Research Article

Leader-Based Consensus of Heterogeneous Nonlinear Multiagent Systems

Tairen Sun, Yongping Pan, and Haoyong Yu

1 School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
2 Key Laboratory of Autonomous Systems and Networked Control, Ministry of Education, South China University of Technology, Guangzhou 510640, China
3 Department of Biomedical Engineering, National University of Singapore, Singapore 117575

Correspondence should be addressed to Tairen Sun; suntren@gmail.com

Received 17 March 2014; Revised 24 May 2014; Accepted 25 May 2014; Published 16 June 2014

Academic Editor: Leo Chen

Copyright © 2014 Tairen Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper considers the leader-based consensus of heterogeneous multiple agents with nonlinear uncertain systems. Based on the information obtained from the following agents’ neighbors, leader observers are designed by the following agents to estimate the leader’s states and nonlinear dynamics. Then, to achieve leader-based consensus, adaptive distributed controllers are designed for the following agents to track the designed corresponding leader observers. The effectiveness of the leader observers and distributed consensus controllers are illustrated by formal proof and simulation results.

1. Introduction

In the past decades, cooperative control problems of multia gent have attracted more and more attention from researchers for its wide applications in many areas, such as formation control of mobile robots [1], monitoring [2], medical rescue [3], and environmental boundary tracking [4]. Consensus is a fundamental and important problem in the area of multiagent systems where a networked interaction protocol needs to be designed such that the final states of all agents converge to a common value.

Compared with the leaderless consensus in which the agents’ states converge to a common constant value [5, 6], the states of multiagent can converge to a leader’s dynamic state in leader-based consensus [7]. Though many results on leader-based multiagent consensus have been obtained [7–14], most of the results considered agents with integrator or linear dynamics. However, most real agent systems are inherently nonlinear and uncertainty terms may exist in the systems. The consensus control in integrator or linear dynamics cannot be used directly in consensus of nonlinear agents. Recently, results [15–18] considered the leader-based consensus of homogeneous nonlinear agents with the assumption that the agents’ nonlinear function satisfies the Lipschitz or like-Lipschitz condition. The dynamical differences among agents are neglected in [15–18]. In the paper, we consider the leader-based consensus of heterogeneous agents with different nonlinear dynamics.

NNs and fuzzy techniques are wildly used in control design for nonlinear uncertain systems, for their abilities in nonlinear function approximations [19, 20]. In [21–25], the leader-based consensus controllers were designed for heterogeneous nonlinear uncertain multiagent systems. In the consensus control design, the leader’s nonlinear dynamics was considered as a bounded disturbance and neural network- (NN-) based consensus control was designed for the following agents.

Distributed estimation via observer design for multiagent consensus is an important topic in the study of multiagent networks, with wide applications especially in sensor networks and robot networks, among many others [26]. Up to now, the results [26–31] have been obtained on multiagent consensus based on the distributed estimation via observer design. However, the considered agents in [26–31] are with
integrator or linear dynamics. In this paper, the considered agents are with nonlinear uncertain dynamics and distributed NN-based leader observers are designed to estimate the leader’s state and nonlinear dynamics. Then, to obtain the leader-based consensus, NN controllers are designed for the following agents to track the corresponding leader observers.

2. Preliminaries

2.1. Graph Theory and Some Notations. In this paper, we consider a networked system consisting of N agents v_1, v_2, \ldots, v_N and one leader v_0. The leader’s system model and motion are independent of the other agents. Denote $G = (V, E)$ as a general digraph with the nonempty finite set of N nodes or agents $V = \{v_1, v_2, \ldots, v_N\}$ and a set of edges or arcs $E \subseteq V \times V$. Denote the connectivity matrix as $A = [a_{ij}]$ with $a_{ij} > 0$ if $(v_j, v_i) \in E$ and $a_{ij} = 0$ otherwise.

Define the indegree matrix as $d_i = \sum_{j \in V} a_{ij}$ and the set of neighbors of a node v_i is $N_i = \{v_j : (v_i, v_j) \in E\}$, which is the set of nodes with arcs coming into v_i. The leader adjacency matrix with $b_i = 0$ if the ith agent is a neighbor of the leader and $b_i = 1$ otherwise.

Lemma 1 (see [22–24]). Let L be irreducible and B has at least one diagonal entry $b_1 > 0$. Then $L + B$ is a nonsingular M-matrix. Denote $q = [q_1, q_2, \ldots, q_N]^T = (L + B)^{-1}P = \text{diag}(p_j) = \text{diag}(1/q_j)$, $Q = P(L + B) + (L + B)^T P$. Then P and Q are positive definite matrices.

