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In path planning problems, the most important task is to find a suitable collision-free path which satisfies some certain criteria
(the shortest path length, security, feasibility, smoothness, and so on), so defining a suitable curve to describe path is essential.
Three different commonly used curves are compared and discussed based on their performance on solving a set of path planning
problems. Dynamic multiswarm particle swarm optimizer is employed to optimize the necessary parameters for these curves. The
results show that Bezier curve is the most suitable curve for producing path for the certain path planning problems discussed in
this paper. Safety criterion is considered as a constrained condition. A new constraint handling method is proposed and compared
with other two constraint handling methods. The results show that the new method has a better characteristic to improve the

performance of algorithm.

1. Introduction

The mobile robot path planning is an important research
field of robotics. One of the most important tasks to realize
navigation and control of the robots is path planning. In an
environment with obstacles, the aim of path planning is to
find a suitable collision-free path, which satisfies some certain
optimal criteria (such as the shortest path length, security,
and feasibility), for a mobile robot to move from a start
position to a target position. Most researches have focused
on finding the shortest path, the minimum-time path, or the
safest path, but the generated paths may be discontinued.
Smoothness of the path is essential for the navigation of
mobile robots, because nonsmooth motions have effect on
slip [1-5]. So finding a suitable curve to describe the path is a
very important task in path planning problems.

In [6], 1> curve with parallel variable-length genetic
algorithm has been used to realize path planning problems.
Ferguson is another curve which is used commonly with
particle swarm optimizer in [7, 8] and particle filter in [9].
Bezier curve is one of the most common curves which
is combined with de Casteljau algorithm in [10], genetic

algorithm in [11], and particle swarm optimizer in [I12] in
recent years. These curves which are used to generated curve
have their own specific characteristics and requirements, but
which one is the best has not been discussed.

The approaches of traditional path planning are artifi-
cial potential field [13], neural network [14], D* algorithm
[15], and so on. With the appearance and development of
evolutionary computation algorithms, many nature inspired
optimization computing methods have been proposed to
solve path planning problems, including genetic algorithms
[16, 17] and differential evolution [18, 19].

Particle swarm optimization (PSO) which was proposed
by Eberhart and Kennedy in 1995 [20, 21] is based on swarm
intelligence. It has been applied to many areas successfully
such as artificial neural network training [22], path planning
problems [23, 24], multiworking modes product-color plan-
ning [25], and robust control of 3RPS parallel manipulators
[26], for its easiness to use, robustness, and strong ability of
global optimization. An improved particle swarm optimizer
is applied to solve the path planning problems in this paper.

The robotic path planning problem is to find a suitable
path for a mobile robot to move from the start location to



the target location, which satisfies some optimum criteria
in an environment full of obstacles. In this paper, we define
the security and the shortest path as the optimum criteria.
The security means no collision between the robot and all
the obstacles and the shortest path describes the distance
the robot moves from the initial point to the end point
[5, 27]. The three times Bezier curve, Ferguson curve, and #3
curve are used to generate the path and their performances
are compared. With these curve generating methods the
path planning can be transformed into optimizing a few
limited anchor points which are used to form the path. Then
dynamic multiswarm particle swarm optimizer (DMS-PSO)
is employed to optimize the locations of these anchor points.

In the previous work, two different constraint han-
dling methods, dynamic threshold & and dynamic balance
function, have been tested [28]. Based on the analysis on
the weakness of these two constraint handling methods, a
novel constraint handling method “dynamic compared A” is
proposed to be incorporated intothe algorithm to improve
the search efficiency. The experimental result shows that this
new method has a better performance on most path planning
problems discussed in this paper.

The rest of this paper is organized as follows. The
characteristics of the three curves are introduced in detail
in Section 2. Section 3 gives a brief introduction on the
dynamic multiswarm particle swarm optimizer and the
constraint handling mechanisms employed in this work. The
experimental setup and the results are presented in Section 4.
Conclusions and future work are given in Section 5.

2. Description of Curves

2.1. The Definition and Properties of Bezier Curve. Bezier
curve was proposed by the French engineer Pierre Bezier,
who used Bezier curve to design for the body of the car in
1962 [29]. In recent years, Bezier curve was applied to various
occasions for its advantages on describing both straight line
and curve.

A Bezier curve of degree n is a parametric curve com-
posed of Bernstein basis polynomials of degree n [22]:

N
P() =Y PBy (1), te[0,1]. M

In this equation, basis function {B;(¢)} is a famous n
times Bernstein polynomial [23], which is defined as

By () =Cy't (1= (i=0,1,...,n). (2

The parameter equation of every point for three times
Bezier curve could be generated by formulas (1) and (2) as
follows:

P(t) = Py(1 —t)’ + 3P,t(1 — t)* + 3Pyt (1 — t) + Pyt>, (3)

where t is in the range of [0, 1]. Bezier curve starts att = 0
andendsatt = 1.

The properties of Bezier curves [22] can be described as
follows.
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(1) Bezier curves start at the start point and stop at the
end point.

(2) First derivatives of the start point and the end point
are only related to the two near control points and in
the same direction of the line of the two points.

