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A lot of projects in real life are subject to some kinds of nonrenewable resources that are not exactly similar to the type defined in
the project scheduling literature. The difference stems from the fact that, in those projects, contrary to the common assumption
in the project scheduling literature, nonrenewable resources are not available in full amount at the beginning of the project, but
they are procured along the project horizon. In this paper, we study this different type of nonrenewable resources. To that end, we
extend the resource constrained project scheduling problem (RCPSP) by this resource type (RCPSP-NR) and customize four basic
branch and bound algorithms of RCPSP for it, including precedence tree, extension alternatives, minimal delaying alternatives,
and minimal forbidden sets. Several bounding and fathoming rules are introduced to the algorithms to shorten the enumeration
process. We perform comprehensive experimental analysis using the four customized algorithms and also CPLEX solver.

1. Introduction

Resource constrained project scheduling problems (RCPSPs)
are widely studied in the open literature. Several resource
types have been defined in these problems. They are implied
from various resources that are required by the practical
projects. Renewable and nonrenewable resources are the
most studied resource types in this field. Research charisma of
these resources is consistent with their pervasive applications
in practical cases. Nevertheless, a lot of the projects in real life
are subject to some kinds of nonrenewable resources which
are not exactly similar to the type defined in the literature.
The reason is that, in the project scheduling literature, the
availability of a nonrenewable resource is limited for the
whole project life cycle; that is, the whole amount of the
resource is available at the beginning of the project, but in
practice thismay not be the case. It is very common that some
nonrenewable resources like project materials are procured
along the project duration. These resources are not available
in full amount at the beginning of the project and, neglecting
the usage amounts from them, their availability increases

along the time. Deteriorating nonrenewable resources and
nonrenewable resources with a high amount of the holding
or buying cost are usually subject to this case. For example,
in large construction projects, high amount of beams may
be required during the project. Procurement of the whole
amount at the beginning of the project may not be possible
due to the holding and handling issues of the beams. Also
large amount of budget would be required in that case, which
may not be available. Finally, this procurement policy may
not be financially the best possible policy since it results in
large amount of cost of capital. Considering these issue, a
plan is usually considered for the procurement of the beams.
Uncountable similar examples like this can be found in the
real projects, which strongly motivate study of the subject.

In this paper, we study this different type of nonrenew-
able resources that are procured along the project duration
according to some prescheduled plans. This type of resource
is a special case of partially renewable resources [1]. Partially
renewable resources are a generic resource type, which
include renewable and nonrenewable resources as their
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special cases as well. The availabilities of partially renewable
resources are associated with specific time intervals (subset of
periods). On each interval related to each of these resources,
total availability of the resource is specified. A project activity
consumes a partially renewable resource only when the
activity is processed partly or completely in one of the related
intervals of the resource.The intervals of a partially renewable
resource need to be neither disjoint nor conjunctive. Nonre-
newable resources with prescheduled procurement can also
be modeled by partially renewable resources. To this end,
let us assume a nonrenewable resource 𝑙 which has some
prescheduled procurement plans. According to this plan, the
availability of the resource from the beginning of the project
planning horizon up to each period 𝑡 is limited to an amount,
say 𝐶𝑅𝑙𝑡 (𝐶𝑅𝑙𝑡 ≤ 𝐶𝑅𝑙(𝑡+1)). This condition can be modeled
using a partially renewable resource 𝑃𝑙𝑡, whose related time
interval includes periods of [0, 𝑡] and its availability for this
interval equals 𝐶𝑅𝑙𝑡. This same resource 𝑃𝑙𝑡 can also be
used to model the limited availability of the resource 𝑙 from
the beginning of the project up to any period 𝑡

󸀠
< 𝑡, if

𝐶𝑅𝑙𝑡 = 𝐶𝑅𝑙𝑡󸀠 . So supposing that 𝑇 is the number of periods
of project planning horizon, the resource 𝑙 can be completely
substituted using a set of partially renewable resources 𝑃𝑙.
Each of the resources of this set is characterized as shown
previously to indicate the limited availability of the resource
𝑙 from the first period of the planning horizon up to a period
𝑡 ∈ {𝜏 | 0 ≤ 𝜏 ≤ 𝑇, 𝐶𝑅𝑙𝜏 < 𝐶𝑅𝑙(𝜏+1)}.

We extend the standard form of the RCPSP problem
by subjecting the problem to nonrenewable resources with
prescheduled procurement. We call the extended problem
resource constrained project scheduling problem, extended
with prescheduled nonrenewable resources (RCPSP-NR). In
order to solve this problem, we customize four basic branch
and bound approaches of RCPSP for RCPSP-NR. These
algorithms include precedence tree, extension alternatives,
minimal delaying alternatives, and minimal forbidden sets.
Several bounding, fathoming, and dominance rules are
introduced to these algorithms to shorten the enumeration
process. The developed algorithms are used to perform
comprehensive experimental analysis. The CPLEX solver is
also used in the experiments and comparisons.

The remaining sections of this paper are organized as
follows. In the next section, we review some of the pre-
vious work related to this paper. In Section 3, RCPSP-NR
is described in detail. In Section 4, basic scheme of the
branch and bound algorithms of this paper is specified. In
Sections 5, 6, 7, and 8, methods of precedence tree, extension
alternatives, minimal delaying alternatives, and minimal
forbidden sets are described, respectively. In each of these
four sections, we first review the original method for RCPSP,
followed by the description of the appropriate modifications
made in the method to work for RCPSP-NR. Section 9 is
dedicated to computational analysis on all algorithms and
finally Section 10 concludes the whole work.

2. Related Work

The RCPSP problem in its standard form is subject to the
renewable resources. The literature on this problem dates

back to the 1960s [2]. Many solving and bounding algorithms
have been developed for the problem. It has also been
extended in different ways, such as the extension tominimum
and maximum time lags [3], multiple objectives [4], and
multiple decentralized projects [5]. The literature on the
problem and its extensions have been well reviewed in many
papers, such as [6–10].

Nonrenewable resources, on the other hand, are basi-
cally studied in the multimode project scheduling problems.
Time-cost tradeoff problem (TCTP) and multimode RCPSP
(MRCPSP) are themost studied problems in this area. Albeit,
not all the studies on the MRCPSP consider nonrenewable
resources in addition to the renewable resources. Some of
the recent studies on the problem subject to both resource
constraints are discussed in [11–15].

In theTCTPproblem, each duration time of every activity
is related to some cost that is resulted from the nonrenewable
resource usage of the activity.The trade-off between duration
time and cost may be discrete [16, 17] or continuous [18].
Akkan et al. [19] extensively review the literature on the
discrete version of the problem (DTCTP). The continuous
version of the TCTP (CTCTP) has not been studied as
much as the DTCTP. We refer the readers to [20] for a
comprehensive survey in this regard.

