

1

2

−

√

(

𝑡

1

2

)

2

− 𝑑

1
,

(41)

𝜆

3
=

𝑡

2

2

+

√

(

𝑡

2

2

)

2

− 𝑑

2
,

(42)

𝜆

4
=

𝑡

2

2

−

√

(

𝑡

2

2

)

2

− 𝑑

2
,

(43)

where

𝑡

1
= 𝐽

11
+ 𝐽

33
= 𝐽

33
, (44)

𝑡

2
= 𝐽

22
+ 𝐽

44
= 𝐽

44
, (45)

𝑑

1
= 𝐽

11
𝐽

33
− 𝐽

13
𝐽

31
= −𝐽

13
𝐽

31
, (46)

𝑑

2
= 𝐽

22
𝐽

44
− 𝐽

24
𝐽

42
= −𝐽

24
𝐽

42
. (47)

To establish the conditions that lead to stable nature of
the NOP, the eigenvalues (40)–(43) and and equilibrium

conditions (3)–(6) are used. Recall that an equilibrium is
locally stable if the real part of all its eigenvalues are negative
[28, pp. 55]. From (40) and (41) it follows that if 𝑡

1
< 0 and

𝑑

1
> 0, then Re(𝜆

1
) < 0 and Re(𝜆

2
) < 0, whereas (42) and

(43) indicate that if 𝑡

2
< 0 and 𝑑

2
> 0, then Re(𝜆

3
) < 0

and Re(𝜆
4
) < 0. We will establish the range for 𝐷 that

assures these eigenvalue conditions, considering each term
independently.

Proposition 2. Consider the definitions given in (12), the
equilibrium point provided by (8)–(11), eigenvalues (40) and
(41), and the term 𝜇



1
defined in (38). If 𝐷 fulfills

0 < 𝐷 <

𝜇

1max
𝛼

𝑆

𝑖𝑛

1

𝐾

𝑆1
+ 𝑆

𝑖𝑛

1

, (48)

then 𝑡

1
< 0 and 𝑑

1
> 0 and consequently Re(𝜆

1
) < 0 and

Re(𝜆
2
) < 0.

Proof. Combining (44) and (33), we obtain

𝑡

1
= −𝐷 − 𝑘

1
𝜇



1
𝑋

eq
1
. (49)

Now, combining (46), (29), and (32), we obtain

𝑑

1
= 𝜇



1
𝑋

eq
1
𝑘

1
𝜇

eq
1
. (50)

As 𝐷 > 0, 𝜇
1
> 0, and 𝑋

eq
1

> 0 if 𝐷 < (𝜇

1max/𝛼)(𝑆

in
1
/(𝐾

𝑆1
+

𝑆

in
1
)), then it follows from (40) and (41) that Re(𝜆

1
) < 0 and

Re(𝜆
2
) < 0.

Proposition 3. Consider the definitions given in (12), the
equilibrium point provided by (8)–(11), and the term 𝜇



2
defined

in (39). If

0 < 𝐷 < min{

𝜇

2max
𝛼

𝐾

𝐼

𝐾

𝐼
+ 2√𝐾

𝑆2

,

̃

𝐷} , (51)

where ̃

𝐷 satisfies (25), then 𝑡

2
< 0 and 𝑑

2
> 0 and consequently

Re(𝜆
3
) < 0 and Re(𝜆

4
) < 0.

Proof. Combining (45) and (37), we obtain

𝑡

2
= −𝐷 − 𝑘

3
𝜇



2
𝑋

eq
2
. (52)

Now, combining (47), (31), and (35), we obtain

𝑑

2
= 𝜇



2
𝑋

eq
2
𝑘

3
𝜇

eq
2
. (53)

As 0 < 𝑆

eq
2

< 𝐾

𝐼
/√𝐾

𝑆2
according to (16), 𝜇

2
> 0 if 0 <

𝑆

eq
2

< 𝐾

𝐼
/√𝐾

𝑆2
, 𝐷 < (𝜇

2max/𝛼)(𝐾

𝐼
/(𝐾

𝐼
+ 2√𝐾

𝑆2
)) according

to (15), and 𝑋

eq
2

> 0 if conditions given by (24) and (25) are
satisfied; then, it follows from (42) and (43) that Re(𝜆

3
) < 0

and Re(𝜆
4
) < 0.