The calculation formula

P'(0)=3x(P,-P), P (m)=3x(P,-P,,). (4
A complex first-order continuous Bezier curve can
be formed by connecting several segments of low-order
Bezier curves. Each segment has four control points.
Assuming we have two segments, P,(P,y, P,;, Pj,, P;3) and
P,(P,y, Py}, Py,, P,3), in order to ensure the continuousness of
the curve after connection, the following equation should be
satisfied:
Pi3 =P = Py =Py, P3 =Py (5)
Therefore, in order to meet the property of first-order
continuous when using n segments of Bezier curves to
describe a path, 2n points (4n parameters) are needed. The
path can be generated using the following:

(Py(1-1t)° +3Pit(1-t)
+ 3PP (1-t) + Pit?, i=1
Pyl -0 +3 (2P - P e(1 - 1)

P(t) = 1 . ,
® +3Pt° (1 —t) + Pit°, l<i<n
Pyl -6 +3 (2P - P e(1 - 1)
+3P (1-t) + P £, i=n,
T
P(t)=[x®),y®],
(6)

where P, represents the start point while P, stands for the end
point. When t changes in the interval (0, 1), we can get a cubic
Bezier curve of segment i. These n segments of cubic Bezier
curve constitute the entire path of the curve.

2.2. The Properties of Ferguson Curve. Ferguson curve is also
afamous curve which has many excellent properties and plays
an important role in the shape description.

Since Ferguson curve is smooth and easy to implement,
it is also often used to describe the path in path planning
problems. One segment of Ferguson curve can be defined as
follows:

cw®=[x®),y®]",
k:C(t) = ByF, (t) + P,F, (t) + P,F, (t) + P,'F, (t), (7)
tel0,1].

P, and P, are the start point and the end point of the curve,
respectively, and P, and P,'are control points which control
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the shape of the curve. F, represents Ferguson polynomial and
is defined as follows:

F (t) =2t - 3t* +1,

E, (t) = =2t + 3t%,
3 2 (8)
F(t)=t -2t +t,

E,(t) =t -t

Assuming that a curve consists of n segments of Fer-
guson curves, these Ferguson curves should satisfy certain
requirements. Two-segment Ferguson curves are taken as an
example to illustrate the requirements they should satisfy
to ensure smooth connection between these two segments.
Suppose that the other Ferguson curve is described as follows:

k:C(t)=BF, (1) + BiF, (1) + By Fy (1) + B Fy (1) (9)

In order to make the path smooth, the curve which is used
to describe the path must be first-order continuous, and then
k and k must satisfy

' —

P, =P, P'=PF. (10)

The same as Bezier curve, if n segments Ferguson curves
are used to generate the path, there will be 2# control points
which means that 4 variables are to be optimized.

2.3. The Properties of n3 Curve. The same as the Bezier curve
and Ferguson curve, #3 curve which is used in path planning
problems for its good properties in describing lines, arcs, and
clothoid is also a widely used curve. As shown in [8], first we
set two arbitrary combinations as follows:

L4 T
Q, = [xA’ Var 04 kg, kA] >
(11)

. 4T
Qp = [xB’yB’ g, kB>kB] .

Here x, y, and 0 represent coordinates and direction,

respectively, while k and k denote curvature and curvature
derivative of the path at one point. A 7th-order polynomial
of #3 curve can be formed by the following formulas:

P(®) = [x(0), y®)]",
P (t) = oty + &t + opt” + agt”
+ 0c4t4 + 0c5t5 + 0c6t6 + 0c7t7;
P (t) = By + Pyt + Pot” + Bt

+ ﬁ4t4 + /35t5 + ﬁﬁt6 + B7t7.

tefo,1], @12

In order to ensure the smoothness of the curve after
connecting, the following formula should be satisfied:

. T
Qy = |:xA>yA’6A’kA =0,ks = 0] >
(13)

Qp = [xB,yB,OB,kB =0, I;B = 0] .

In addition, the polynomial has extra six degrees of free-
dom. In order to reduce the calculation of degrees of freedom,
we use Euclidean distance of two terminal configurations to
represent some variables of vectors while the other variables
of vectors are set to 0. Therefore, x coordinate coefficients
used to generate the curve can be obtained according to the
above formulas as follows:

Oy = Xy,
ay = [|(xa = x5 ya = yp)| cos 0,43

N = ”(XA —Xp YA~ yB)" cos Og;

a, =0; Y, = 0;

o = 0; Y3 =0
oy =35(xp—x4)—20a; — 10a,

—doy — 15y, + 59, — 33 (14)

as = -84 (xp—x,) +45a; + 200,

+60t3 + 39y, — 14y, + 3y;;

as = 70 (x5 —x4) — 36a, — 150,

—4o; — 34y, + 13y, — 3y;;

o, =-20(xg—x,)+ 100 + 4o,

+os + 10y, — 4y, + y;.

y coordinate coefficients can be obtained by changing cos
into sinf. When m segments of #3 curve are used to
describe the path, m + 1 control points are needed. However,
the start point and the end point are known in the path
planning problems discussed in this paper; thus the number
of the control points which are needed to be optimized is
m — 1. In other words, there are 2(s — 1) variables to be
optimized. Except the location of the control points, the
tangent directions of each control point for the path are also
controllable, so there are other 7 + 1 points to be optimized
for m segments. Therefore, there are 3m — 1 variables for an
13 curve with m segments.

So from the above information, we could know that x(t)
and y(t) are the coordinates of every point which should be
optimized. What is more, these three curves are smooth and
suitable for path planning for robots. If the same number
of segments is needed to generate the path, there are 4n
parameters to be optimized for the first two curves and 3n—1
variables for #3 curve.



3. Brief Introduction about Algorithm and
Constraint Handling Mechanisms

Particle swarm optimizer is an intelligent evolutionary algo-
rithm which is constructed by mimicking the birds’ behavior
of preying food [21]. The basic idea of particle swarm opti-
mization algorithm is to find the optimal solution through
collaboration among groups and information sharing among
individuals.