To the extent of our knowledge, nonrenewable resources
with prescheduled procurement have not been specifically
studied in the project scheduling literature. Yet the generic
form of these resources, partially renewable resources, has
been studied in the literature. Böttcher et al. [1] introduced
partially renewable resources and described some instances
of their applications in timetabling and shift scheduling
aspects.They generalizedRCPSP by using partially renewable
resources in the problem and called the extended prob-
lem RCPSP/𝜋. References [21, 22] extended this work by
presenting more capabilities and applications of partially
renewable resources. Reference [21] also proposed several
groups of inexact algorithms for solving RCPSP/𝜋. For this
same problem, metaheuristic algorithms are proposed in [23,
24]. Zhu et al. [25] integrated partially renewable resources
in theMRCPSP and proposed a branch and cut algorithm for
solving this problem.

3. Problem Description

A project with 𝑛 nondummy activities is considered. There
exist finish-start precedence relations between activities
which are illustrated using an activity-on-node (AON) loop-
less network, with dummy nodes 0 and 𝑛 + 1 as initial
and terminal nodes, respectively. The processing time and
resource usage of these dummy activities equal zero. Let
𝐾 = {1, . . . , 𝑁𝐵} and 𝐿 = {1, . . . , 𝑁𝐶} be the sets of
renewable and nonrenewable resources, respectively. Each
activity 𝑗 (𝑗 = 0, . . . , 𝑛 + 1) has a fixed duration 𝑑𝑗 and
requires 𝑟𝑗𝑘 units of renewable resource 𝑘 (𝑘 ∈ 𝐾) for
each unit of time over its duration and requires 𝑐𝑗𝑙 units
of nonrenewable resource 𝑙 (𝑙 ∈ 𝐿) which are used in
the first period of its execution. Besides, activity 𝑗 has a
set of immediate predecessor activities, 𝑃𝑗. Every renewable
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(1) Perform preprocessing and stop if the instance is infeasible
(2) Perform algorithm preprocesses (specific to minimal forbidden sets algorithm)
(3) Determine disjunctive pairs of activities
(4) Specify the initial upper bound
(5) Determine resources periodic availability profiles
(6) Generate the initial node and select it for branching
(7) Branch selected node (specific structure for each algorithm)
(8) Fathom each new node containing feasible solution and update upper bound and LST of activities if necessary
(9) If there is at least one node not branched or fathomed yet, select a new node for branching; Otherwise report the best

feasible solution achieved and stop
(10) Perform fathoming check(s) on the selected node for branching and continue from Step 7 if the node is not fathomed;

otherwise continue from Step 9

Algorithm 1: Basic scheme of the branch and bound algorithms.

resource 𝑘 has constant availability of 𝑅𝑘 for each period over
the project duration. Nonrenewable resources are not ready
in full amount at the beginning of the project, but they are
procured along the project according to prespecified plan, so
that every nonrenewable resource 𝑙 has availability of 𝐶𝑅𝑙𝑡
from the beginning of the project up to the period 𝑡 (𝐶𝑅𝑙𝑡 ≥
𝐶𝑅𝑙(𝑡−1)). No preemption is permitted during the execution of
activities; all activities have single mode, and they are ready
at the beginning of the project horizon. All parameters are
deterministic and integers. The problem is to find the start
time of each activity 𝑗, 𝑆𝑗, (𝑗 = 0, . . . , 𝑛 + 1), such that all
problem constraints are satisfied and the project makespan is
minimized.

Suppose that the earliest and latest start times of each
activity 𝑗, EST𝑗 and LST𝑗, (𝑗 = 0, . . . , 𝑛 + 1), are determined
with forward and backward passes. In order to do that, we
start by fixing the value of LST𝑛+1 and the latest finish time
of the last dummy activity (LFT𝑛+1) is equal to 𝑇, where 𝑇
is an upper bound for optimum project makespan. 𝑇 can be
determined by any valid method. Twomethods in this regard
are later proposed in Section 4.4 of this paper. We now define
the following decision variable:

𝑥𝑗𝑡 = {
1 if activity 𝑗 is started in period 𝑡

0 otherwise,
,

𝑗 = 1, . . . , 𝑛 + 1, 𝑡 = EST𝑗, . . . , LST𝑗.

(1)

Then we have, 𝑆𝑗 = ∑
LST
𝑗

𝑡=EST
𝑗

𝑡 ⋅ 𝑥𝑗𝑡 and the mathematical
model of the problem is as the following:

Min
LST
𝑛+1

∑

𝑡=EST
𝑛+1

𝑡𝑥(𝑛+1)𝑡, (2)

LST
𝑗

∑

𝑡=EST
𝑗

𝑥𝑗𝑡 = 1, 𝑗 = 1, . . . , 𝑛 + 1, (3)

LST
𝑖

∑

𝑡=EST
𝑖

(𝑡 + 𝑑𝑖) 𝑥𝑖𝑡 ≤

LST
𝑗

∑

𝑡=EST
𝑗

𝑡𝑥𝑗𝑡,

𝑗 = 1, . . . , 𝑛 + 1, 𝑖 ∈ 𝑃𝑗,

(4)

𝑛

∑

𝑗=1

min(𝑡,LST
𝑗
)

∑

𝜏=𝑡−𝑑
𝑗
+1

𝑟𝑗𝑘𝑥𝑗𝜏 ≤ 𝑅𝑘,

𝑘 ∈ 𝐾, 𝑡 = 1, . . . , LST𝑛,

(5)

𝑛

∑

𝑗=1

min(𝑡,LST
𝑗
)

∑

𝜏=EST
𝑗

𝑐𝑗𝑙𝑥𝑗𝜏 ≤ 𝐶𝑅𝑙𝑡,

𝑙 ∈ 𝐿, 𝑡 = 1, . . . , LST𝑛,

(6)

𝑥𝑗𝑡 ∈ {0, 1} , 𝑗 = 1, . . . , 𝑛 + 1,

𝑡 = EST𝑗, . . . , LST𝑗.
(7)

Objective (2) is to minimize the project makespan.
Constraint (3) guarantees that each activity 𝑗 can only have a
single start time from the period [EST𝑗, LST𝑗]. Constraint (4)
takes into consideration precedence relations between each
pair of activities (𝑖, 𝑗), where 𝑖 is an immediate predecessor
of 𝑗. Constrains (5) and (6) regard renewable and nonre-
newable resources usage limitations, respectively and, finally,
constraint (7) denotes the domain of variables.

By omitting constraint set 5 from themodel above, it turns
to a formulation for the RCPSP. That formulation is similar
to the one from Pritsker et al. [26] for the RCPSP, except that,
in the Pritsker et al. [26] formulation, decision variables, say
𝑥
󸀠

𝑗𝑡
(𝑗 = 1, . . . , 𝑛 + 1, 𝑡 = EST𝑗, . . . , LST𝑗), specify finish

time of activities. Both formulations would be the same if
the variables of either of them are changed according to the
relation ∀𝑗, 𝑡 : 𝑥󸀠

𝑗𝑡
= 𝑥𝑗𝑡 + 𝑑𝑗 − 1.

