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Different aspects of assembly line optimization have been extensively studied. Part feeding at assembly lines, however, is quite an
undeveloped area of research. This study focuses on the optimization of part feeding at mixed-model assembly lines with respect to
the Just-In-Time principle motivated by a real situation encountered at one of the major automobile assembly plants in Spain. The
study presents a mixed integer linear programming model and a novel simulated annealing algorithm-based heuristic to pave the
way for the minimization of the number of tours as well as inventory level. In order to evaluate the performance of the algorithm
proposed and validate the mathematical model, a set of generated test problems and two real-life instances are solved. The solutions
found by both the mathematical model and proposed algorithm are compared in terms of minimizing the number of tours and
inventory levels, as well as a performance measure called workload variation. The results show that although the exact mathematical
model had computational difficulty solving the problems, the proposed algorithm provides good solutions in a short computational

time.

1. Introduction

In the contemporary business environment, assembly line
designs have been following mixed-model assembly to
respond to a variety of products. In general, in a mixed-model
assembly line, for different versions, there are likely variations
associated with base products.

In this era, and for automotive manufacturers in partic-
ular, mixed-model assembly lines are employed to produce
a variety of submodels of the same automobile. Despite the
many advantages of mixed-model assembly lines and its
widespread use across the manufacturing plants, supplying
these high-variant mixed-model lines has become a critical
issue for managers as a huge number of parts/materials must
be transferred to a location near the line (at stations) [1].
Moreover, a strong desire to provide an efficient Just-In-Time
(JIT) parts supply, which aims to synchronize the supply
of parts with their demand while avoiding shortages, has

become another difficulty as any shortage of parts might
result in line stoppage and presumably an interruption of
the production process. To deal with the challenges of
this type as well as increase the reliability and flexibility
of the part feeding process, a new concept—the so-called
“supermarket”—was introduced, and it is utilized by many
world-class manufacturers.

The supermarket is a decentralized logistics area near
the assembly line where all parts/materials are sorted. This
decentralized in-house logistics area enables the manufac-
turers (especially those who are dealing with high-volume
production) to ensure accessibility for a reliable small-lot JIT
part delivery in assembly lines [2]. In particular, based on
predefined production timelines, parts in the supermarket
are transported to the shop floor in small bins and by means
of tow trains (consisting of a small towing vehicle and a few
wagons).



Although applying the supermarket concept has several
advantages, planning the in-house logistics concept is a com-
plex operation that could be implemented in four interrelated
decision problems, as follows [3-5].

(1) Decisions regarding the number and location of
decentralized in-house logistics areas (supermarket).

(2) Determining the number of tow trains in each super-
market as well as assigning the line segments to them,
which can be considered as a tow train vehicle routing
problem.

(3) Determining a Delivery Schedule (DS) for each tow
train.

(4) Decisions regarding the bins and the quantity to be
loaded on a tow train for each tour, which is known
as the Tow Train Loading (TTL) problem.

The last two problems, which address optimal loading of
tow trains and optimal delivery schedule, are most likely to
be considered the main optimization criteria in the context
of the Assembly Line Part Feeding Problem (ALPFP), which
is the focus of this paper.

The rest of the paper is structured as follows. In Section 2,
a brief literature review is provided and an explanation of the
empirical case study in an automobile assembly plant is given
in the third section. In Section 4, a new mathematical model
is introduced to provide context for the novel simulated
annealing algorithm-based heuristic presented in the fifth
section. The computation results for both the mathematical
model and the algorithm are reported in Section 6. Finally,
conclusions and future research direction are discussed in
Section 7.

2. Literature Review

According to Emde and Boysen [3], there are less than a
handful of studies addressing the Delivery Schedule (DS) and
Tow Train Loading (TTL) problems in the literature. While
some similarities can be found in previous studies, such as
fleet sizing [6] and inventory routing problems [7], none of
them cover the DS and TTL problems. Those few remarkable
and recent studies related to the ALPFP are reported below.
Emde et al. [5] studied the tow train loading (TTL)
problem by introducing an exact polynomial-time solution
while the routes and schedule were given and the tugger
capacity was assumed to be limited. The aim of this study was
to minimize the inventory level near the line by optimally
loading the tow trains while shortage was not allowed. Rao
et al. [8] presented an optimization model for scheduling the
single vehicle (comparable to tugger train) in order to deliver
parts from the storage centre to the workstations in a mixed-
model assembly line. The aim of the study was to minimize
the total inventory holding and travelling costs by suggest-
ing and applying a backward-backtracking approach and a
hybrid genetic algorithm and simulated annealing (GASA).
Emde and Boysen [4] presented an exact solution procedure
(which was a nested dynamic programming algorithm) with a
polynomial run time to cope with the routing and scheduling
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problem jointly, and the aims of the study were considered to
be the minimization of the stock level at the assembly line as
well as the number of tow trains. Golz et al. [1] introduced
a heuristic procedure to deal with routing, scheduling, and
the tow train loading problems simultaneously. This study
took the supermarket concept into consideration, and the
main aim was to minimize the number of drivers (those
involved in a part feeding process) as a consequence of
minimizing the number of vehicles while shortage was not
allowed. Choi and Lee [9] treated the routing, scheduling,
and tow train loading problems jointly by presenting a local
search procedure. The presented procedure was tested in a
real-world case in the automobile industry with the aim of
minimizing the deviation of optimal delivery times per bin
delivery.