The idea of dynamic multiswarm based on periodically
changed neighborhood structure was firstly proposed by
Liang and Suganthan in 2005 [27]. The good information
obtained by each subswarm is exchanged among the sub-
swarms and the diversity of the population is increased
simultaneously by using the dynamic changing topology.
Considering its good performance on complex optimization
problems, the dynamic multiswarm particle swarm optimizer
(DMS-PSO) is employed to solve the path planning problems
in this paper.

The position updating equations of DMS-PSO with
crossover can be described as follows [28]:

If rand < 0.5

Vid<—w*Vid

1

+o * randlf * (pbestf - X’.i)

+c, * randZ? * (lbestz - X?) R

(15)
V4« min (Vd

; nax> Max (—Vd Vd)),

max> ' i
X — x4+ Ve

Otherwise
Xid — pbestfl,

where Xf represents the position of the ith particle in

dimension d. Vid represents the velocity of the ith particle

in dimension d. pbest? is the best position in history of the
ith particle in dimension d. me is the predefined maximum
value in dimension d.

DMS-PSO was firstly used in path planning problems in
[5], where the path planning problem has been solved by the
following means.

(1) Security and the shortest path criteria are combined
into a punitive function with a constant to balance
them.

(2) Path length is regarded as the objective function,
while the security criterion is regarded as a constraint
for the shortest path.

In these path planning problems, a series of circles are used
to represent obstacles, and the safe distance between path and
obstacles is set as D, (which is radius of the circle). The
minimum distance between path and obstacles is d,,;,,. If and
only if d,;, is larger than Dg., the path could be defined as

Mathematical Problems in Engineering

secure. Otherwise, penalty will be imposed. f,. is treated as
security penalty function as follows:

f Q= {0> dmin > Dsafe
e |d 0<dy, <D

min> safe>

(16)

S 2 2
= min min \((x({) —o,) +(y({)-o0,),
fien oecm,ste[o,u\/( ()=o) +(y)-0,)
where 0, and o,, are the centre of the obstacles and C, is
a collection of aﬁ the obstacles in the space. The total cost is
calculated as

f (x) = flen (x) + ‘stafe (X) >

« is a constant value, which is used to balance the proportion
of faf and fi.,. A large a will lead to local optimum easily
while a small « will make a collision with obstacles, so
choosing a suitable value is difficult.

In order to overcome this drawback, two constraint
handling methods have been used to improve the above static
constrain in [27]; FEs is the current fitness evaluation times
and MaxFEs is the predefined max fitness evaluation times.

o = 1000. 17)

Constraint Handling Method 1 (Dynamic Threshold €). One
has

FE
s=max<min<Dsafe<1—2* ° >,

MaxFEs
(18)

mean () 0)

Figure 1 describes the dynamic changing process of €. x is
considered to be better than y if

(1) fsafe (x) <=¢and fsafe (y) <=¢ andflen (x) < flen ()/)
(2) fsafe (X) <=¢and fsafe (y) > &

(3) &< fsafe (X) < fsafe (y) .
(19)

We observed that the potential good solutions which
locate near to the global optimum but do not satisfy the
current constraint will be replaced. In this way, the useful
information obtained along the search process may be lost.

Constraint Handling Method 2 (Dynamic Balance Function).
This method is similar to the previous static penalty function
(17) except that the balance factor « is gradually increasing.
The dynamic « is defined as follows:

FEs )2

a = 10000 * max <max (mean (fir),0.2), VaxFEs
axFEs

(20)
x is considered to be better than y if
F(x) <F(y). (1)

The dynamic changing process of a with the FEs is
presented in Figure 2. « is changed with the FEs and its rising



Mathematical Problems in Engineering

0 200

400 600 800

FEs

1000 1200 1400

FIGURE 1: Dynamic change of e.

£ = min ( max (Dsafe * < max (1—

& = Dy * <max(1

Figure 3 provides the possible range of ¢, and ¢,. € is the
effective range of ¢ and ¢,. The new constraint method
is generated by the comparison of ¢, and ¢,. For any two
solutions x and y to be compared, the following comparison
criterion is used:

(1)fsafe (X) < &, fsafe ()/) <= &, flen (X) < flen ()’)
(2) fsafe (X) <&, fsafe (y) > &
(3) & <= fsafe (X) < fsafe ()’) ’fsafe (x) <=¢

(4) fsafe (x) > & fsafe (y) > & flen (x) < flen (}’) .
(23)

If tp is equal to 1, x is considered to be better than y.
This constraint handling method overcomes the shortage
of the dynamic threshold & which may be trapped into
local optimum and improves the exploration property of the
algorithm.

4. Experimental Setup and Results

From the previous test in the path planning problems, some
conclusions have been made that DMS-PSO with crossover
outperforms DMS-PSO and PSO with crossover performs
better than PSO. So in this task, DMS-PSO with crossover
and PSO with crossover are combined with the above three

trend is gentle and continuous. It is better than the static
penalty function, but it is still difficult to control and select
a suitable value to avoid losing some potential solutions.