4. Basic Scheme of the Algorithms

For the collection of four branch and bound algorithms that
we develop here, we use the same basic scheme, shown in
Algorithm 1. In this section we describe this scheme.
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(i) Determine SIUB
(ii) LST

𝑛+1
= LFT

𝑛+1
= SIUB

(iii) Determine LST and LFT of the activities using backward pass
(iv) Compute LSTLFT of each activity and generate AL by prioritizing the activities in non-decreasing order of their LSTLFTs;

If tie happens, prioritize the activities related to the tie in increasing order of their index numbers
(v) Schedule activities in their related order of the AL in the earliest precedence and resource feasible times
(vi) Report the finish time of last project activity as modified initial upper bound

Algorithm 2: Pseudocode of modified initial upper bound determination for RCPSP-NR.

4.1. Preprocessing. There are two cases in which a given
instance has no feasible solution. The first case is where we
have shortage of renewable resources. In this case there exist
an activity like 𝑗 and a renewable resource like 𝑘 in the prob-
lem for which 𝑟𝑗𝑘 > 𝑅𝑘. In this situation the activity cannot
be executed and no feasible solution exists for the problem.
The second case is where we have a shortage of nonrenewable
resources. In this case there exists a nonrenewable resource 𝑙
in the problem whose availability up to the last period of its
procurement plan is less than the total required amount by
the entire project activities. If none of these two states exists in
a given instance, there are feasible solutions and the instance
is feasible. So the branch and bound algorithms check the
feasibility of the instance in the first step.

4.2. Algorithm Preprocesses. This step is specific to the mini-
mal forbidden sets algorithmwhich is described in detail later
in Section 8.

4.3. Disjunctive Activities. Two activities are in disjunction if
resources available in the problem are not enough for both
of them to execute concurrently, so one of these disjunctive
activities has to finish before the other one can start. For a pair
of disjunctive activities, the following test can be applied to
possibly determine some execution priorities between them.

Interval-Based Disjunctive Consistency Test [27]. For two
disjunctive activities of 𝑖 and 𝑗, if LST𝑖-EST𝑗 < 𝑑𝑗, 𝑖 must
precede 𝑗.

We perform this test during the fathoming check at every
node of the branch and bound tree. If some precedence
relation already exists between a pair of activities, the test
brings no new information to the solution method. So
we only determine disjunctive pairs without any existing
precedence relations between their activities.

4.4. Initial Upper Bound Specification. A rather simple proce-
dure to specify an initial upper bound for RCPSP-NR is that
the duration of all project activities is summed and added
to the earliest period in which all nonrenewable resources
necessary for project execution are ready. We call this upper
bound, simple initial upper bound (SIUB) and improve it
to get a tighter one which we call modified initial upper
bound (MIUB). In order to determineMIUB, we generate an
activity list (AL) and schedule activities based on the list. The
related makespan of the generated schedule specifies MIUB.
Activities of the list are selected in their related order and

each selected activity is scheduled in the earliest feasible time
considering the precedence and resource constraints. In order
to generate a rather good activity list, we prioritize them in a
nondecreasing order of the sum of their latest start and finish
times (LSTLFT). In case a tie happens where the LSTLFT
values for two or more activities are equal, we prioritize them
in increasing order of their index numbers. The reason for
using LSTLFT quantity in here is explained as follows. In [13],
several of the most efficient heuristics for minimization of
project makespan were compared. Albeit the problem under
study was the multimode RCPSP (MRCPSP), but, during
the solution methods, activities mode assignment were first
accomplished, turning the problem to RCPSP, and then
scheduling heuristics were applied. According to compar-
isons, LSTLFT rule concluded the best among other single-
pass heuristics for prioritizing activities. This method has
also been compared to the best multipass methods. Results
showed thatmultipassmethods neededmuchmore time than
single-pass ones; however they usually resulted in negligible
improvement in the solution. Therefore, considering time
requirements, LSTLFT choice seems the most efficient one
among those compared.

In order to determine LST and LFT of activities, we fix
the LST𝑛+1 and LFT𝑛+1 equal to SIUB and then we perform
a backward pass. So, the MIUB determination procedure can
be summarized as the pseudocode shown in Algorithm 2.

4.5. Resources Availability Profiles. For each renewable and
nonrenewable resource in the problem, we generate a
resource availability profile which shows the periodic avail-
ability of the resource from the first up to the upper bound
period. These profiles are used in the branch and bound
algorithms and updated by scheduling each activity. Note
that the requirement of each nonrenewable resource 𝑙 for
project execution is procured up to period 𝜂𝑙 = min{𝑡 :

𝐶𝑅𝑙𝑡 ≥ ∑
𝑛

𝑗=1
𝑐𝑗𝑙}. So we keep track of availability of each

nonrenewable resource 𝑙 up to period 𝜂𝑙.

4.6. Initial Node Generation and Branching. The branching
tree of the algorithms is initiated with the initial node. This
node is generated and branched as the only available node
according to specific structure of each algorithm.

4.7. Branching. Each selected node for branching is branched
according to the structure of the specific branch and bound
method.
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(1) Fix EST of scheduled activities
(2) Determine PBEST of unscheduled activities
(3) Determine EST of unscheduled activities equal to their RBEST
(4) Terminate lower bound determination process and fathom the node if for an activity LST < EST
(5) Perform interval-based disjunctive consistency test and continue the process from Step 2 if at least one new precedence

relation is introduced by the test
(6) Perform unit interval consistency test and if a resource shortage happens, terminate lower bound determination process and

fathom the node
(7) Report start time of the last dummy activity as critical path based lower bound

Algorithm 3: Pseudocode of lower bound determination method based on modified critical path length.

4.8. Fathoming Feasible Nodes and Upper Bound Update.
After each branching, each newly generated node like 𝑔 that
contains a feasible solution is fathomed and, if the makespan
of its related schedule, say 𝑇𝑔, is less than the current upper
bound, upper bound is updated as𝑇𝑔. In the rest of algorithm,
the related makespan of a better solution has to be at most
𝑇𝑔 − 1. In order to meet this threshold, LST and LFT of
each activity can be determined using backward pass. These
quantities are used in fathoming check of the nodes.

4.9. Node Selection for Branching. In all algorithms, we use
depth-first-search method to keep the memory requirements
low. According to this method, an unfathomed node is
selected from the higher level of the branching tree. If a tie
happens, three rules are used in respective order until one
single node is chosen, including selecting a node with the
most number of scheduled activities, a node with the least
associated lower bound, and the node with the least index
number.

4.10. Fathoming Check. Fathoming check is performed on
each unfathomed node 𝑔 selected for branching. In order
to do that, a lower bound on the related project makespan
of 𝑔, LB𝑔, is determined. According to the structure of the
algorithms, each new offspring node generated by branching
node 𝑔 will not have a lower makespan than LB𝑔. So if LB𝑔
exceeds the current upper bound, no better solution can be
obtained by branching node 𝑔 and the node is fathomed.

In addition to fathoming based on lower bound, in each
algorithm depending on its structure, some dominance rules
are used to possibly fathom the nodes whose corresponding
schedule are not promising. For each dominance rule, it is
proved that the nodes fathomed using the rule cannot result
in better solutions than some other nodes available in the
branching tree. As these rules depend on the algorithm, we
describe each in the context of the related algorithm.

