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Abstract. 
This paper is concerned with the asymptotic behavior for stochastic Gilpin-Ayala competition system. The sufficient conditions for existence of stationary distribution and extinction are established. And a certain asymptotic property of the solution is also obtained. A nontrivial example is provided to illustrate our results.



1. Introduction
One of the most common phenomena considering ecological population is that many species which grow in the same environment compete for the limited resources or in some way inhibit others’ growth. It is therefore very important to study the competition models for multispecies. It is well known that one of the famous models is the following classical Lotka-Volterra competition system:
						
					where  represents the population size of species  at time , the constant  is the growth rate of species , and  represents the effect of interspecific () or intraspecific () interaction. The Lotka-Volterra models have often been severely criticized. One disadvantage of Lotka-Volterra models is that in such a model, the rate of change in the density of each species is a linear function of densities of the interacting species. In order to yield significantly more accurate results, Gilpin and Ayala proposed the the following Gilpin-Ayala models; detailed studies related to the model may be found in [1]:
						
					where  are the parameters to modify the classical Lotka-Volterra model.
On the other hand, population systems are inevitably affected by environmental noise. It is therefore useful to reveal how the noise affects the population systems. Recall that the parameter  in (2) represents the intrinsic growth rate of the population. In practice we usually estimate it by an average value plus an error which follows a normal distribution; then the intrinsic growth rate becomes
						
					where    are Brown motions with  and  represent the intensities of the noise. As a result, system (2) becomes the stochastic Gilpin-Ayala system as follows:
						
					and we impose the following condition:
						
The stochastic Lotka-Volterra model has been extensively studied due to its universal existence and importance; see [2–10]. More recently, the existence of stationary distribution and extinction of stochastic Lotka-Volterra system have received a lot of attention, which can give a good explanation of the recurring phenomena in population system. Under what conditions can a stochastic Lotka-Volterra system has a stationary distribution? It is an open topic until very recently Mao [11] gave a positive answer. Since then, this topic has received a lot of attention; the readers are referred to [11–14]. In addition, the asymptotic behavior of ,   for various stochastic Lotka-Volterra systems has been considered by many authors [4, 5, 10, 12], which is an important and useful property on asymptotic estimation for corresponding population systems.
However, these properties for stochastic Gilpin-Ayala system (4) have not been investigated, which remain an interesting research topic. We aim to establish new results on these properties for system (4). It is well known that the stochastic Gilpin-Ayala system (4) is a highly nonlinear system; the method for classic Lotka-Volterra system cannot be directly applied to system (4). By the Lyapunov methods, and some techniques to deal with the nonquadratic item, sufficient criteria are established which ensure the existence of a stationary distribution and extinction. By using some stochastic analysis techniques, an asymptotic property for system (4) is obtained.
2. Notation
Throughout this paper, unless otherwise specified, let  be a complete probability space with a filtration  satisfying the usual conditions (i.e., it is increasing and right continuous while  contains all -null sets). Let  be a n-dimensional Brownian motion defined on the probability space. If  and  are real numbers, then  denotes the maximum of  and , and  stands for the minimum of  and . If  is symmetric, its largest and smallest eigenvalues are denoted by  and . Let  be the positive equilibrium of the deterministic Gilpin-Ayala competition system (2), that is, the solution of the following equation:
						
					In the same way as Mao et al. [8] did, we can also show the following result on the existence of global positive solution.
Lemma 1.  Assume that condition (5) holds. Then, for any given initial value , there is a unique solution  to system (4) and the solution will remain in  with probability 1; namely,
							
						for any .
Lemma 2.  Let condition (5) hold. Then, for any  and any given initial value , there exists a constant  such that
							
The proof of the lemma is rather standard so it is omitted.
3. An Asymptotic Property
The main aim of this section is to consider the large time behavior of ,  . To this end, we consider two auxiliary stochastic differential equations as follows:
						
					Then it follows from comparison principle (see [15]) that
						
Lemma 3.  Let condition (5) hold. Then the solution to system (9) has the following property:
							
The proof is similar to Li et al. [5] and is omitted here.
Theorem 4.  Let condition (5) hold and  be the global solution to system (4) with any positive initial value . Assume moreover that
							
						Then the solution  of system (4) has the following property:
							
Proof. 
          Let  be  for simplicity. By virtue of Lemma 3 and (11), we have ,  ,  . Thus it remains to show that ,  . It is sufficient to show
							
						By Ito’s formula,  satisfies
							
						A simple computation shows that
							
						The well-known Hölder inequality yields
							
						For , it follows from the inequality  that
							
For , set
							
						Substituting these inequalities into (16) yields
							
						Similarly, we get
							
						Substituting (21) and (22) into (16) yields
							
						where  is the solution of the following system:
							
						A simple computation shows that
							
						Using the property of Brownian motion, we conclude that
							
						It is easy to see that if , then we have
							
						Besides, it follows from Lemma 3 that
							
						The required assertion (15) follows by letting  on both sides of (25) and using conditions (26)–(28). The proof is therefore completed.
4. Stationary Distribution
The main aim of this section is to study the existence of a unique stationary distribution of the system (4). Let us prepare a known lemma (see Hasminskii [16, pp. 106–125]). Let  be a homogeneous Markov process in  described by the following stochastic differential equation:
						