Constraint Handling Method 3 (Dynamic Compared Function,
Described with A). Constraint handling methods 1 and 2
improved the feature of algorithm which has been discussed
in previous work, but they still have some drawbacks: the
first method may lose some potential solutions which have
been abandoned for dissatisfying constraint condition in
current generation while the second method may not find
the best solution for its gentle change. On the other hand,
the first one has large space while the second has small
space to be improved. A new constraint handling method
which has a larger constraint range is introduced to overcome
the shortage of the first constraint handling method. It is
expected to have a better ability of global search. In this new
method, two different ¢, ¢, and ¢,, are employed to judge if a
solution satisfies the constraint. And the mean value of f
values of current particles is used to control the value of ¢,

FEs

2
M’())) » Imean (fsafe) > >

FEs 0.5
Dgye * | max| 1 - ———————,0 ;
(0.9 * MaxFEs)

(22)

FEs 0>)2
(0.5 * MaxFEs)’ '

constraint handling methods which are designed to test the
characteristics of the curves in path planning problems.

(1) The following six algorithms are used to test charac-
teristics of each curve in path planning problems:

(i) PSO-¢: basic particle swarm optimizer with
dynamic € and crossover operator;

(ii) PSO-DP: basic particle swarm optimizer with
dynamic balance and crossover operator;

(iii) PSO-A: basic particle swarm optimizer with
dynamic compared A and crossover operator;

(iv) DMS-PSO-¢:  dynamic multiswarm particle
swarm optimizer with dynamic € and crossover
operator;

(v) DMS-PSO-DP: dynamic multiswarm particle
swarm optimizer with dynamic balance and
crossover operator;

(vi) DMS-PSO-A: dynamic multiswarm particle
swarm optimizer with dynamic compared A and
crossover operator.

(2) Some parameters settings during the experiment are
as follows:

MaxFEs (the max fitness evaluation): 40000;
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which means the radius of obstacles is 1 and the maximum & is 1).

independent runs for every algorithm: 25;
population size of PSO: 30;

number of subswarms in DMS-PSO: 10;
particles in each subswarm in DMS-PSO: 3.

(3) The settings of every curve and the parameters need
to be optimized.

In this task, three different curves are used to generate
path. The segment of each curve and parameters needed to
be optimized are set in detail as follows. Generally speaking,
more points make the path more smooth and complex, while
fewer points take less time in optimization.
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(a) The first case is that the segments of every curve are
uniform (n = 2), so there are 8 parameters to be
optimized in Bezier curve and Ferguson curve while
5 parameters should be optimized in #3 curve.

(b) The second case is that the optimized parameters of
every curve are equal (8 parameters for all curves), so
three segments of #3 curve are used to describe the
path.

4.1. Comparison of Best Satisfied Paths for Each Problem.
Eight artificial designed path planning problems which have
different properties are used to test characteristics of Bezier
curve, Ferguson curve, and #3 curve. In order to show
how the robot moves in an environment full of obstacles,
the following landscapes with the best path of these tested
problems are plotted in Figure 4. The yellow circles describe
the dangerous distance around the obstacles. What is more,
A represents the start point while B stands for the end point.

These eight path planning problems can be classified into
two classes. F1, F2, F3, and F4 are simple problems which have
less local optima and are easier to find the shortest path that
satisfies the safety criterion. F5, F6, F7, and F8 can be classified
into complex problems which have more local optima and
make the algorithms be easily trapped into the local optima.

4.2. Comparison Results of the Different Curves. Nonparamet-
ric statistical method ¢-test is used to evaluate the difference
between two algorithms. For each problem, the results of
the best algorithm which obtains the best average value in
the 25 independent runs are compared with those of other
algorithms by t-test method. /i = 1 indicates a rejection of the
null hypothesis at the 5% significance level. h = 0 indicates
a failure to reject the null hypothesis at the 5% significance
level.

Case 1. Two segments for all curves are used to describe the
path, so there are eight points for Bezier curve and Ferguson
curve to be optimized while five parameters are needed for #3
curve. The experiment results are listed in Tables 1 to 3.

Some conclusions could be drawn from Table 1 as follows.

(1) DMS-PSO outperforms PSO in all constraint han-
dling methods correspondingly, which shows that
DMS-PSO has better global search ability.

(2) The result of t-test 2 shows that there is no obvious
difference between these two algorithms, so this
phenomenon is regarded as these two algorithms
have the similar performance on these problems. But
DMS-PSO-A performs better on problems F1, F2, F4,
F5, and F6 while DMS-PSO-¢ outperforms on F4, F6,
and F7 on average.