A review of the literature revealed that while there are few
studies in the area of ALPFP with the supermarket concept
and increasing attention has been paid to this topic by the
scientific community in the past year, there is no reported
study treating the DL and TTL problems simultaneously
while considering the number of tours and inventory level as
objectives. Therefore, this study is aimed at dealing with the
part feeding problem at mixed-model assembly lines through
solving both decision problems (T'TL and DS) simultaneously
based on the JIT-supermarket concept and dealing with two
conflicting objectives (number of tours and inventory level).

The ALPFP studied here can be described as a set of bins
in which all bins are packed into a number of wagons with
respect to possible objectives. In this sense, the ALPFP can be
considered as a special case of the bin packing problem, where
a set of items should be packed into a minimum number of
bins. In addition, there are also some similarities between the
ALPFP and the dynamic lot sizing problem. In the dynamic
lot sizing problem, the main aim is to find the best order
amount of products while the demand is known in each
period. Furthermore, the order amount of products in this
problem varies, and there is a setup cost for each order and
inventory holding cost per item. However, in ALPFP, the aim
is to find the best order amount of different parts in each
tour assuming that the total demand of each part is known in
the planning horizon. In fact, in ALPFP, the order amounts
vary in different tours and depend on the decisions made in
previous tours.

According to Eilon and Christofides [10] and Parrefio
etal. [11], the bin packing problem is considered to be NP-
hard in the strong sense for the one-dimensional bin packing
problem. Leaving the multidimensional analysis to one side,
the dynamic lot sizing problem, which is a generalization of
the economic order quantity model, has also been proven
to be NP-hard in most cases, including general objective
functions [12]. Due to the complexity of the ALPFP, which
is a combination of the bin packing and the dynamic lot
sizing problems, the key focus of the present research is on
designing an efficient algorithm to resolve this challenge.
Thus, a simulated annealing algorithm, which combines with
some new priority heuristics, is presented here. Moreover,
a new mathematical model is also provided to clarify the
ALPFP as well as support the algorithm presented.
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FIGURE 1: A straight assembly line view with the supermarket-concept.

3. Case Study Explanation and
Problem Description

This study is motivated by a situation on the shop floor
at the Volkswagen (VW) in Navarra assembly plant and is
based on two mixed-model assembly lines at VW-Navarra.
An overview of the part supply process is as follows.

In VW-Navarra, parts are categorized as high demand
and low demand. There is a main warehouse and one
supermarket, which is close to each assembly line. According
to the VW-Navarra part feeding policy, three strategies are
available to supply the assembly lines. The first is transporting
the parts from the warehouse directly to the assembly line in
big containers; the second is transporting the parts in small
bins directly from the warehouse to the assembly line; the
third is transporting the parts to the supermarket (in the
case where excessive operation is required, e.g., repackaging
the big containers into small bins to have frequent small-lot
deliveries by means of two trains) and supply the assembly
stations through the supermarket. Since a big portion of the
parts used in the assembly operation is supplied from the
supermarket in small bins, the focus of this study is on the
third supplying process.

Small bins are fed to the assembly line by means of tow
trains, and wagons are loaded with bins in the supermarket.
A tour begins at the supermarket, goes to the assembly plant
according to a predefined schedule in order to deliver the
tull bins to the corresponding assembly stations, and then
collects the empty bins. The empty tow train returns to the
supermarket to be reloaded for the next tour. The tours
frequently take place during each working shift with the aim
of reducing the inventory level in the assembly line.

The production plan is usually known a few days before
production, and thus the exact consumption rate of each
part between two consecutive visits at each station can
be calculated for the planning horizon. Consequently, bins
can be loaded on tow trains in the supermarket with a
fixed and predetermined consumption rate for each part,
which consequently enables reliable scheduling in the defined
planning horizon. The planning horizon is daily and the
number of tours each day is 15 (5 tours per shift). The storage
capacity restriction is known for each station and all the
parts are delivered in small, standardized bins with a specific
capacity for each part.