The effectiveness of both fathoming tests as well as the
dominance tests for many of the rules depends on the current
value of the upper bound. Tighter upper bound values lead to
more effectiveness in both tests. Since the upper bound may
be improved during the algorithms, we delay the fathoming
check of each unfathomed node as much as possible. So the
check is performed when the node is selected for branching.

In the following we describe how the makespan lower
bound for each node is determined.

4.10.1. Makespan Lower Bound Determination. A simple
lower bound on project makespan can be determined using
renewable resource constraints. This method is based on the
fact that total availability of each renewable resource during
the whole project execution time cannot be less than resource
amount required by all activities. So this lower bound is
determined as [20]

max
𝑘∈𝐾

{

{

{

𝑛

∑

𝑗=1

𝑟𝑗𝑘 ⋅ 𝑑𝑗

𝑅𝑘

}

}

}

. (8)

We determine another lower bound for each node equal
to the project critical path length; however we make the
following modifications to this method to get better bounds.
So the related lower bound of each nodewill be themaximum
of lower bounds gained based on renewable resources and the
critical path length.

Algorithm 3 shows the pseudocode of lower bound deter-
mination method based on modified critical path length.
Some details of this method are described in the following.

(i) EST Determination. We fix the earliest start time
(EST) of scheduled activities equal to their start times.
For the rest of the activities, EST can be determined
using forward pass. However another lower bound
on the start time of each activity is achievable based
on the resource constraints. To distinguish these two
lower bounds, we call the EST of each activity gained
from forward pass method and resource constraints
precedence based earliest start time (PBEST) and
resource based earliest start time (RBEST), respec-
tively. RBEST for an activity is the earliest time equal
or later than PBEST in which necessary amounts of
all resources for execution of activity are available.
RBEST of each activity is determined using the
current resource availability profiles.

(ii) Unit Interval Consistency Test [28]. This test is based
on the fact that each activity 𝑗 will be definitely in
progress during the periods of [LST𝑗,EFT𝑗 = (EST𝑗+
𝑑𝑗−1)]. According to this, we decrease both renewable
and nonrenewable resource requirements of activity
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Activity 1
Activity 2

Activity 3
Activity 4

Figure 1: Example of a partial schedule with two different activity
lists.

from the resource availability profiles. If, in some
period, the availability of some resource gets negative,
the node cannot result in a feasible schedule with
makespan better than the current upper bound. So the
node is fathomed.

5. Precedence Tree Algorithm (PTA)

In this section, we briefly describe the precedence tree
algorithm for RCPSP.Then we describe the modifications we
make to the algorithm to work for RCPSP-NR.

5.1. Basic Algorithm for RCPSP. Most of branch and bound
algorithms for RCPSP use partial schedules which are associ-
ated with nodes in the branching tree. The difference among
them regards to the branching and pruning methods. One
of the methods using this approach is the one proposed by
[29]. In this algorithm, partial schedules containing parts of
the project activities are completed along the branching tree.
Regarding to each selected node 𝑔 for branching, the set of
eligible activities (𝐸𝐽𝑔) for this node contains all activities
not scheduled yet whose predecessors have already been
scheduled. For each member of this set like 𝑗𝑔, a new node
is generated and 𝑗𝑔 is scheduled in the earliest feasible time
considering precedence and resource constraints.

Several dominance rules may be used in this algorithm.
Here we introduce two rules from [20] that can be used in
RCPSP-NR aswell. Regarding to each partial schedule in each
node, we can specify an activity list that contains activities
in the order of their start times. Sometimes it is possible to
relate more than one activity list to a given partial schedule.
For example, for the partial schedule shown in Figure 1, we
can have either activity list (1, 2, 3, and 4) or (1, 3, 2, and 4).
There can be one node associated with each of these activity
lists in the branching tree. Therefore, if we have two nodes
with different activity lists whose related partial schedules are
the same, we can fathomone of them, because they are related
to similar solutions. Note that, if in some node, for a selected
activity 𝑗 and a previously scheduled activity 𝑖, we have 𝑆𝑗 <
𝑆𝑖, we fathom the generated node, because it contains the
same partial schedule as another node whose activity list is
the same but orders of activities 𝑖 and 𝑗 are reverse in the
list. Another case is when activity 𝑗 is scheduled in the node
with the same start time as already scheduled activity 𝑖. In this
case the node contains the same partial schedule with another
one in which the orders of 𝑖 and 𝑗 are substituted. So we can

fathom one of these nodes and as a rule, in such cases, we
fathom new node if 𝑗 < 𝑖.

The two dominance rulesmentioned above can be used to
tighten critical path based lower bound as well. According to
them, if 𝑖 is the last scheduled activity, for each unscheduled
activity 𝑗, 𝑆𝑖 ≤ 𝑆𝑗 if 𝑖 < 𝑗 and 𝑆𝑖 + 1 ≤ 𝑆𝑗 if 𝑖 > 𝑗; otherwise the
related node is dominated and fathomed.

5.2. Customized Algorithm for RCPSP-NR. To customize
the precedence tree algorithm introduced in Section 5.1 for
RCPSP-NR, we make the following modifications to it and
use it in the context described in Section 4.

(i) In each newly generated node, the new activity is
scheduled in the first feasible period that other than
precedence and renewable resource feasibility has
nonrenewable resource feasibility; that is, sufficient
nonrenewable resources exist for activity execution.

(ii) Based on the two dominance rules, in each node
like 𝑔, if 𝑖 is the last scheduled activity, for each
unscheduled activity like 𝑗, 𝑆𝑖 ≤ 𝑆𝑗. On the other
hand, a lower bound on the minimum required
time for execution of unscheduled activities can be
determined based on their renewable resource usage,
which is equal to

max
𝑘∈𝐾

{

{

{

∑

𝑗∈set of unscheduled activities

𝑟𝑗𝑘 ⋅ 𝑑𝑗

𝑅𝑘

}

}

}

. (9)

So a lower bound on themakespan can be determined
by adding 𝑆𝑖 − 1 to the amount gained in (9). We
use this method in addition to the one described
in Section 4.10.1, so the lower bound for each node
will be the maximum amount gained by these two
methods.

6. Extension Alternatives Algorithm (EAA)

In this section, we briefly describe the extension alternatives
algorithm for RCPSP.Then we describe the modifications we
make to the algorithm to work for RCPSP-NR.

6.1. Basic Algorithm for RCPSP. This method was proposed
by Stinson et al. [30] for RCPSP. It is based on partial
schedules similar to the PTA, but, instead of scheduling just
one activity in each time, a group of activities are selected to
be scheduled. In this approach, each node 𝑔 of the branching
tree is associated with a decision point 𝑡𝑔 and, considering
precedence and resource constraints, a subset of eligible
activities (𝐸𝐽𝑔) called extension alternative (𝐸𝐴𝑔) is to be
selected for execution in 𝑡𝑔. Extension alternatives must
contain all activities in process in the decision point andmust
be nonempty in order to secure algorithm termination. 𝑡𝑔 has
to be later than the decision point of the parent node, 𝑡𝑔−1,
and it is determined as the earliest finish time of currently
scheduled activities, because in these points some renewable
resources turn vacant and also successors of already finished
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activities may be able to be scheduled without violating
precedence constraints.