(3) Compared with the best solutions obtained by DMS-
PSO-¢ and DMS-PSO-A, the distribution of optimal
solutions of DMS-PSO-DP is significantly different
on problems F2, F3, F4, F5, F6, and F7 which could
be seen from the results of ¢-test 2.
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TABLE 1: Result of Bezier curve.
Problems PSO-¢ PSO-DP PSO-A DMS-PSO-¢ DMS-PSO-DP DMS-PSO-A
Mean 14.9058 15.1830 14.8969 14.9294 14.7792 14.7559
Std. 0.2910 0.4454 0.0282 0.4494 0.0500 0.0087
F1 Min 14.6726 14.6638 14.6969 14.6547 14.6566 14.6626
Max 16.9975 16.9843 15.2326 171550 15.7071 15.0132
h 0 1 1 0 0 —
Mean 14.7260 15.6209 15.1451 14.6492 14.7087 14.6486
Std. 0.0034 1.8989 0.1415 0.00039 0.0034 0.0002
F2 Min 14.6533 14.6889 14.8150 14.6251 14.6274 14.6242
Max 14.8920 19.4449 16.2972 14.7009 14.8882 16.3361
h 0 1 1 0 1 —
Mean 15.9481 16.7858 16.5723 14.9475 16.3286 14.9701
Std. 1.1006 1.1209 0.9196 0.2976 0.4483 0.1306
F3 Min 14.8502 15.7943 15.1810 14.7240 15.6394 14.7290
Max 18.8319 18.7404 19.0984 17.2080 17.2206 15.7963
h 1 1 1 — 1 0
Mean 14.8243 15.9185 15.4251 14.7366 15.0635 14.7363
Std. 0.0407 1.5323 1.2592 8.586F — 5 0.2979 1.451E-5
F4 Min 14.7430 14.7225 14.7851 14.7150 14.7151 14.7313
Max 15.7812 18.1838 19.8821 14.7713 17.3141 14.7455
h 1 1 1 0 1 —
Mean 16.5000 16.6254 16.4928 16.3466 16.3800 16.3361
Std. 0.0544 0.1889 0.0048 0.0007 0.0029 0.0012
F5 Min 16.3327 16.3102 16.3666 16.2868 16.3246 16.2827
Max 17.3413 17.9407 16.6432 16.4001 16.5518 16.4123
h 0 1 1 0 1 —
Mean 16.2485 16.4073 16.2432 15.3892 16.1031 15.2860
Std. 0.3219 0.2167 0.2125 0.2282 0.3366 0.0103
F6 Min 15.3576 15.2832 15.5306 15.2319 15.2461 15.2400
Max 16.6793 16.6649 16.8466 17.2616 16.6399 15.7535
h 1 1 1 0 1 —
Mean 16.2040 16.4125 16.4490 15.1967 15.9038 15.2458
Std. 0.4474 0.3349 0.2576 0.1794 0.5311 0.2027
F7 Min 15.1081 15.1079 15.1656 15.0355 15.0516 15.0504
Max 16.6948 16.8264 16.9785 16.6090 16.6292 16.9341
h 1 1 1 — 1 0
Mean 15.0239 15.2377 14.8827 14.6644 14.6787 14.6699
Std. 0.5322 0.6693 0.0905 0.0003 0.0011 0.0003
F8 Min 14.6303 14.6327 14.6697 14.6291 14.6262 14.6296
Max 16.6699 16.6459 16.2430 14.7046 14.7831 14.7093
h 1 1 1 — 0 0

These three points show that although DMS-PSO-A and
DMS-PSO-¢ have the same characteristic on ¢-test 2, DMS-
PSO-A overcomes the drawback of DMS-PSO-¢ which is
easy to be trapped into local optimum on average. Compared
with other algorithms, the feature of DMS-PSO-A stands out
on path planning problems where Bezier curve is used to
generate path. The result also tells that Bezier curve is suitable
on path planning problems for its stable feature when we
employ evolutionary algorithm to optimize its parameters.
Table 2 gives us the following information.

(1) DMS-PSO has a better global search ability compared
with PSO on the whole.

(2) All best solutions about Ferguson curve spread in
DMS-PSO-¢ and DMS-PSO-A, while the best results
of problems Fl1, F6, F7, and F8 accept DMS-PSO-
DP in the distribution of optimal solutions for 25
independent runs. The result of problem F6 has
no difference with DMS-PSO-DP, DMS-PSO-¢, and
DMS-PSO-A on the distribution of 25 independent
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TABLE 2: Result of Ferguson curve.
Problems PSO-¢ PSO-DP PSO-A DMS-PSO-¢ DMS-PSO-DP DMS-PSO-A
Mean 15.4745 14.9230 15.8539 14.6720 14.7393 15.0440
Std. 1.0221 0.3217 0.8098 3.065E -5 0.1175 0.1913
F1 Min 14.6617 14.6565 14.7062 14.6626 14.6532 14.6601
Max 17.3684 16.3953 17.5340 14.6830 16.3743 16.3967
h 1 1 1 — 0 1
Mean 14.6541 14.8765 14.7016 14.6399 14.6550 14.6395
Std. 1.507E — 4 0.9416 0.0013 2.085E -5 2.167E — 4 6.640E — 5
F2 Min 14.6335 14.6344 14.6415 14.6320 14.6309 14.6245
Max 14.6787 19.5190 14.8158 14.6481 14.6860 14.6531
h 1 1 1 0 1 —
Mean 17.6613 16.8770 15.1573 14.8069 16.3085 15.7254
Std. 1.0504 1.1620 0.9308 0.0133 0.4618 0.0223
F3 Min 15.5203 15.5515 14.6219 14.6170 15.9185 15.3465
Max 19.6494 19.4469 19.7183 15.2238 17.8514 15.9672
h 1 1 1 — 1 1
Mean 14.7474 15.4290 14.7654 14.7361 14.7525 14.7364
Std. 1.037E — 4 1.0917 7.884E — 4 2.494E -5 1.735E — 4 2.205E -5
F4 Min 14.7356 14.7337 14.7378 14.7291 14.7373 14.7288
Max 14.7714 18.3901 14.8401 14.7497 14.7928 14.7488
h 0 1 1 — 1 0
Mean 18.9011 17.8758 17.8816 17.7712 17.5169 16.8374
Std. 19.3752 0.9286 4.7299 4.3717 0.3750 0.7757
F5 Min 16.4034 16.4773 16.6205 16.4129 16.9094 16.3204
Max 28.7950 19.3831 26.4327 25.2178 18.6831 17.8547
h 1 1 1 1 1 —
Mean 20.4977 17.2938 21.4213 16.7939 17.0746 16.5777
Std. 21.7799 7.5871 23.4940 5.1557 1.6796 0.3785
F6 Min 17.4722 15.7391 15.4976 15.2908 15.7525 15.6083
Max 29.3754 27.9776 29.9679 22.5225 21.5453 17.9068
h 1 1 1 0 0 —
Mean 23.5527 17.7175 19.9267 17.3071 18.5039 19.3598
Std. 27.7538 0.5265 35.7375 15.6542 1.9334 32.9936
F7 Min 17.8796 16.8212 15.1296 15.0326 16.8277 15.6002
Max 30.0131 20.5929 29.5523 28.4035 21.4855 30.3578
h 1 1 1 — 0 0
Mean 18.9859 15.9555 171540 15.4485 15.6366 18.54158
Std. 8.6686 0.6078 11.4477 0.0218 0.6935 3.5024
F8 Min 17.4710 15.3587 15.4066 15.1707 15.4429 16.2014
Max 28.6708 17.9973 28.8277 15.7448 19.6240 26.7133
h 1 1 1 — 0 1

runs though there is much difference between these
four algorithms on the mean value.