According to the results obtained above, the final condi-
tion to NOP is stable is given by

𝐷 < min{

𝜇

1max
𝛼

𝑆

in
1

𝐾

𝑆1
+ 𝑆

in
1

,

𝜇

2max
𝛼

𝐾

𝐼

𝐾

𝐼
+ 2√𝐾

𝑆2

,

̃

𝐷} , (54)

where ̃

𝐷 satisfies (25).
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Table 1: Equilibrium points.

Bifurcation Equilibrium points: 𝑎, 𝑏, and 𝑐 were defined in (12).

TB(𝑋
1
)

𝑋

eq
1
= 0

𝑋

eq
2
= 1

𝛼𝑘

3

(𝑆

in
2

−

−𝑏 −

√

𝑏

2
− 4𝑎𝑐

2𝑎

)

𝑆

eq
1
= 𝑆

in
1

𝑆

eq
2
= −𝑏 −

√

𝑏

2
− 4𝑎𝑐

2𝑎

Where 𝑆

in
1
=

𝛼𝐷𝐾

𝑆1

𝜇

1max − 𝛼𝐷

, and 𝐷 =

𝜇

1max𝑆
in
1

𝛼(𝑆

in
1

+ 𝐾

𝑆1
)

FB(𝑋
2
)

𝑋

eq
1
= 1

𝛼𝑘

1

(𝑆

in
1

−

𝜇

2max𝐾𝐼𝐾𝑆1

𝜇

1max(2√𝐾

𝑆2
+ 𝐾

𝐼
) − 𝜇

2max𝐾𝐼
)

𝑋

eq
2
= 1

𝛼𝑘

3

(𝑆

in
2

+

𝑘

2

𝑘

1

𝑆

in
1

− 𝐾

𝐼
√𝐾

𝑆2
−

𝑘

2

𝑘

1

𝜇

2max𝐾𝐼𝐾𝑆1

𝜇

1max(2√𝐾

𝑆2
+ 𝐾

𝐼
) − 𝜇

2max𝐾𝐼
)

𝑆

eq
1
=

𝜇

2max𝐾𝐼𝐾𝑆1

𝜇

1max(2√𝐾

𝑆2
+ 𝐾

𝐼
) − 𝜇

2max𝐾𝐼

𝑆

eq
2
= 𝐾

𝐼
√𝐾

𝑆2

Where 𝐷 =
𝜇

2max𝐾𝐼

𝛼(2√𝐾

𝑆2
+ 𝐾

𝐼
)

TB(𝑋
2
)

𝑋

eq
1
=

𝑆

in
1
𝜇

1max − 𝛼𝐷(𝑆

in
1

+ 𝐾

𝑆1
)

𝛼𝑘

1
(𝜇

1max − 𝛼𝐷)

𝑋

eq
2
= 0

𝑆

eq
1
=

𝛼𝐷𝐾

𝑆1

𝜇

1max − 𝛼𝐷

𝑆

eq
2
= −𝑏 −

√

𝑏

2
− 4𝑎𝑐

2𝑎

Where 𝑆

in
1
=

𝛼𝐷𝐾

𝑆1

𝜇

1max − 𝛼𝐷

+

𝑘

1

𝑘

2

(

−𝑏 −

√

𝑏

2
− 4𝑎𝑐

2𝑎

− 𝑆

in
2
)

Remark 4. Thefinal condition to guarantee the NOP stability
is the same as the final condition to assure the existence of
NOP.

Remark 5. The final condition to guarantee the NOP stability
indicates that (i) if 𝑆in

1
is overly small, then the dilution rate

𝐷 is constrained to small values even if 𝑆in
2
is large and (ii) if

𝑆

in
2
is overly small, then the dilution rate 𝐷 is constrained to

small values even if 𝑆in
1
is large. If 𝑆in

1
and 𝑆

in
2
satisfy

𝜇

1max
𝛼

𝑆

in
1

𝑆

in
1

+ 𝐾

𝑆1

>

𝜇

2max
𝛼

𝐾

𝐼

𝐾

𝐼
+ 2√𝐾

𝑆2

(55)

then the dilution rate 𝐷 is only limited by the constant value
(𝜇

2max/𝛼)(𝐾

𝐼
/(𝐾

𝐼
+2√𝐾

𝑆2
)).Therefore, it is desirable to have

large values of 𝑆

in
1
, and 𝑆

in
2
, as it would allow to have larger

values of the dilution rate 𝐷.

Remark 6. Thefinal condition to guarantee the NOP stability
indicates that there are three ways whereby the stable nature
of the NOP can be lost: (i) with small values of 𝑆in

1
, (ii) with

small values of 𝑆in
2
, (iii) with large values of 𝐷.