The following two dominance rules are applicable in this
algorithm.

Dominance Rule 1. Assuming an extension alternative 𝐸𝐴𝑔
and an activity 𝑖, 𝑖 ∈ 𝐸𝐽𝑔, 𝑖 ∉ 𝐸𝐴𝑔, and 𝑑𝑖 ≤ 𝑑𝑗
for each activity 𝑗 ∈ 𝐸𝐽𝑔. If 𝑖 can be included in 𝐸𝐴𝑔
without violating resource constraints, 𝐸𝐴𝑔 is dominated
with another extension alternative with the same activities
as 𝐸𝐴𝑔 plus 𝑖. In other words, it is sufficient to only check
maximal extension alternatives.

Dominance Rule 2. Any node 𝑔 associated with the decision
point 𝑡𝑔 is dominated if there exists an activity 𝑖 (𝑖 ∈ 𝐸𝐽𝑔) that
could be included in the extension alternative of the parent
node; that is, 𝑖 can start earlier than 𝑡𝑔. This dominance rule
is called left shift dominance rule [31].

Critical path based lower bound can be used for fathom-
ing in this algorithm.

6.2. Customized Algorithm for RCPSP-NR. We customize this
method for RCPSP-NR with the following modifications.

(i) Besides precedence and renewable resource con-
straints, nonrenewable resources are to be considered
to develop extension alternatives; that is, in each
decision point 𝑡𝑔, only those activities can be selected
for an extension alternative and scheduled that, in
addition to precedence and renewable resource fea-
sibility, nonrenewable resource constraints remain
feasible.

(ii) In each time point that availability of some nonre-
newable resource increases, new activities may be
able to be scheduled. So in order to determine the
decision point of each node, these points are to be
considered in addition to the finish times of scheduled
activities; that is, the decision point is determined as
the earliest point later than the decision point of the
parent node that either at least one of the currently
scheduled activities finishes or availability of at least
one nonrenewable resource increases.

(iii) Contrary to RCPSP, it is feasible to have extension
alternatives without any activity for RCPSP-NR. Two
reasons can be given regarding to this. Firstly, in a
decision point, no activity may be scheduled because
of the lack of nonrenewable resources. Secondly, in
RCPSP regarding to some activity 𝑖 ∈ 𝐸𝐽𝑔, no new
opportunity appears for scheduling other activities by
delaying 𝑖, but inRCPSP-NR, nonrenewable resources
necessary for 𝑖 remain unused for the latter periods
and, augmenting with procured amounts in those
later periods, some activities may be able to be
scheduled relatively sooner. However these cases will
not be valid if there exists some activity 𝑖 ∈ 𝐸𝐽𝑔
that uses either no nonrenewable resource or some
nonrenewable resources like 𝑙 for which 𝐶𝑅𝑙𝑇 −

𝐶𝑅𝑙𝑡
𝑔

= 0.

(iv) In each node 𝑔, a lower bound on the EST of each
unscheduled activity is determined equal to 𝑡𝑔. Using
this and renewable resource usage of unscheduled
activities, a lower bound on the related makespan of
the node can also be determined.According to renew-
able resource usage, the minimum required time for
scheduling of unscheduled activities is determined by
(9) and, adding this amount to 𝑡𝑔, the lower bound is
specified.

7. Minimal Delaying Alternatives
Algorithm (MDAA)

In this section, we briefly describe the minimal delaying
alternative algorithm for RCPSP. Then we describe the mod-
ifications we make to the algorithm to work for RCPSP-NR.

7.1. Basic Algorithm for RCPSP. This algorithm is based on
the concept of delaying alternatives used by Christofides et al.
[32] which was enhanced by Demeulemeester and Herroelen
[33]. In this algorithm, activities are scheduled under the
precedence constraints until a resource conflict happens;
that is, the amount of some required resources needed for
executing activities in a period exceed the availability of
the resource. In this case, the conflict is to be resolved,
naturally by delaying some sets of activities in progress in the
period, called delaying alternative. This idea of the algorithm
is opposite to PTA and EAA, such that all possibilities of
scheduling activities are considered just in case a resource
conflict might show up later.

Demeulemeester and Herroelen [33] showed that only
minimal delaying alternatives are needed to be considered
to resolve a resource conflict; that is, all delaying alternatives
for each of which no proper subset are a valid delaying
alternative. This is mainly because the other activities can be
delayed at subsequent levels of the branching tree. Activities
of a selected minimal delaying alternative are delayed to
the earliest finish time of an undelayed activity in progress.
Left shift dominance rule is applicable in this algorithm
and the critical path based lower bound method is used for
fathoming.

7.2. Customized Algorithm for RCPSP-NR. We customize this
method for RCPSP-NR with the following modifications.

(i) In addition to renewable resource conflicts, non-
renewable resource shortages are to be considered
here and resolved by generating and delaying the
related minimal delaying alternatives. For this case,
in any period like 𝑡 that availability of a nonrenew-
able resource 𝑙 becomes a negative amount like 𝐴 𝑙𝑡,
we define 𝐷𝑡 as the set of activities started by or
at 𝑡 according to the schedule; then each delaying
alternative 𝐷𝐴 𝑡 is a subset of 𝐷𝑡 in the way that
∑
𝑗∈𝐷𝐴

𝑡

𝑐𝑗𝑙 ≥ |𝐴 𝑙𝑡|. Also, each minimal delaying
alternativeMDA𝑡 is a delaying alternative that none of
its proper subsets is a delaying alternative. Note that,
if a predecessor of an activity 𝑖 (𝑖 ∈ 𝐷𝑡, 𝑖 ∉ MDA𝑡) like
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𝑗 is embedded in MDA𝑡, delaying activities of MDA𝑡
cause delaying 𝑖 as well, so 𝑖 can be regarded as a
member ofMDA𝑡 implicitly and, based on this,MDA𝑡
may not be a minimal delaying alternative but only a
delaying alternative. Sowe force another limitation on
determination of minimal delaying alternatives here
that an activity 𝑖 (𝑖 ∈ 𝐷𝑡) can be included in aminimal
delaying alternative MDA𝑡 only if all of its successor
that are present in𝐷𝑡 are included in MDA𝑡 too.

(ii) Activities of anMDA𝑡 are delayed to a period 𝑡
󸀠
> 𝑡 for

which𝐶𝑅𝑙𝑡󸀠 −𝐶𝑅𝑙𝑡 ≥ 𝐴 𝑙𝑡. Delaying is made by forcing
constraints 𝑡󸀠 ≤ PBEST𝑗 for each 𝑗 ∈ MDA𝑡.