					The diffusion matrix is
						
					To be more precise, let  denote the probability measure induced by , that is
						
					where  is the -algebra of all the Borel sets .
Lemma 5 (see [16]).  We assume that there is a bounded open subset  with a regular (i.e., smooth) boundary such that its closure , and consider the following: (i)in the domain  and some neighborhood, therefore, the smallest eigenvalue of the diffusion matrix  is bounded away from zero;(ii)if , the mean time  at which a path issuing from  reaches the set  is finite, and  for every compact subset . And throughout this paper one sets . 
We then have the following assertions. (1)The Markov process  has a stationary distribution  with density in , such that, for any borel set ,
										(2)(ergodic property) Let  be a function integrable with respect to the measure . Then
										
Remark 6. The proof is given by [16] in detail. Exactly, the existence of stationary distribution with density is referred to Theorem 4.3 on page 117 while ergodic property (33) is referred to Theorem 4.2, page 110.
Theorem 7.  Let condition (5) hold and  be the global solution to system (4) with any positive initial value . Assume that there exists  such that
							
						Then there is a stationary distribution for system (4) and it has the ergodic property.
Proof. By Lemma 5, it suffices to prove that there exists some neighborhood  and a nonnegative -function  such that the diffusion matrix  is uniformly elliptical in  and, for any ,  is negative (for details refer to [11]).
Applying Itô’s formula to  yields
							
						If , since , for , then
							
						If , then
							
						Substituting (37) and (38) into (36) yields
							
						By the inequality , we have
							
						Note that ,  , and
							
						Then the ellipsoid 
							
						lies entirely in . Let  be a neighborhood of the ellipsoid such that, for any , . We therefore have verified condition (ii) in Lemma 5.
Now we begin to verify condition (i) in Lemma 5. It is easy to see that . If , then there exists  such that . This implies that . Then we have , which contradicts the fact that . Noting that  is a continuous function of , we therefore have
							
						This immediately implies condition (i) in Lemma 5. The proof is completed.
Now we denote by  the stationary distribution. The mean vector of  is important and useful information on population systems, from which we can infer asymptotically the mean of  and the size of each species. If we can show that , then the mean vector  is well defined. In this case, the ergodic theory stated above implies that 
						
Theorem 8.  Let assumptions in Theorems 4 and 7 hold. Then
							
Proof. The proof is composed of two parts. The first part is to show the well-definition of  by dominated control convergence theorem. The second part is to prove assertion (45). Let  for simplicity.
By the ergodic property of stationary distribution, for ,  , we have 
							
						The dominated convergence theorem yields that 
							
						It follows from Lemma 2 that 
							
						Letting  yields
							
						That is to say, for any , the functions  are integrable with respect to the measure . The well-definition of  follows by letting  in (49) straightforward.
Now we process to show assertion (45). For , simple computation shows that 
							
						The well-known Hölder inequality yields 
							
						where . This implies 
							
						The well-known Hölder inequality yields
							
						This implies
							
						By the law of strong large numbers for martingales and Theorem 4, letting  on both sides of (54) yields 
							
						which is the required assertion (45).
5. Extinction
One of the most basic questions one can ask in population dynamics is extinction, which means a species will be doomed. The interesting question is can the exponential extinction rate be estimated precisely? In many cases, we need to know the extinction rate of the species in order to have a suitable policy in investment and to have timely measures to protect them from the extinct disaster.
Theorem 9.  Let condition (5) and ,  , hold and  be the global solution to system (4) with any positive initial value . Then the solution  to system (4) has the property that
							
						That is, the population will become extinct exponentially with probability one and the exponential extinction rate of the th species is .
Proof. Let  for simplicity. It follows from Itô’s formula that
							
						where  is the real-valued continuous local martingale vanishing at , with the quadratic variation . Dividing both sides by  yields
							
						Using the law of strong large numbers for martingales (see [17]), we can claim that 
							
						Letting  yields 
							
						This shows that, for any  and , there is a positive random variable  such that, with probability one, 
							
						It follows that 
							
						which means 
							
						The required assertion (58) follows by letting  on both sides of (54).
Remark 10. Theorem 9 showed that when the perturbation is large in the sense that ,  , the population will be forced to expire. And the exponential extinction rate is given precisely in terms of system’s coefficients.
6. Numerical Simulations
In this section, to illustrate the usefulness and flexibility of the theorem developed in previous section, we present a numerical example.
Example 11. Consider a 2-dimensional stochastic Gilpin-Ayala system as follows:
							
						System (64) is exactly system (4) with , , , , , , and ,  . We compute that  and . The existence and uniqueness of the solution follows from Lemma 1. We consider the solution  with initial data  and . Let  for simplicity.
(i) : simple computation shows that
							
						By Theorem 4, the solution to system (64) has the following property 
							
						Figures 1 and 2 show the stochastic trajectories of  and  generated by the Heun scheme for time step  for system (64) on , respectively.
Choosing  and  , we further compute that 
							
						By virtue of Theorem 7, system (64) has a unique stationary distribution. Figures 3 and 4 show the stochastic trajectories of  and  generated by the Heun scheme for time step  for system (64) on , respectively.
(ii) Consider .
Note that , , by virtue of Theorem 9, system (64) is exponentially extinctive. Figures 5 and 6 show the stochastic trajectories of  and  generated by the Heun scheme for time step  for system (64) on , respectively.
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Figure 3






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
				
		
		
			
				
		
		
	


Figure 4
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Figure 6


7. Conclusion
In this paper, we have investigated the asymptotic behavior for the stochastic Gilpin-Ayala competition system. Firstly, by utilizing stochastic analysis techniques and the stochastic comparison principle, the larger time behavior ,  . has been researched. Secondly, by applying some techniques to deal with the nonquadratic item, sufficient conditions are obtained under which there is a stationary distribution to the system. Based on the condition, the estimation on the mean of the stationary distribution is presented. Finally, the sufficient criteria for extinction are established.
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