(3) The constraint handling method ¢ is little better than
dynamic balance function and dynamic compared A
when path is produced by Ferguson curve.

(4) Except for problems Fl, DMS-PSO-¢ outperforms
obviously than other algorithms on the whole no
matter on the result of mean value or t-test 2.

In a word, € and A are suitable and DMS-PSO-¢ and DMS-

PSO-A are smart choices when Ferguson curve is applied in

path planning problems especially on complex problems.
From Table 3, we could observe the following.

(1) Dynamic multiswarm has improved the search ability
of traditional particle swarm optimizer which means
that DMS-PSO with crossover performs better than
PSO under all constraint handling methods.
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TABLE 3: Result of #3 curve (n = 2).
Problems PSO-¢ PSO-DP PSO-A DMS-PSO-¢ DMS-PSO-DP DMS-PSO-A
Mean 15.1590 15.3283 15.2681 14.9161 15.1670 14.8622
Std. 0.3263 0.3658 0.4875 0.2284 0.1987 0.2007
F1 Min 14.6853 14.6728 14.6932 14.6608 14.6801 14.6614
Max 16.98428 16.72636 17.6536 16.4115 16.2402 16.9015
h 1 1 1 0 1 —
Mean 15.0589 15.0396 15.7143 14.7317 14.9698 14.9601
Std. 0.4267 0.2972 1.4186 0.0902 0.1457 0.4676
F2 Min 14.6589 14.6626 14.7605 14.65536 14.6640 14.6555
Max 16.2536 16.3979 19.6726 16.1707 16.2063 17.2056
h 1 1 1 — 1 0
Mean 16.9309 16.7421 16.6452 16.2764 16.7070 15.8886
Std. 0.3723 0.5148 0.8288 0.8953 0.3677 0.2801
F3 Min 15.6267 15.6372 15.6718 15.6049 15.7619 15.6068
Max 17.4024 17.3621 19.6036 18.6914 17.3590 17.3939
h 1 1 1 0 1 —
Mean 15.1204 15.6049 15.0711 15.8886 15.3697 14.9027
Std. 0.2261 0.7872 0.0990 0.2801 0.4204 0.4031
F4 Min 14.7725 14.7932 14.7791 15.6068 14.7799 14.7403
Max 15.8243 18.1527 15.9261 17.3939 16.7863 17.9495
h 1 1 1 — 1 0
Mean 16.5948 16.4176 16.61561 16.4206 16.4134 16.4329
Std. 0.1251 1.910E - 4 0.1206 0.0097 1.865E — 4 0.0102
F5 Min 16.4121 16.4029 16.4001 16.3722 16.3787 16.3842
Max 17.6328 16.4500 17.5537 16.8877 16.4457 16.9001
h 1 0 1 0 — 0
Mean 16.6868 16.6765 16.7663 16.5985 16.5424 16.0209
Std. 0.0188 0.0731 0.0481 0.1177 0.1248 0.3553
F6 Min 16.1306 15.4302 15.8551 15.4915 15.4417 15.3031
Max 16.9352 16.9246 16.9671 16.9530 16.7489 16.8915
h 1 1 1 1 1 —
Mean 16.5802 16.3344 16.4030 16.2061 15.9442 15.6069
Std. 0.2244 0.45243 0.3946 0.4480 0.4248 0.3488
F7 Min 15.2971 15.2954 15.3358 15.2914 15.2947 15.2917
Max 16.9642 16.8365 16.9896 16.8971 16.8196 16.8491
h 1 1 1 1 0 —
Mean 15.4772 15.0808 15.5568 15.1574 15.0251 15.0064
Std. 0.5238 0.0665 0.4020 0.2922 9.807E — 4 4.680E — 4
F8 Min 15.0152 14.9885 15.0526 14.9821 14.9887 14.9863
Max 16.9498 16.3030 16.9771 16.9514 15.0988 15.0621
h 1 0 1 0 1 —

(2) DMS-PSO-¢ has a better mean value than other
algorithms on the whole.

(5) Although DMS-PSO-DP is better than other algo-
rithms on F3, DMS-PSO-A, DMS-PSO-¢+, and DMS-
PSO-DP have the same acceptance which means they
have no difference under 25 independent runs at the
5% significance level.