(iii) For an 𝑖 ∈ MDA𝑡, if 𝑡
󸀠
> LST𝑖, the generated

node will not result in a better solution than current
upper bound. So such test is performed for eachMDA
and extra ones are omitted. If no MDA remains, the
current node is fathomed.

(iv) In each node 𝑔, as start time of all activities except
from the first dummy one can change by further
branching until 𝑔 is fathomed, all activities are
assumed as unscheduled ones and lower bound
determination method and fathoming check are per-
formed on this basis. However note that the process
remains effective through algorithm, since new lower
bound constraints are made on PBEST of activities
and LSTs are updated as well.

(v) A renewable resource based lower bound on require-
ment is also determined equal to

𝑡 − 1 +max
𝑘∈𝐾

{

{

{

∑

∀𝑗:EST
𝑗
≥𝑡

𝑟𝑗𝑘 ⋅ 𝑑𝑗

𝑅𝑘

}

}

}

. (10)

(vi) Note that in both cases of renewable and nonrenew-
able resource shortages, as activities are delayed from
a period 𝑡 to a latter period, no new conflict occurs
by period 𝑡. So, to keep the required memory low and
fasten the algorithm, for each new node generated to
resolve a conflict at 𝑡, we only keep track of periodic
resource availabilities in period 𝑡 and later ones up to
𝑇.

8. Minimal Forbidden Sets Algorithm (MFSA)

In this section, we briefly describe theminimal forbidden sets
algorithm for RCPSP.Then we describe the modifications we
make to the algorithm to work for RCPSP-NR.

8.1. Basic Algorithm for RCPSP. Igelmund and Radermacher
[34] introduced a branch and bound algorithm based on
minimal forbidden sets for RCPSP. A Forbidden set is a set
of activities for which no precedence relations exist between
any two of them and their total resource requirement for at
least one renewable resource is more than the availability of
that resource. A minimal forbidden set (MFS) is also defined
as a forbidden set that has no other forbidden sets as its
proper subset. So no activity can be omitted from an MFS

so that it still remains as an MFS. In order to have a feasible
schedule in RCPSP problem, all activities of one MFS cannot
be concurrently executed. In order to force this condition, at
least one precedence relation is to be introduced between two
activities of an MFS so that the MFS is broken. Therefore the
base of this branch and bound algorithm is the introduction
of precedence relations between activities of eachMFS so that
all these sets are broken. This idea of the algorithm is similar
to the MDAA which tries to resolve resource usage conflicts.

In this algorithm, in each newly generated node, a new
precedence relation is introduced between two activities so
that at least one MFS is broken. Activities are scheduled in
nodes considering their precedence relations using forward
pass. If the related node is still not feasible regarding to
renewable resources, critical path length specifies a lower
bound for the project makespan and is used for fathoming
check. Having selected a node for branching, an MFS not
broken according to the selected node is to be selected to
be broken. In order to do that, a value is specified for each
new precedence relation between each two project activities.
This value is equal to the number of MFSs that will be broken
in the node by adding that relation. But it is noticed that,
between some activities, precedence relations already exist
and no more relation can be introduced, so such infeasible
relations are not considered. Also new precedence relations
that cause generating schedules with makespan more than
the current upper bound are not considered. The other point
is that the introduction of some precedence relations can
implicitly break an MFS; that is, given two activities of 𝑖 and
𝑗 in an MFS, if according to a relation, 𝑖 or a successor of
that is set as the predecessor of 𝑗 or one of its predecessors
and 𝑖 would be the predecessor of activity 𝑗 (immediately or
nonimmediately), so the related MFS is broken.

Having valued new feasible precedence relations between
activities, a weight is assigned to each MFS. This weight
is equal to the sum of values of introducing new relations
between each two activities of that MFS. According to these
weights, oneMFSwith the highest weight is selected from the
ones not broken yet in the node and branching is performed
by introducing feasible precedence relations between each
two activities of the selected MFS.

The only remaining point is that in some nodes although
no precedence relations have been introduced for breaking
someMFSs, neither in the node nor in its parents, the related
schedule of the node is in a way that activities of these MFSs
have no overlap during their executions; therefore theseMFSs
are implicitly broken, the schedule is feasible, and the node is
fathomed.

8.2. Customized Algorithm for RCPSP-NR. Our customized
minimal forbidden sets algorithm for RCPSP-NR is a hybrid
algorithmofMFSAandMDAA. In this algorithm,we initially
neglect renewable resource conflicts and use a similarmethod
as the original one for RCPSP to resolve all conflicts in
these resources. In this part, in order to determine the lower
bound of makespan, all activities are considered unsched-
uled, because their start time can change in progress. For
each node, in which no renewable resource conflict exists
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anymore, we focus on resolving possible shortcomings of
nonrenewable resources. We check the inventory of all these
resources in order of time and regarding to each period in
which a shortcoming exists; we use the same procedure as
the one described in Section 7.2 to resolve the shortcoming.
The noticeable point here is that, on performing this delaying
action, MFSs which have been broken in the node still
remain broken, but the ones that have been implicitly broken
according to the schedulemay no longer be implicitly broken.
So for any node generated via branching of the parent node
using MDAA branching rule, we check the feasibility of the
node based on the renewable resources at first and resolve
possible conflicts in this part via branching based onminimal
forbidden sets and then we check for possible nonrenewable
resources shortcomings.

9. Experimental Analysis

In this part we present the results of a comprehensive
computational experiment that we conducted regarding the
algorithms presented in this paper for RCPSP-NR. All algo-
rithms were coded and executed on C#.NET 2010 platform.
In addition, the CPLEX solver version 12.4 was used in the
analyses. Experimental tests were performed on a PC with
Core 2 Duo 2.53GHz CPU and 3GBs RAM. In the following
we first describe the sample problems that we used and then
we present and discuss the results categorized in four parts.

We used all four algorithms and also the CPLEX solver
to solve each sample problem. We imposed a time limit of
20 seconds on the execution time for solving each instance
by each algorithm and by the CPLEX solver, so that we
could complete the experiments within a reasonable time.
This time limit has been selected empirically by try and
error to well illustrate the performance differences among the
algorithms and also the CPLEX solver. In order to evaluate
the effectiveness of the algorithms for solving RCPSP-NR, we
used two metrics. The first metric is the number of instances
solved within 20 seconds. The analyses of Sections 9.2, 9.3,
and 9.4 are based on this metric. The second metric is the
actual execution time for solving every instance that was
solved within 20 seconds. The analyses of Section 9.5 are
based on this metric.

9.1. Sample Problems. As RCPSP-NR is an extension of
RCPSP, all parameters that affect the degree of difficulty of
an instance of RCPSP (i.e., the computational requirement of
any algorithm for solving the instance) are likely to affect the
corresponding degree of difficulty of an instance of RCPSP-
NR too. Besides, the additional parameters regarding the
nonrenewable resources may also affect the degree of diffi-
culty of the RCPSP-NR instances. Here one obvious parame-
ter is the number of nonrenewable resources in the problem.
The other parameter is 𝜂𝑙 as defined in Section 4.5 for each
nonrenewable resource 𝑙.The larger the 𝜂𝑙 is, themore periods
along project planning horizon are to be checked for the
nonrenewable resource 𝑙 constraint, therefore the more is the
computational effort needed. Based on these two parameters,
we constructed two groups of sample problems. In the first

Table 1: Value of the parameters 𝑐𝑗𝑙 in test instances.