4. Determination of Bifurcation
Points and Their Crossing

As we stated before, there are six equilibria in the system and
the evolution of these equilibria determines the bifurcations
and the behavior of the system when one or more parameters
are varied. In Table 1 the values of the equilibrium points
when bifurcations occur are shown. The interaction of these
equilibria raise three different bifurcations which are called
TB(𝑋

1
), FB(𝑋

2
), and TB(𝑋

2
). The bifurcation TB(𝑋

1
) is

of transcritical type and involves the intersection between
the equilibrium corresponding to NOP and the equilibrium
corresponding to inactivated acidogenic biomass (𝑋

1
=

0). The bifurcation FB(𝑋
2
) is of fold type and involves

collision between the equilibrium corresponding to NOP
and one equilibrium that does not have physical meaning.
The bifurcation TB(𝑋

2
) is of transcritical type and involves

the intersection between the equilibrium corresponding to
NOP and the one corresponding to inactivatedmethanogenic
biomass (𝑋

2
= 0).Thementioned bifurcations have common

points where the parameters and state variables have the same
values (see Table 2).

In this section, the determination of the bifurcation
points as well as crossing points between bifurcations TB(𝑋

1
)
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Table 2: Intersections of the bifurcation branches.

Bifurcations Common values of the equilibrium points

TB(𝑋
1
) and FB(𝑋

2
)

𝑋

eq
1
= 0

𝑋

eq
2
=

𝑆

in
2

− 𝐾

𝐼
√𝐾

𝑆2

𝛼𝑘

3

𝑆

eq
1
=

𝜇

2max𝐾𝐼𝐾𝑆1

𝐾

𝐼
(𝜇

1max − 𝜇

2max) + 2𝜇

1max√𝐾

𝑆2

𝑆

eq
2
= 𝐾

𝐼
√𝐾

𝑆2

Where 𝑆

in
1
=

𝜇

2max𝐾𝐼𝐾𝑆1

𝐾

𝐼
(𝜇

1max − 𝜇

2max) + 2𝜇

1max√𝐾

𝑆2

FB(𝑋
2
) and TB(𝑋

2
)

𝑋

eq
1
= 1

𝑘

2
𝛼

(𝐾

𝐼
√𝐾

𝑆2
− 𝑆

in
2
)

𝑋

eq
2
= 0

𝑆

eq
1
=

𝜇

2max𝐾𝐼𝐾𝑆1

𝐾

𝐼
(𝜇

1max − 𝜇

2max) + 2𝜇

1max√𝐾

𝑆2

𝑆

eq
2
= 𝐾

𝐼
√𝐾

𝑆2

Where 𝐷 =
𝜇

2max𝐾𝐼

𝛼 (2√𝐾

𝑆2
+ 𝐾

𝐼
)

and

𝑆

in
1
=

𝜇

2max𝐾𝐼𝐾𝑆1

𝐾

𝐼
(𝜇

1max − 𝜇

2max) + 2𝜇

1max√𝐾

𝑆2

+

𝑘

1

𝑘

2

(𝐾

𝐼
√𝐾

𝑆2
− 𝑆

in
2
)

and FB(𝑋
2
) and bifurcations FB(𝑋

2
) and TB(𝑋

2
) is pre-

sented.

4.1. Determinationof Bifurcation Points. One-parameter bifur-
cation diagrams can be obtained from Table 1. This results in
a curve called equilibrium branch. The crossing, collision, or
splitting of these branches corresponds to a local bifurcation,
either fold, transcritical, or pitchfork. The local bifurcations
involve the vanishing of the real part of at least one eigenvalue,
which allows determining the bifurcation coordinates [29].

Now, we establish local bifurcations of the NOP, con-
sidering the dilution rate 𝐷, the feed concentration 𝑆

in
1
, and

the feed concentration 𝑆

in
2

as bifurcation parameters. The
real part of at least one eigenvalue becomes zero when a
local bifurcation occurs, which allows us to determine the
bifurcation coordinates. From (41) and (43) it follows that
𝜆

2
= 0 if 𝑑

1
= 0 and 𝜆

4
= 0 if 𝑑

2
= 0. These two conditions

are analyzed in the following. We begin by combining 𝑑

1
= 0

with (46):

−𝐽

13
𝐽

31
= 0,

𝛼𝑘

1
𝜇



1
𝑋

eq
1

= 0

(56)

and 𝑑

2
= 0 with (47):

−𝐽

24
𝐽

42
= 0,

𝛼𝑘

3
𝜇



2
𝑋

eq
2

= 0.