2.2. Problem Statement. In the considered leader-based consensus, the leader’s nonlinear dynamics is described as follows:

$$\dot{x}_0 = f_0(x_0)$$

with $x_0 \in \mathbb{R}$ the state and $f_0(x_0)$ a piecewise continuous function of x_0.

Consider N ($N \geq 2$) followed heterogenous agents with nonlinear uncertain dynamics described as follows:

$$\dot{x}_i = f_i(x_i) + u_i, \quad i = 1, \ldots, N,$$

where $x_i(t) \in \mathbb{R}$, u_i denote the state and the control input of the ith agent, respectively; $f_i(x_i)$ is a nonlinear uncertain function, which is assumed to be continuous.

In this paper, we make the following assumptions: the following agent $i, i = 1, \ldots, N$, can obtain its neighbors’ states $x_j, j \in N_i$, and the leader’s state estimation \hat{x}_0, only some agents can obtain the leader’s states x_0, and all the following agents do not know the leader’s nonlinear dynamics.

The objective of this paper is to design controllers $u_i, i = 1, \ldots, N$, such that the consensus errors $|x_i - x_0|$ converge to a small neighborhood of zero.

3. Leader-Based Consensus of Multiple Agents

Since the nonlinear functions $f_i(x_i), f_0(x_0)$ are piecewise continuous and unknown to agent i, they can be estimated by agent i using radial basis function (RBF) NNs on a compact set $\Omega_i \subset \mathbb{R}$ as follows:

$$\tilde{f}_i = W_i^T \phi_i(x_i),$$

$$\tilde{f}_0 = W_0^T \phi(x_0).$$

By ideal estimation the $f_i(x_i)$ and $f_0(x_0)$ can be written as

$$f_i(x_i) = W_i^* T \phi_i(x_i) + e_i(x_i), \quad |e_i(x_i)| \leq \epsilon_i M,$$

$$f_0(x_0) = W_0^* T \phi(x_0) + e_0(x_0), \quad |e_0(x_0)| \leq \epsilon_0 M,$$

where $\phi_i(x_i) \in \mathbb{R}^n$ and $\phi_0(x_0) \in \mathbb{R}^m$ are suitable basis sets of n_i functions and m_i functions, respectively; W_0 and W_i are current estimation of ideal approximation weights W_0^* and W_i^* respectively; ξ and ζ are bounds of ideal estimation errors $e_i(x_i)$ and $e_0(x_0)$, respectively; and \hat{x}_0 is the estimation of x_0.

Remark 2. According to the definition of ϕ_i, ϕ_0, W_i, W_0, it is easy to observe that there exist positive numbers $W_M, W_{0M}, \epsilon_M, \epsilon_{0M}$, such that $|W_i^* T \phi_i(x_i)| \leq W_M, |W_0^* T \phi(x_0)| \leq W_{0M}, |e_i| \leq \epsilon_M, |e_0| \leq \epsilon_{0M}, i = 1, 2, \ldots, N$.

3.1. Observers for the Leader Agent. For agent i, the following NN-based observer is designed to estimate the leader’s state and nonlinear dynamics:

$$\dot{\hat{x}}_0 = \tilde{f}_0 - c \sum_{j \in N_i} a_{ij} (\hat{x}_0 - \hat{x}_0) - c b_i (\hat{x}_0 - x_0).$$

Denote $\hat{x}_0 = [x_0, x_0, \ldots, x_0]^T \in \mathbb{R}^N, \hat{x}_0 = [\hat{x}_0, \ldots, \hat{x}_0]^T \in \mathbb{R}^N, e_0 = \hat{x}_0 - x_0, e_0 = \hat{x}_0 - x_0$. Taking time derivative of e_0 leads to

$$\dot{e}_0 = \tilde{f}_0 - \frac{f_0 - f_0}{c (L + B) - c e_0}$$

with $\tilde{f}_0 = [\tilde{f}_0, \tilde{f}_0, \ldots, \tilde{f}_0]^T \in \mathbb{R}^N, f_0 = [f_0(x_0), \ldots, f_0(x_0)]^T \in \mathbb{R}^N$.

From (4) and (6), $\hat{f}_0 - f_0(x_0)$ can be expressed as

$$\hat{f}_0 - f_0(x_0) = W_0^* T \phi(x_0) - W_0^* T \phi(x_0) - e_0$$

$$= -W_0^* T \phi(x_0) + e_0,$$

where $\tilde{W}_0 = W_0^* - W_0$.

Remark 3. From Remark 2, we know that $-W_0^* T \phi(x_0) - e_0, i = 1, 2, \ldots, N$, are bounded. Then there exists a positive constant ξ, such that $| -W_0^* T \phi(x_0) - e_0| \leq \xi$.