Number of resources Parameter Selected value for parameter
1 𝑐𝑗1

𝑛𝑗𝑚11

2 𝑐𝑗1
𝑛𝑗𝑚11

𝑐𝑗2
𝑛𝑗𝑚12

4

𝑐𝑗1
𝑛𝑗𝑚21

𝑐𝑗2
𝑛𝑗𝑚22

𝑐𝑗3
𝑛𝑗𝑚31

𝑐𝑗4
𝑛𝑗𝑚32

group we fixed the number of nonrenewable resources and
changed the average value of 𝜂 and in the second group we
did the reverse; that is, we fixed the average value of 𝜂 and
changed the number of nonrenewable resources.The impacts
of these parameters on the computational requirements of
various algorithms and also on the completion time of the
related projects are experimentally viewed in Sections 9.3 and
9.4.

In order to have a full factorial design of the other
parameters, we chose sample problems of each group from
the well-known project scheduling library (PSPLIB) [35].
As RCPSP instances in this library are only subject to the
renewable resources, we used those MRCPSP instances that
are subject to both renewable and nonrenewable resources.
Seven sets of MRCPSP instances that differ in the related
number of activities were used. Consistent with the notation
used in PSPLIB, we refer to these sets of instances as 𝑗10, 𝑗12,
𝑗14, 𝑗16, 𝑗18, 𝑗20, and 𝑗30 where the last two digits in the name of
each set represent the number of activities in every instance
in that set. Every instance in any of these sets includes two
renewable and two nonrenewable resources. We used the
following method to transform each MRCPSP instance to a
RCPSP-NR instance.

(i) In the selected MRCPSP instances, each nondummy
activity has three execution modes. To perform the
transformation, one mode was randomly chosen for
each activity. Duration and the renewable resource
requirement of the activity were set equal to the
related amounts for the selected mode. In the rest of
the paper we show the selected mode for each activity
as 𝑚1 and the other two modes are as 𝑚2 and 𝑚3,
respectively.

(ii) We included different RCPSP-NR instances with one,
two, or four nonrenewable resources in our sam-
ple problems. Depending on the number of non-
renewable resources, we transformed nonrenewable
resource requirements of activities in MRCPSP to
nonrenewable resource requirement of activities in
RCPSP-NR according to Table 1. In this table, 𝑛𝑗𝑚𝑙
represents the amount of nonrenewable resource 𝑙

required by activity 𝑗 if the activity is executed under
mode𝑚 in the MRCPSP.

(iii) In each RCPSP-NR instance, for each nonrenewable
resource 𝑙, 𝐶𝑅𝑙 was determined equal to ∑𝑛+1

𝑗=1
𝑐𝑗𝑙. In

order to determine 𝐶𝑅𝑙𝑡 for each period 𝑡, we first set
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Table 2: Specifications of group of instances.

Group MRCPSP sets used Value(s) of NC Value(s) of 𝐸(𝜂) Number of problems

I 𝑗10, 𝑗12, 𝑗14, 𝑗16, 𝑗18, 𝑗20, 𝑗30 2 0.5CPL∗, CPL, 2CPL
20 randomly selected instances from each set for each
combination of (𝐸(𝜂1), 𝐸(𝜂2)) summing up to 180 instances
from each set and 1260 instances for the group

II 𝑗10, 𝑗12, 𝑗14, 𝑗16, 𝑗18, 𝑗20, 𝑗30 1, 2, 4 CPL
20 randomly selected instances from each set for each value of
NC, summing up to 60 instances from each set and 420
instances for the group

∗Critical path length of the project.

the value of 𝐸(𝜂𝑙), which is an average value for 𝜂𝑙.
We then randomly generated 𝐶𝑅𝑙𝑡 using the Poisson
distribution with rate parameter of 𝐶𝑅𝑙/𝐸(𝜂𝑙). In this
way the average number of periods for procurement
of 𝐶𝑅𝑙 units of resource 𝑙 was equal to 𝐸(𝜂𝑙). It is
obvious that the actual value of 𝜂𝑙 can be different
from 𝐸(𝜂𝑙).

Table 2 specifies instances included in each of the two
groups of sample problems.

9.2. Results Categorized Based on Instance Sets. Tables 3 and
4 show the number of instances solved to optimality within
20 seconds from each set in groups I and II, respectively. In
both tables we observe that the number of solved instances
within 20 seconds decreases as the number of activities in the
instances increases.There are only a few negligible exceptions
regarding this trend. The trend implies a higher degree of
difficulty for solving the problem as the number of activities
increases, which is of course consistent with expectation.

Based on both tables, PTA works better than EAA for all
instance sets. Comparing the results of these algorithms with
the results of the CPLEX solver shows that they are more
efficient than the CPLEX solver for smaller instances, but,
for larger instances, CPLEX solver seems to be more efficient.
Both tables show that PTA and EAA work remarkably better
than CPLEX solver for solving instances with less than 20
activities. The same situation holds for the set j20 in the
Table 4, but, according to the Table 3, EAA works almost
the same as CPLEX solver for this set. For instances with
30 activities, CPLEX solver works better than both of these
algorithms.

Both tables show that MFSA works better than CPLEX
solver for almost all instances, with the only exceptions being
the instances in the sets j10 in group I and j18 in group II.
Comparing this algorithm with PTA and EAA shows that
MFSA cannot work as well as the two algorithms for the
instances with less than 20 activities, but for the instances
with 30 activities MFSA works much better than both.

According to both tables, MDAA works better than
CPLEX solver for the instances with 18 activities and more.
For the instances with less than 18 activities, no consistent
trend is observable between MDAA and CPLEX solver
results. They seem to work with almost the same efficiency.
The only exception in this regard is the set j10 in group I
where there is some remarkable differences between the two
algorithms. According to the tables, MDAA does not work as

Table 3: Number of instances of each set of group I out of 180 solved
to optimality in 20 seconds.

Sample
problems sets

CPLEX
Solver PTA EAA MDAA MFSA

𝑗10 177 180 180 137 163
𝑗12 162 180 180 165 179
𝑗14 144 180 175 131 140
𝑗
16

108 177 160 111 109
𝑗18 72 166 118 76 91
𝑗
20

62 125 61 64 66
𝑗30 23 16 6 23 32

Table 4: Number of instances of each set of group II out of 60 solved
to optimality in 20 seconds.

Sample
problems sets

CPLEX
Solver PTA EAA MDAA MFSA

𝑗10 60 60 60 59 60
𝑗
12

60 60 60 60 60
𝑗14 56 60 60 58 60
𝑗16 50 60 56 47 50
𝑗18 38 60 53 48 34
𝑗20 27 55 45 38 36
𝑗
30

8 3 0 14 9

Table 5: Results of solving instances of group I categorized by values
of parameters 𝐸(𝜂)—Number of problems of each setting out of
140 solved to optimality in 20 seconds—Average project completion
times.