(57)

Consequently, we have three possibilities:

(1) 𝑋

eq
1

= 0, (58)

(2) 𝜇



2
= 0, (59)

(3) 𝑋

eq
2

= 0. (60)

Combining the above conditions with the conditions for
the equilibrium (3)–(6), we obtain the variable states and
parameter values for each bifurcation.

The bifurcation type, either fold or transcritical, can be
determined on the basis of the behavior of the equilibrium
branches. The fold bifurcation involves the collision and
disappearance of two equilibrium branches. In some cases,
it is related to the presence of a square root in the equi-
librium coordinates, and the bifurcation coordinates can be
determined by equating the square root to zero. Contrarily,
the transcritical bifurcation involves the crossing of two
equilibrium branches. Its coordinates can be determined by
analyzing the intersection of the equilibriumbranches (cf. [31,
pp. 525]).

Notice that the equilibrium (8)–(11) involves a square root
in (11), which indicates the presence of a fold bifurcation.
Imposing a null value for the square root, it yields

𝐷 =

𝜇

2max
𝛼

𝐾

𝐼

𝐾

𝐼
+ 2√𝐾

𝑆2

or 𝐷 =

𝜇

2max
𝛼

𝐾

𝐼

𝐾

𝐼
− 2√𝐾

𝑆2

(61)

but only the first possibility satisfies condition (15). The
graphical analysis of the bifurcations, and the fact that the
parameter value (61) leads to a fold bifurcation, will be used
to determine the bifurcation type.

Bifurcation Branch TB(𝑋
1
). Combining (58) with (3)–(6),

yields the coordinates of bifurcation TB(𝑋
1
):

𝑋

eq
1

= 0, (62)

𝑋

eq
2

=

1

𝛼𝑘

3

(𝑆

in
2

−

−𝑏 −

√

𝑏

2
− 4𝑎𝑐

2𝑎

) , (63)

𝑆

eq
1

= 𝑆

in
1
, (64)
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𝑆

eq
2

=

−𝑏 −

√

𝑏

2
− 4𝑎𝑐

2𝑎

,

(65)

𝑆

in
1

=

𝛼𝐷𝐾

𝑆1

𝜇

1max − 𝛼𝐷

, (66)

𝐷 =

𝜇

1max𝑆
in
1

𝛼 (𝑆

in
1

+ 𝐾

𝑆1
)

, (67)

where 𝑎, 𝑏, 𝑐 are defined in (12).

Bifurcation Branch FB(𝑋
2
). From (59) and (39) it follows that

𝐾

𝑆2
− (

𝑆

eq
2

𝐾

𝐼

)

2

= 0
(68)

⇒ 𝑆

eq
2

= 𝐾

𝐼
√

𝐾

𝑆2
.

(69)

From (4) it follows that 𝐷 = (1/𝛼)𝜇

eq
2
. Using (2) and (69), we

obtain

𝐷 =

𝜇

2max
𝛼

𝐾

𝐼

2√𝐾

𝑆2
+ 𝐾

𝐼

. (70)

Notice that this value is independent of 𝑆

in
1
, 𝑆in
2
, and is the

same as the upper bound appearing in (15). Combining (69),
(70), (3)–(6), and (59) yields the coordinates of bifurcation
FB(𝑋
2
):

𝑋

eq
1

=

1

𝛼𝑘

1

(𝑆

in
1

−

𝜇

2max𝐾𝐼𝐾𝑆1

𝜇

1max (2√𝐾

𝑆2
+ 𝐾

𝐼
) − 𝜇

2max𝐾𝐼
) , (71)

𝑋

eq
2

=

1

𝛼𝑘

3

(𝑆

in
2

+

𝑘

2

𝑘

1

𝑆

in
1

− 𝐾

𝐼
√

𝐾

𝑆2

−

𝑘

2

𝑘

1

𝜇

2max𝐾𝐼𝐾𝑆1

𝜇

1max (2√𝐾

𝑆2
+ 𝐾

𝐼
) − 𝜇

2max𝐾𝐼
) ,

(72)

𝑆

eq
1

=

𝜇

2max𝐾𝐼𝐾𝑆1

𝜇

1max (2√𝐾

𝑆2
+ 𝐾

𝐼
) − 𝜇

2max𝐾𝐼
, (73)