The following theorem illustrates the efficiency of the designed NN-observer.
Theorem 4. Consider the leader and its following agents with the dynamics described by (1) and (2). If the NN weights in the observer (7) are updated by

$$\dot{\hat{W}}_{0i} = - \hat{W}_{0i} - F_{i}^{-1} e_{i} p_{0}(\hat{x}_{0i}) - k F_{i}^{-1} \hat{W}_{0i}, \quad (10)$$

then the estimation errors $e_{0i}, \hat{W}_{0i}, i = 1, 2, \ldots, N$, are uniformly ultimately bounded. Furthermore, the estimation error e_{0i} can be made arbitrarily small by a judicious choice of corresponding gains.

Proof. Consider the following Lyapunov function:

$$V_{0} = - e_{0}^{T} P (L + B) e_{0} + e_{0}^{T} P \left(\sum_{i=1}^{N} W_{0i} F_{i} \hat{W}_{0i} \right)$$

$$= - e_{0}^{T} P (L + B) e_{0} + \sum_{i=1}^{N} \left(W_{0i}^{T} F_{i} \hat{W}_{0i} - e_{0} e_{i} p_{0}(\hat{x}_{0i}) \right)$$

$$= - e_{0}^{T} P (L + B) e_{0} + \sum_{i=1}^{N} W_{0i}^{T} F_{i} \hat{W}_{0i} - e_{0} e_{i} p_{0}(\hat{x}_{0i})$$

$$\leq - e_{0}^{T} Q e_{0} + \sum_{i=1}^{N} \left(\frac{1}{2} p_{0}(\hat{x}_{0i}) \right)$$

$$\leq - e_{0}^{T} Q e_{0} + \sum_{i=1}^{N} \left(\frac{1}{2} p_{0}(\hat{x}_{0i}) \right)$$

$$\leq - e_{0}^{T} Q e_{0} + \sum_{i=1}^{N} \left(\frac{1}{2} p_{0}(\hat{x}_{0i}) \right)$$

$$\leq - e_{0}^{T} Q e_{0} + \sum_{i=1}^{N} \left(\frac{1}{2} p_{0}(\hat{x}_{0i}) \right)$$

$$\leq - e_{0}^{T} Q e_{0} + \sum_{i=1}^{N} \left(\frac{1}{2} p_{0}(\hat{x}_{0i}) \right)$$

Therefore V_{0} is negative outside a compact set. According to the standard Lyapunov theory extension, the estimation errors $e_{0i}, \hat{W}_{0i}, i = 1, 2, \ldots, N$, are uniformly ultimately bounded. Furthermore, the estimation error e_{0i} can be made arbitrarily small by a judicious choice of corresponding gains.

3.2. Leader-Based Consensus Control Design. Since the effectiveness of the leader observers’ estimation of the leader’s state and dynamics, the leader-based consensus problem can be solved if some controllers are designed for the following agents to track the designed observers. In this part, NN-based controllers are designed for the agents $i, i = 1, 2, \ldots, N$, to track the corresponding observers.

Denote $e_{i} = x_{i} - \hat{x}_{0i}$. Take time derivative of e_{i} and substitute (2) and (8). Consider

$$\dot{e}_{i} = f_{i}(x_{i}) + u_{i} - \sum_{j \in N_{i}} a_{ij}(\hat{x}_{0i} - \hat{x}_{0j}) + c b_{i}(\hat{x}_{0i} - x_{0i}), \quad (14)$$

If the control law u_{i} is designed as

$$u_{i} = - l_{i} e_{i} + \sum_{j \in N_{i}} a_{ij}(\hat{x}_{0i} - \hat{x}_{0j}) - c b_{i}(\hat{x}_{0i} - x_{0i}), \quad (15)$$

then we have

$$\dot{e}_{i} = - l_{i} e_{i} + W_{0i}^{T} \phi_{i}(x_{i}) - W_{0i}^{T} \phi_{i}(x_{i}) + e_{i}$$

$$\dot{e}_{i} = - l_{i} e_{i} + W_{0i}^{T} \phi_{i}(x_{i}) + e_{i} \quad (16)$$

Based on the above analysis, we have the following result.

Theorem 5. Consider the distributed system (1) and the leader (2). If the control law for the following agents is designed as (15) and the NN weights W_{i} are updated as

$$W_{i} = - \tilde{W}_{i} = F_{i}^{-1} \phi_{i}(x_{i}), \quad (17)$$

then tracking errors $e_{i}, i = 1, 2, \ldots, N$, are uniformly ultimately bounded and can be made arbitrarily small by appropriate choice of corresponding gains; that is, the leader-based consensus is achieved.