(𝐸(𝜂1), 𝐸(𝜂2))
CPLEX
Solver PTA EAA MDAA MFSA Average

𝑆𝑛+1

(0.5, 0.5) 127 126 122 126 123 49.3
(0.5, 1) 105 122 118 106 104 52.7
(1, 0.5) 105 117 108 100 90 46.6
(1, 1) 99 117 104 96 91 48.2
(0.5, 1.5) 70 111 87 64 75 72.8
(1.5, 0.5) 64 114 90 65 81 68.6
(1, 1.5) 58 106 85 50 64 68.6
(1.5, 1) 66 106 84 57 79 71.2
(1.5, 1.5) 53 105 82 43 73 78.6

well as PTA andEAA for the instanceswith 18 activities or less
and it does not work as well as MFSA for the instances with
14 activities or less. But for the instances with 30 activities,
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Table 6: Results of solving instances of group II categorized by number of nonrenewable resources—Number of problems of each setting out
of 140 solved to optimality in 20 seconds—Average project completion times.

Number of nonrenewable resources CPLEX Solver PTA EAA MDAA MFSA Average 𝑆𝑛+1
1 110 123 116 116 112 41.9
2 101 119 105 110 105 46.5
4 88 116 103 98 90 48.9

it works well comparing to the other three algorithms and
remarkably better than the PTA and EAA.

9.3. Results Categorized Based on 𝜂Parameters. Table 5 shows
the number of instances of group I solved to optimality by
each method. In addition, the average completion times of
the projects (𝑆𝑛+1) have been presented in the last column of
the table. In this table, instances are categorized based on the
settings of (𝐸(𝜂1), 𝐸(𝜂2)) parameters.We can observe that the
number of problems solved to optimality for all algorithms
and also for the CPLEX solver decreases as the values of
the parameters 𝐸(𝜂1) and 𝐸(𝜂2) increase. This trend clearly
shows the direct impact of 𝜂 parameter in the computational
requirement of all algorithms.

Based on the results of Table 5, the CPLEX solver works
better than PTA and EAA for solving instances with small
values of (0.5, 0.5) for (𝐸(𝜂1), 𝐸(𝜂2)), but, for the other values
of these parameters, the two algorithms work better than
the CPLEX solver, and the difference turns more remarkable
as the value of these parameters increases. A similar trend
exists between CPLEX solver andMFSA, but the difference is
that MFSA works better than CPLEX solver when the value
of at least one of the parameters 𝐸(𝜂) is more than one.
No consistent trend can be observed between MDAA and
CPLEX solver. The results show that they work almost the
same for most settings of 𝐸(𝜂) parameters.

Comparing the results of the algorithms with each other
shows that PTA works better than the other three algorithms
for all settings of 𝐸(𝜂) parameters. We can also observe that
EAAworks better than the other two algorithms,MDAA and
MFSA, for all settings of 𝐸(𝜂) parameters except for (0.5, 0.5).
Finally, MDAA works better than MFSA for the first four
settings but not for the other settings. In all these cases, the
difference between the algorithms turns more remarkable as
the parameters 𝐸(𝜂1) and 𝐸(𝜂2) increase.

By ignoring a few exceptions, the results of the table show
that, as the values of 𝐸(𝜂) parameters increase, the average
completion time of the project increases too. This trend is
of course consistent with the expectation. However, as the
results show, no consistent rate of change can be found here.

9.4. Results Categorized Based on Number of Nonrenewable
Resources. Table 6 shows the number of instances of group II
solved to optimality by each method. In addition, the average
completion times of the projects (𝑆𝑛+1) have been presented
in the last column of the table. In this table, instances are cate-
gorized based on the number of nonrenewable resources. We
can observe that, as the number of nonrenewable resources
increases, the effectiveness of the algorithms and the CPLEX

solver decreases.This trend clearly shows the direct impact of
this parameter in the degree of difficulty of each instance.

Based on the results in Table 6, for the instances with
one or two nonrenewable resources, the four algorithms and
the CPLEX solver can be ranked as PTA, MDAA, EAA,
MFSA, and CPLEX solver in terms of their effectiveness,
with PTA being the most effective algorithm and the CPLEX
solver being the least effective. For the instances with four
nonrenewable resources the order is slightly different and it
is as PTA, EAA, MDAA, MFSA, and CPLEX solver. We also
observe that the difference between the algorithms and also
between them and the CPLEX solver gets more remarkable as
the number of nonrenewable resources increases.

The results of the table show that, as the number of
nonrenewable resources increases, the average completion
time of the project increases too. This is the trend that is
expected.

9.5. Durations of Solving Processes. In addition to the number
of problems solved to optimality, we observed the execution
time of the algorithms. Figures 2 and 3 plot the solving
time of the instances of groups I and II by each algorithm
and by the CPLEX solver, respectively. In every plot of both
figures, related to each instance, there is a dot that its color
illustrates the related solving time according to the legend.
Instance sets in the plots are separated along horizontal
axis. In Figure 2, the related area of each set in each plot
contains nine rectangles, each of which has its own setting of
(𝐸(𝜂1), 𝐸(𝜂2)). In Figure 3, the related area of each set in each
plot contains three rectangles. The number of nonrenewable
resources increases from one rectangle to the next one as we
go up along the vertical axis. Each of the rectangles in every
plot of both figures shows the solving time of 20 instances. So
the plots visually demonstrate the capability of the algorithms
and the CPLEX solver for solving the instances with different
parameters. In both figures, the plots have been ordered from
the brightest to the darkest. We can observe that, in both
figures, the PTA has the brightest plot and the CPLEX solver
has the darkest plot. This means that the PTA has the fastest
and the CPLEX solver has the slowest speed among all.

10. Conclusions

In this paper we introduced and studied RCPSP-NR prob-
lem. We customized four fundamental branch and bound
methods of RCPSP for RCPSP-NR, including precedence tree
algorithm (PTA), extension alternatives algorithm (EAA),
minimal delaying alternatives algorithm (MDAA), andmini-
mal forbidden sets algorithm (MFSA).We introduced several
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Figure 2: Solving time of instances of group I by each algorithm and also CPLEX solver.
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Figure 3: Solving time of instances of group II by each algorithm and also CPLEX solver.

branching, bounding, fathoming, and dominance rules in the
customized methods, including the ones extracted from the
original methods of RCPSP and used without any change
or after customization and the ones designed specifically for
RCPSP-NR.

We performed a comprehensive computational experi-
ment using all of the four proposed algorithms and reported

the results. We also used CPLEX solver in the analyses
and comparisons. We generated and used different instances
with different numbers of activities, numbers of nonrenew-
able resources, and numbers of procurement periods of
nonrenewable resources. Analyses showed that these three
parameters affect the relative performance of the algorithms
and the CPLEX solver with respect to each other. In this
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regard, each algorithm revealed better performance for some
settings of the parameters and they generally performed
better than the CPLEX solver in most of the settings.
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