𝑆

eq
2

= 𝐾

𝐼
√

𝐾

𝑆2
,

(74)

𝐷 =

𝜇

2max𝐾𝐼

𝛼 (2√𝐾

𝑆2
+ 𝐾

𝐼
)

. (75)

Bifurcation Branch TB(𝑋
2
). Combining (3)–(6) with (60), we

obtain

𝑋

eq
1

=

𝑆

in
1
𝜇

1max − 𝛼𝐷(𝑆

in
1

+ 𝐾

𝑆1
)

𝛼𝑘

1
(𝜇

1max − 𝛼𝐷)

,

(76)

𝑋

eq
2

= 0, (77)

𝑆

eq
1

=

𝛼𝐷𝐾

𝑆1

𝜇

1max − 𝛼𝐷

, (78)

𝑆

eq
2

=

−𝑏 −

√

𝑏

2
− 4𝑎𝑐

2𝑎

,

(79)

𝑆

in
1

=

𝛼𝐷𝐾

𝑆1

𝜇

1max − 𝛼𝐷

+

𝑘

1

𝑘

2

(

−𝑏 −

√

𝑏

2
− 4𝑎𝑐

2𝑎

− 𝑆

in
2
) , (80)

where 𝑎, 𝑏, and 𝑐 are defined in (12).

Remark 7. Notice that the coordinates of the bifurcation
parameters, provided by (67), (75), and (80), are the same as
the upper bounds that guarantee stability of NOP, established
in (54). The reason is that the bifurcation points bound
the locally stable nature of the NOP, and the parameter
coordinates for the bifurcation points are parameter bounds
that allow to keep the system under normal operation.

Bifurcation Diagrams. Figure 1 shows four diagrams: a 2-
parameter bifurcation diagram (in the upper left position)
and three 1-parameter bifurcation diagrams. For the 2-
parameter bifurcation diagram 𝐷 and 𝑆

in
1
are the bifurcation

parameters. The vertical line in this subfigure is the bifurca-
tion branch FB(𝑋

2
); it is a fold bifurcation branch. The solid

curved line corresponds to the bifurcation branch TB(𝑋
1
); it

is a transcritical bifurcation branch.The dash-dot curved line
(very close to FB(𝑋

2
)) corresponds to the bifurcation branch

TB(𝑋
2
); it is a transcritical bifurcation branch. The region

𝐷 > (𝜇

2max/𝛼)𝐾

𝐼
/(𝐾

𝐼
+ 2√𝐾

𝑆2
) located at the right of the

vertical solid line implies the non-existence of the NOP. The
1-parameter bifurcation diagrams are computed using 𝐷 as
bifurcation parameter and fixing 𝑆

in
1
according to the value

shown by the arrows in the 2-parameter diagram.
From Proposition 1 and (15) and (75), it follows that

the value 𝐷 = (𝜇

2max/𝛼)𝐾

𝐼
/(𝐾

𝐼
+ 2√𝐾

𝑆2
) is not only the

parameter coordinate for the bifurcation branch FB(𝑋
2
),

but also the limit for the existence of the NOP. The arrows
displayed in Figure 1(a) and noted as 𝐴

1
, 𝐴
2
, and 𝐴

3
allow

us to define if the bifurcation is either transcritical or fold: (i)
arrow 𝐴

1
indicates that bifurcation TB(𝑋

1
) is transcritical,

bifurcation TB(𝑋
2
) is transcritical and bifurcation FB(𝑋

2
) is

fold, (ii) arrow 𝐴

3
confirms that bifurcation FB(𝑋

2
) is fold

and bifurcation TB(𝑋
1
) is transcritical, and (iii) arrow 𝐴

2

shows the crossing of transcritical and fold bifurcations.
Thus,

(i) TB(𝑋
1
)—described by (62) to (67) with 𝑋

eq
1

= 0—
is a transcritical bifurcation that involves the inter-
section between the equilibrium corresponding to
normal operation and the equilibrium corresponding
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Figure 1: Bifurcation diagrams for the NOP. The 2-parameter bifurcation diagram is in upper left position. The corresponding 1-parameter
bifurcation diagrams for the specific values of 𝑆in according to arrows 𝐴

1
, 𝐴
2
, and 𝐴

3
are in the other positions.

to 𝑋

eq
1

= 0. For larger values of 𝐷 the concentration
𝑋

1
would converge to zero, which is known as

washout of acidogenic biomass.
(ii) Bifurcation FB(𝑋

2
)—described by (71) to (75)—

corresponds to a fold bifurcation where the equilib-
rium branch corresponding to NOP collides with the
other equilibrium branch. The collision and disap-
pearance can only be noticed in the branches of 𝑋eq

2

and 𝑆

eq
2
. For larger values of 𝐷, the concentration 𝑋

2

would converge to zero, which is known as washout
of methanogenic biomass.