(3) DMS-PSO-A is better than DMS-PSO-¢+ and DMS-
PSO-DP except for F2, F4, and F5 while DMS-PSO-A
is similar to DMS-PSO-¢ on problem F2 and DMS-

PSO-DP+ on problem F5 on average.
Generally speaking, DMS-PSO-A possesses a good feature so

(4) Except for problems F6 and F7, DMS-PSO-A and  that it could be applied in path planning problems when #3
DMS-PSO-¢ have similar performance. curve is used to describe path.
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TABLE 4: Result of #3 curve (n = 3).
Problems PSO-¢ PSO-DP PSO-A DMS-PSO-¢ DMS-PSO-DP DMS-PSO-A
Mean 15.1269 15.2927 15.8549 14.8915 15.2233 14.8945
Std. 0.2000 0.3962 0.6258 0.1053 0.2890 0.1533
F1 Min 14.6743 14.6922 14.8753 14.6599 14.6810 14.6746
Max 16.4027 16.9510 17.1939 15.7512 16.5228 16.4695
h 1 1 1 — 1 0
Mean 15.1828 15.8735 17.3363 14.8915 15.5943 14.7678
Std. 0.4999 0.5877 2.4413 0.1053 0.4150 0.0323
F2 Min 14.6786 14.6978 15.0084 14.6599 14.6649 14.6682
Max 171109 17.5539 20.7949 15.7512 17.0959 15.5873
h 1 1 1 0 1 —
Mean 16.9903 17.3458 17.8328 16.2678 1713297 15.3092
Std. 0.3941 0.34185 1.5596 1.7428 0.1416 0.7615
F3 Min 15.1838 15.7395 15.8694 14.7341 15.9525 14.7554
Max 17.6611 18.7940 20.4837 18.8251 174754 17.1826
h 1 1 1 1 1 —
Mean 15.1503 16.2299 16.5532 14.7421 16.1149 15.0292
Std. 0.4168 1.0923 1.9814 6.941E — 4 1.2537 1.8730
F4 Min 14.7527 14.8084 14.9267 14.6988 14.7411 14.7161
Max 17.4512 18.0449 19.4632 14.8068 18.0394 21.5966
h 1 1 1 — 1 0
Mean 16.8508 16.6488 16.9656 16.4054 16.5114 16.3798
Std. 0.2432 0.1425 0.1367 0.0569 0.0180 0.0037
F5 Min 16.4201 16.3486 16.5099 16.3191 16.3300 16.3254
Max 17.8626 17.4785 17.9822 17.5422 16.9302 16.6216
h 1 1 1 0 1 —
Mean 16.6472 16.5453 16.9163 16.2758 16.2548 15.7087
Std. 0.0727 0.1016 0.0788 0.3668 0.2496 0.32256
F6 Min 15.4516 15.5077 16.6653 15.2211 15.2660 15.2387
Max 16.9744 16.9084 18.13603 17.0442 16.73439 16.7263
h 1 1 1 1 1 —
Mean 16.6997 16.4166 16.8786 15.8356 16.1770 15.6007
Std. 0.0129 0.3524 0.0291 0.5831 0.2656 0.3273
F7 Min 16.5565 15.1092 16.5886 15.0152 15.0720 15.0145
Max 16.8951 16.9036 17.3592 16.7376 16.7343 16.7801
h 1 1 1 0 1 —
Mean 15.1227 14.9834 15.5447 14.6521 14.7546 14.6624
Std. 0.3083 0.2759 0.5752 7.786E — 4 0.0216 0.0016
F8 Min 14.6780 14.6695 14.7240 14.6327 14.6510 14.6180
Max 16.6986 16.6473 18.1863 14.7619 15.3003 14.7838
h 1 1 1 — 1 0

Case 2. Eight parameters are satisfied to generate path;
Table 4 is the result (the result concludes #3 curve only).

The following information is given from Table 4.

(1) DMS-PSO is absolutely better than PSO in three-
segment #3 curve no matter the result of mean value
or the null hypothesis at the 5% significance level.

(2) When DMS-PSO-¢ is better than DMS-PSO-A on
the mean value, the previous accepts the latter on all
problems which means they have no difference.

(3) When DMS-PSO-A is better than DMS-PSO-&+ on
the mean value, the previous rejects the latter on F3
and F6.



12 Mathematical Problems in Engineering
TABLE 5: Best result of every curve.
Problems Bezier curve Ferguson curve n3 curven =2 n3 curven =3
Mean 14.7559 14.6720 14.8622 14.8915
Fl Std. 0.0087 3.065E -5 0.2007 0.1053
Min 14.6626 14.6626 14.6614 14.6599
Max 15.0132 14.6830 16.9015 15.7512
Mean 14.6486 14.6395 14.7317 14.7678
) Std. 0.0002 6.640E - 5 0.0902 0.0323
Min 14.6242 14.6245 14.65536 14.6682
Max 16.3361 14.6531 16.1707 15.5873
Mean 14.9475 14.8069 15.8886 15.3092
B3 Std. 0.2976 0.0133 0.2801 0.7615
Min 14.7240 14.6170 15.6068 14.7554
Max 17.2080 15.2238 17.3939 17.1826
Mean 14.7363 14.7361 15.8886 14.7421
F4 Std. 1451E -5 2.494E -5 0.2801 6.941E — 4
Min 14.7313 14.7291 15.6068 14.6988
Max 14.7455 14.7497 17.3939 14.8068
Mean 16.3361 16.8374 16.4134 16.3798
Fs5 Std. 0.0012 0.7757 1.865E — 4 0.0037
Min 16.2827 16.3204 16.3787 16.3254
Max 16.4123 17.8547 16.4457 16.6216
Mean 15.2860 16.5777 16.0209 15.7087
F6 Std. 0.0103 0.3785 0.3553 0.32256
Min 15.2400 15.6083 15.3031 15.2387
Max 15.7535 17.9068 16.8915 16.7263
Mean 15.1967 17.3071 15.6069 15.6007
7 Std. 0.1794 15.6542 0.3488 0.3273
Min 15.0355 15.0326 15.2917 15.0145
Max 16.6090 28.4035 16.8491 16.7801
Mean 14.6644 15.4485 15.0064 14.6521
F8 Std. 0.0003 0.0218 4.680E - 4 7.786E — 4
Min 14.6291 15.1707 14.9863 14.6327
Max 14.7046 15.7448 15.0621 14.7619

(4) DMS-PSO-A and DMS-PSO-¢ are better than DMS-
PSO-DP on all problems.