Proof. Consider the candidate Lyapunov function $V_{1} = (1/2) e_{i}^{2} + (1/2) W_{0i}^{T} F_{i} \hat{W}_{0i}$. Take time derivative of V_{1} and substitute (16)-(17). Consider

$$\dot{V}_{1} = e_{i} \left(- l_{i} e_{i} + W_{0i}^{T} \phi_{i}(x_{i}) + e_{i} \right) + \tilde{W}_{i}^{T} \tilde{W}_{i}$$

$$\leq - l_{i} e_{i}^{2} + e_{i} e_{i} + \tilde{W}_{i}^{T} \phi_{i}(x_{i}) e_{i}$$

$$\leq - l_{i} e_{i}^{2} + e_{i} e_{i} \quad (18)$$

Since $|e_{i}| e_{N} \leq (e_{i}^{2}/2) + (e_{N}^{2}/2)$ holds,

$$\dot{V}_{1} \leq - \left(l_{i} - \frac{1}{2} \right) e_{i}^{2} + \frac{e_{N}^{2}}{2} \quad (19)$$

Therefore V_{1} is negative, as long as $l_{i} - (1/2) > 0$ and $|e_{i}| \geq (e_{N} \sqrt{2l_{i} - 1})$. Therefore, according to the standard Lyapunov theory extension, the tracking errors e_{i} are uniformly ultimately bounded and can be made arbitrarily small by a judicious choice of corresponding gains.
Since $x_i - x_0 = x_i - \tilde{x}_{0i} + \tilde{x}_{0i} - x_0$, $i = 1, 2, \ldots, N$, from Theorem 4 and the uniformly ultimately boundedness of $e_i = x_i - \tilde{x}_{0i}$, $i = 1, 2, \ldots, N$, we can conclude that the consensus errors $x_i - x_0$, $i = 1, 2, \ldots, N$, are uniformly bounded and can be made arbitrarily small by appropriate choice of corresponding gains.

4. Simulation Results

Consider a group of nonlinear uncertain agents composed of a leader agent 0 and four following agents 1, 2, 3, 4 described in Figure 1. Let the dynamics of the agents be

\[
\begin{align*}
\dot{x}_0 &= \sin x_0 \\
\dot{x}_1 &= \cos x_1 + u_1 \\
\dot{x}_2 &= 2x_2 + \sin x_2 + u_2 \\
\dot{x}_3 &= \cos x_3 + u_3 \\
\dot{x}_4 &= \cos x_4 + u_4.
\end{align*}
\]

(20)

Simulations are carried out on Pentium(R) Dual-Core CPU and Matlab 2008b environments. In the simulation, the initial values of the five agents are $x_0(0) = 1$, $x_1(0) = 2$, $x_2(0) = 4$, $x_3(0) = 3$, and $x_4(0) = 1$ and the NN weights and the observers are initialized to be zero vectors or zero. Choose the design parameters as $k = 3$, $F_i^{-1} = 100$, $c = 5$, $l_1 = 5$, $l_2 = 8$, $l_3 = 9$, and $l_4 = 5$. The simulation results are present in Figures 2–4, where leader-based consensus errors $x_0 - x_i$, $i = 1, 2, 3, 4$, are presented in Figure 2, and the estimation errors $x_0 - \tilde{x}_{0i}$, $i = 1, 2, 3, 4$, in the leader observers are presented in Figures 3 and 4 describing the tracking errors $x_i - \tilde{x}_{0i}$, $i = 1, 2, 3, 4$, between the following agents and their corresponding observers. From the simulation results in Figures 2–4, the errors $x_0 - x_i$, $x_0 - \tilde{x}_{0i}$, and $x_i - x_0$, $i = 1, 2, 3, 4$, converge to very small neighborhoods of zero after 3 seconds. So, we can conclude that the leader observers (7) are effective to estimate the leader’s states and nonlinear dynamics and the leader-based consensus of multiple nonlinear uncertain agents can be achieved under the controllers (15).

5. Conclusions

This paper addressed the NN-observer-based leader-following consensus of heterogeneous multiagent systems with nonlinear uncertain dynamics. NN-based leader observers were designed to estimate the leader’s state and nonlinear dynamics. Then NN-based controllers were designed for the following agents to track the corresponding leader observer so that leader-based consensus can be achieved. The effectiveness of the consensus construction method was illustrated by theoretical analysis and simulation results.

In this paper, the considered leader was with nonlinear time-invariant system. The observer-based leader-following consensus of nonlinear uncertain systems, in which the leader is with nonlinear time-varying system, needs to be considered in the future.
Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61304073), the Natural Science Foundation of Jiangsu Province (BK20130536 and BK20130533), China Postdoctoral Science Foundation (2013M541615 and 2013MS40421), Postdoctoral Science Foundation of Jiangsu Province (BK20130536 and BK20130533), the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References

Submit your manuscripts at http://www.hindawi.com