(iii) Bifurcation TB(𝑋
2
)—described by (76) to (80) with

𝑋

eq
2

= 0—corresponds to a transcritical bifurcation
that involves the intersection between the equilibrium
corresponding to NOP and the equilibrium corre-
sponding to 𝑋

eq
2

= 0. For larger values of 𝐷 the
concentration 𝑋

2
would converge to zero, which is

known as washout of methanogenic biomass.

Figure 2 is a zoomed version close to TB(𝑋
2
) of Fig-

ure 1. This figure has the following features: (i) the region
for local stability of the NOP is denoted by NO, (ii) the
region for local stability of an equilibrium corresponding to

1.055 1.06 1.065 1.07 1.075 1.08
0

1

2

3

4

5

6 NO

S
in 1

(g
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D
/L

)
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(X1)

(X2)

W/X1 W/X1 and X2

W/X1 and X2

W/X2

TB/X2 →

Figure 2: Two-parameter bifurcation diagram.

acidogenic biomass washout is denoted by W/𝑋
1
, (iii) the

region for local stability of an equilibrium corresponding to
methanogenic biomass washout is denoted by W/𝑋

2
, (iv)
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Figure 3: Bifurcation diagrams and transient responses for 𝑋

1
and 𝑋

2
states. Case 𝐴

3
.

the region for local stability of an equilibrium corresponding
to washout of both acidogenic and methanogenic biomass
is denoted by W/(𝑋

1
& 𝑋

2
), (v) the region for the fold

bifurcation FB(𝑋
2
) corresponds to the vertical line, (vi) the

regions for the transcritical bifurcations TB(𝑋
1
) and TB(𝑋

2
)

(continuous and dash-doted lines, resp.) are curved lines,
(vii) the two big points correspond to coexisting bifurcations:
the upper one corresponds to the coexistence of FB(𝑋

2
)

and TB(𝑋
1
) whereas the lower one corresponds to the

coexistence of FB(𝑋
2
) and TB(𝑋

2
), and (viii) in the region

𝐷 > (𝜇

2max/𝛼)𝐾

𝐼
/(𝐾

𝐼
+ 2√𝐾

𝑆2
), located at the right of the

vertical solid line, the NOP does not exist.
From Figure 1 it can be observed that if 𝑆

in
2

is fixed
there are two ways whereby the local stability of the normal
operation condition can be lost: (i) by increasing the value
of 𝐷, (ii) by decreasing the value of 𝑆

in
1
, which agrees with

Remark 6. In the same figure there are three cases (𝐴
3
,

𝐴

2
, and 𝐴

1
) in which the occurrence of local bifurcation is

analyzed. For some values of 𝐷 > 0 and 𝑆

in
1
there is a locally

stable equilibrium point with 𝑋

eq
1

> 0, 𝑋eq
2

> 0, 𝑆eq
1

> 0 and
𝑆

eq
2

> 0, which is associated with the NOP. For a given value
of 𝑆in
1
, there is a value of the dilution rate, 𝐷 = 𝐷

∗, for which
a local bifurcation occurs, related to a change of stability (see
Figure 1). Further increase of 𝐷, satisfying 𝐷 > 𝐷

∗, leads to

a locally stable equilibrium point that involves either𝑋eq
1

= 0

or𝑋eq
2

= 0 or both, while 𝑆

eq
1

> 0 and 𝑆

eq
2

> 0.These equilibria
are associated with washout.

Figures 3, 4, and 5 show the verification of the two-
parameter bifurcation diagram of Figure 1. In each case,
NOP is chosen by selecting suitable values of 𝑆

in
1

and 𝐷.
In order to obtain the diagram, 𝐷 is increased so that a
bifurcation occurs. The difference between the three cases
is the characteristics of the first bifurcation attained. For
the case 𝐴

3
the bifurcation is related to the washout of the

methanogenic biomass (𝑋
2
). For the case 𝐴

2
the bifurcation

is related to the washout of both the acidogenic and the
methenogenic biomasses (𝑋

1
and 𝑋

2
), and for the case 𝐴

1

the bifurcation is related to the washout of the acidogenic
biomass (𝑋

1
).