So, when three-segment 73 curve is used to generate path, it is
clear to ensure DMS-PSO performs better than PSO. The con-
straint handling method dynamic threshold & and dynamic
compared A are better than dynamic balance function and
dynamic compared A overcomes the drawback of dynamic
threshold e and outperforms it.

Case 3. The comparison of best result under each curve is as
follows.

Having compared the best result of every curve, when two
segments of Bezier curve, Ferguson curve, and #3 curve are
used to describe path, we could observe the following.

(1) Ferguson curve performs better than Bezier curve
and #3 curve on problems F1 to F4 which are easy
to find global optimum and has a worse feature on

problems F5 to F8 which are described as complex
problems.

(2) Although #3 curve is not so good as Ferguson curve
and Bezier curve on simple problem, it outperforms
Ferguson curve on complex problem which means #3
curve possesses a better search ability.

(3) Bezier curve is better in producing path compared
with Ferguson curve and #3 curve on the whole.

When three-segment 73 curve is applied in these problems,
conclusions could be made as follows.

(1) Compared with two segments, three-segment #3 has
a small range of the distribution between the best and
worst solutions on the whole.

(2) There is no difference between problems F1, F2, F5,
and F7 no matter it is two-segment or three-segment
N3 curve.
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FIGURE 5: Processes of iteration.

(3) Three-segment #3 curve outperforms on problems F3,
F4, F6, and F8 in generating path obviously.

(4) On complex problems which are easily trapped into
local optimum, three-segment #3 curve is much
better than two-segment curve which means that the
previous has obvious difference compared to the latter
such as F6, F8, F3, and F4.

(5) Three-segment 73 curve performs better than Fergu-
son on complex problems but obviously expresses an
inferior characteristic in generating path compared
with Bezier curve.

From so many points of discussion from Tables 1 to 5,
conclusions could be made that DMS-PSO overcomes the
drawback of PSO which is easy to fall into local optimal and
premature. Dynamic compared A overcomes the drawback
and inherits the advantage of dynamic threshold e and
shows better constraint characteristics than dynamic balance
function, which makes it show good binding properties in
path planning problems.

When all curves are composed by the same number of
segments, #3 curve outperforms Ferguson curve on complex
problems specifically but is worse than Bezier curve for all
problems. Fewer points would be optimized when #3 curve
is used to describe path, so less time is needed.

Three-segment #3 curve is better than two-segment one
for generating path because it has more anchor points to
control and can generate a more flexible path, especially on
complex problems.

Bezier curve expresses better performance on path plan-
ning problems compared with Ferguson curve and #3 curve.
The most possible reason may be that Bezier curve is easier
to change the shape of the path via adjustment of a fixed
number of anchor points than the other two curves. So Bezier
curve is the most suitable curve to produce path in this
paper and DMS-PSO with crossover combined with dynamic
compared A is the best choice to optimize path in path
planning problems.

In order to show the property of Bezier curve and DMS-
PSO with crossover combined with dynamic compared A,
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complex problem F6 is an example to show how particles
learn from their neighborhood and avoid being trapped into
local optimum. The yellow circles describe the dangerous
distance around the obstacles, red paths mean the current
local paths, and blue path is the best path satisfying some
certain criteria. The processes of iteration are in Figure 5.

Figure 5 shows the search process which could be seen
that although the robot always runs into obstacles in the
first 400 iterations, it is far away from obstacles step by step.
After 700 iterations, solutions are converged into the best
path gradually which shows that DMS-PSO with crossover
combined with dynamic compared A has a good ability of
global search in early stage and global convergence in latter
stage.

5. Conclusion

In order to solve path planning problems in static envi-
ronment, suitable curves and algorithms with constraint
mechanisms are designed in this paper. Three curves are
compared under six algorithms, and the results have proved
that DMS-PSO has a better ability of global search than PSO
again. At the same time, the analyses of three constraint
handling methods and curves are carried on. Firstly, dynamic
constraint methods are designed well for path planning
problems compared with the previous work where static
constraint is used. Then the dynamic compared A possesses a
better feature than dynamic threshold € and dynamic balance
function which has overcome the drawback of dynamic
threshold ¢ which might lose the previous good solutions
found in the search process, which are near to the global opti-
mum but do not satisfy the current constraint. So dynamic
compared A is more suitable to be applied in path planning
problems. From the results, we could observe that #3 curve
outperforms Ferguson curve when the same segment is used
to describe path, especially on the distribution of solutions
for complex problems. What is more, compared with two
segments, three segments of #3 curve are more suitable to
generate path for the reason that more points may make
the path more flexible and easier to change the direction of
path. The most important is that Bezier curve outperforms #3
curve and Ferguson curve no matter on simple or complex
problems and it improves the solutions further, which is
more likely depending on the property of its flexible shape
changed by adjusting a fixed number of anchor points. So
when PSO and its improved versions are used to solve path
planning problems, Bezier curve possesses a higher status.
For the limitation of experimental conditions, only the path
length and security criteria are compared in this paper. Bezier
curve will be used to evaluate more criteria in path planning
problems as well as in the condition of dynamic environment
where the obstacles are changed with time in the future.
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