In Figures 3, 4, and 5, the upper left part shows the
bifurcation diagram for the chosen value of 𝑆

in
1
, with 𝐷 as

bifurcation parameter, and indicates the considered case,
either case 𝐴

3
, 𝐴

2
, or 𝐴

1
. The figures surrounding the

bifurcation diagram show the transient evolution of the state
variables 𝑋

1
and 𝑋

2
. Figure 3 shows the results for the case

𝐴

3
with 𝑆

in
1

= 6.5 gCOD/L and 𝐷 ∈ {0.8, 1.1, 1.3} days−1
which correspond to NOP, washout operation for 𝑋

2
, and

washout operation for both𝑋

1
and𝑋

2
, respectively. Figure 4
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Figure 4: Bifurcation diagrams and transient responses for 𝑋

1
and 𝑋

2
states. Case 𝐴

2
.

shows the results for the case 𝐴

2
, with 𝑆

in
1

= 5.73 gCOD/L,
and 𝐷 ∈ {0.7, 1.2} days−1 which correspond to NOP, and
washout operation for both𝑋

1
and𝑋

2
, respectively. Figure 5

shows the results for the case 𝐴

1
, with 𝑆

in
1

= 0.5 gCOD/L,
and𝐷 ∈ {0.1, 0.8, 1.07, 1.2} days−1 which correspond to NOP
for the first value, washout operation for 𝑋

2
, for the second

value, and washout operation for both 𝑋

1
and 𝑋

2
, for third

and fourth values.

4.2. Determination of Crossing Bifurcation Branches. Now, we
analyze the crossing between bifurcations TB(𝑋

1
), FB(𝑋

2
),

and TB(𝑋
2
). At the collision points, the bifurcation param-

eters and bifurcation variable states have the same val-
ues. There are two ways whereby the crossing points can
be determined: (i) by combining the bifurcation coordi-
nates (62),. . .,(67); (71),. . .,(75); (76),. . .,(80), (ii) by combin-
ing (58), (59), and (60) with equilibrium conditions (3)–(6).

In order to determine the crossing between TB(𝑋
1
)

and FB(𝑋
2
), the bifurcation coordinates (62),. . .,(67) and

(71),. . .,(75) are combined, so that

𝑋

eq
1

= 0,

𝑋

eq
2

=

𝑆

in
2

− 𝐾

𝐼
√𝐾

𝑆2

𝛼𝑘

3

,

𝑆

eq
1

=

𝜇

2max𝐾𝐼𝐾𝑆1

𝐾

𝐼
(𝜇

1max − 𝜇

2max) + 2𝜇

1max√𝐾

𝑆2

,

𝑆

eq
2

= 𝐾

𝐼
√

𝐾

𝑆2
,

𝐷 =

𝜇

2max𝐾𝐼

𝛼 (2√𝐾

𝑆2
+ 𝐾

𝐼
)

,

𝑆

in
1

=

𝜇

2max𝐾𝐼𝐾𝑆1

𝐾

𝐼
(𝜇

1max − 𝜇

2max) + 2𝜇

1max√𝐾

𝑆2

.

(81)

Remark 8. Notice that (i) the parameter coordinates 𝐷 and
𝑆

in
1

are constant, (ii) the equilibrium values of the state
variables 𝑋

eq
1
, 𝑆eq
1
, and 𝑆

eq
2

do not depend on 𝐷 nor 𝑆

in
1
nor

𝑆

in
2
and (iii) the state variable𝑋

eq
2
depends on 𝑆

in
2
but does not

depend on 𝐷 nor 𝑆

in
1
.
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Figure 5: Bifurcation diagrams and transient responses for 𝑋

1
and 𝑋

2
states. Case 𝐴

1
.

To determine the crossing between FB(𝑋
2
) and TB(𝑋

2
),

the bifurcation coordinates (71),. . .,(75) and (76),. . ., (80) are
combined, so that

𝑋

eq
1

=

1

𝑘

2
𝛼

(𝐾

𝐼
√

𝐾

𝑆2
− 𝑆

in
2
) ,

𝑋

eq
2

= 0,

𝑆

eq
1

=

𝜇

2max𝐾𝐼𝐾𝑆1

𝐾

𝐼
(𝜇

1max − 𝜇

2max) + 2𝜇

1max√𝐾

𝑆2

,

𝑆

eq
2

= 𝐾

𝐼
√

𝐾

𝑆2
,

𝐷 =

𝜇

2max𝐾𝐼

𝛼 (2√𝐾

𝑆2
+ 𝐾

𝐼
)

,

𝑆

in
1

=

𝜇

2max𝐾𝐼𝐾𝑆1

𝐾

𝐼
(𝜇

1max − 𝜇

2max) + 2𝜇

1max√𝐾

𝑆2

+

𝑘

1

𝑘

2

(𝐾

𝐼
√

𝐾

𝑆2
− 𝑆

in
2
) .

(82)

Remark 9. Notice that (i) the parameter𝐷 is constant, (ii) the
parameter 𝑆in

1
depends on 𝑆

in
2
but it does not dependon𝐷, (iii)

the state variables𝑋eq
2
, 𝑆eq
1
, 𝑆eq
2
are constant, and (iv) the state

variable 𝑋

eq
1

depends on 𝑆

in
2
but does not depend on 𝐷 nor

𝑆

in
1
.

Figure 2 shows the intersection between bifurcations by
means of large black points.

5. Discussion and Conclusions

Although the system has six equilibria, we only consider
the equilibrium associated to NOP and two other ones that
interact with it. Only one of the six equilibrium points
corresponds to the normal process operation and there are
some conditions on the dilution rate 𝐷 and the influent
concentrations 𝑆

in
1

and 𝑆

in
2

under which such equilibrium
has physical meaning: positive values of the equilibrium
concentrations and stable nature.

Analysis are shown that there are mainly three ways
through which the stable nature of the NOP can be lost:
with a large value of the dilution rate, with a low value of
the influent COD concentration, and with a low value of
the influent VFA concentration. Even more, the loss of the
stable nature of the NOP occurs through either a fold or
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a transcritical bifurcation, where an equilibrium point with
washout of some biomass population becomes stable. At the
bifurcation points, the value of 𝐷 depends on 𝑆

in
1
and 𝑆

in
2
as

follows: (i) it depends on 𝑆

in
1
in the bifurcation TB(𝑋

1
), (ii)

it does not depend on 𝑆

in
1
nor 𝑆

in
2
in bifurcation FB(𝑋

2
), and

(iii) it depends on both 𝑆

in
1
and 𝑆

in
2
in bifurcation TB(𝑋

2
).

For a given 𝑆

in
1
, the value of 𝐷 corresponds to the

bifurcation; it is a limit value that should not be exceeded,
so that washout is avoided. The dilution rate 𝐷 is defined as
𝐷 = 𝑄/𝑉, where𝑄 is the influent flow rate and𝑉 is the active
reactor volume.The volume𝑉 remains constant, such that the
variation of 𝐷 is due to the variation of the flow rate 𝑄, and
limitation of 𝐷 can be achieved by properly limiting the flow
rate 𝑄.

For some parameter values, two bifurcations cross, and in
such points the bifurcation coordinates have the same values.

Nomenclature

𝐷: Dilution rate (day−1)—bifurcation
parameter

𝑋

1
: Concentration of acidogenic biomass (g/L)

𝑋

2
: Concentration ofmethanogenic biomass (g/L)

𝑆

1
: Concentration of COD (g/L)

𝑆

2
: Concentration of VFA (mmol/L)

𝑆

in
1
: Concentration of COD in the inlet flow

(g/L)—bifurcation parameter
𝑆

in
2
: Concentration of VFA in the inlet flow

(mmol/L), 52mmol/L
𝛼: Proportion of dilution rate for bacteria, 0.5
𝜇

1
: Acidogenic biomass growth rate (day−1)

𝜇

2
: Methanogenic biomass growth rate (day−1)

𝜇

1max: Maximum acidogenic bacteria growth rate
(day−1), 1.2 day−1

𝜇

2max: Maximum methanogenic bacteria growth
rate (day−1), 0.74 day−1

𝑘

1
: Yield coefficient for substrate degradation,10.53

𝑘

2
: Yield coefficient for VFA production

(mmol/g), 28.6mmol/g
𝑘

3
: Yield coefficient for VFA consumption

(mmol/g), 1074mmol/g
𝐾

𝑆1
: Half saturation constant (g/L), 7.1 g/L

𝐾

𝑆2
: Half saturation constant (mmol/L),

9.28mmol/L
𝐾

𝐼
: Inhibition constant associated with 𝑆

2

((mmol/L)1/2) 16 (mmol/L)1/2.
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