The capacity limit for each wagon of a tow train is
almost 50 bins, and no more than two wagons are allowed
per tow train. Furthermore, each assembly line is supported

by a single supermarket, which makes it easier and more
practical by avoiding any interruption since all the requests
and deliveries are managed at a single place near the assembly
line.

In addition, the assembly lines are two-sided where both
sides of the line (left and right) are used in parallel. A
schematic view of the assembly line with a single supermarket
is represented in Figure 1.

4. Description of the Model

In this section, an optimization model, which is a mixed
integer linear programing (MILP) model, is presented based
on the VW-Navarra feeding process. The MILP model is a
model for optimally loading tow trains and scheduling the
deliveries. The improvement criteria in this model are the
number of tours and the inventory level. It is worth noting
that the improvement criteria and their priority are selected
according to our experience at VW-Navarra. The indices,
parameters, and decision variables for the MILP model are
presented in Table 1.

The MILP Model. Consider the following:

n NT

NT
Min  Z=a) Y, +pY YIL,. )
t it

Subject to
NT NT
Ydyxty+1g2Yd, Vi=1,...,n )
t t
dyxt,+1L;_,—-d, =1L, Vi=1,...,n t=1,...,NT
(3)
n
Ydyxt <A Vt=1,...,NT (4)

i=1

dyxt,+IL; , <C; Vi=1,...,n,t=1,...,NT (5)

T, <TxY, Vi=1,..,n t=1,...,NT (6)

T, €10,7] Vi=1,...,n t=1,...,NT 7)

P, >0 and integer Vi=1,...,n, t=1,...,NT (8)



IL, >0 Vi=1,...,m, t=1,...,NT 9)

Y, e{0,1} Vt=1,...,NT. (10)

The first term of the objective function denotes the
number of tours and the second term deals with the inventory
level. It should be noted that shortage is not allowed.

The first constraint (2) ensures that the total quantity of
reference i that is transported to the assembly line meets
the total demand for reference i. Equation (3) shows the
inventory level of reference i on each tour and ensures that
no stock-outs occur on any tour. Equation (4) ensures that the
number of bins assigned to each tow train on each tour does
not exceed the capacity of the tow train. Equation (5) ensures
that the number of bins delivered on each tour in addition to
the available inventory is not more than the capacity of the
respective station for reference i on each tour. Equation (6)
ensures that any bin can be delivered on a tour if the tour
does not exist. Constraints (7)-(10) define the domain of the
variables.

5. Solution Methodology

Due to the complexity of ALPFP, it is almost impossible
to solve the large-scale problems by using exact optimal
approaches. Consequently, the use of heuristic and meta-
heuristic approaches is one of the most applied solutions for
this dilemma. Moreover, according to Fathi et al. [13] and
Gourgand et al. [14], most of the constructive procedures
are based on priority heuristic rules, and heuristics are the
foundation of metaheuristic approaches. Therefore, a number
of studies can be found in the literature in which priority
heuristic rules are used as the foundation of metaheuristics
such as Ant Colony Optimization (ACO), Genetic Algorithm
(GA), and Simulated Annealing (SA) in order to cope with
different combinatorial optimization problems. For instance,
Baykasoglu [15] proposed an SA algorithm that combines
several priority heuristics while Baykasoglu and Dereli [16]
employed priority heuristics as the base of ACO algorithm.
Furthermore, Kazemi et al. [17], Baykasoglu and Ozbakir [18],
and Haq et al. [19] combined the priority heuristics with GA.
In this study, in order to tackle the ALPFP, we propose
a simulated annealing algorithm that is combined with some
new priority heuristics. The SA-based heuristic proposed here
is presented in two parts. In the first part, some new priority
heuristics are presented, and in the second part, these priority
heuristics are used as the main core of the SA algorithm.

5.1. The Priority Heuristics. In this study, 10 priority heuristics
are introduced, and they can all be defined as a single-
pass heuristic because only one feasible solution is generated
by each of them. Using these heuristics, references are
prioritized so they can be assigned to the tow train on each
tour based on their particular specifications. Most of the
priority heuristics proposed are straightforward; however,
the one that tries to prioritize the references based on their
criticality requires some further explanation.

In this priority heuristic, calculating the criticality of each
reference is mainly done based on the key concept for the
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TABLE 1: Notations for the MILP model.

I Set of references

i Index of references (i € I)

T  Setof tours

t  Indexoftours (t € T)

IL,, Inventory level of reference i at the beginning of the first tour
A Capacity of tow train (volume)

Capacity of correspondence station to reference i (volume)
d, Demand of reference i on tour ¢

n  Number of references

NT Number of tours

«  Importance coefficient for the first objective

B Importance coeficient for the second objective

P, Amount of reference i transported on tour ¢

IL, Inventory level of reference i on tour ¢

Y, Equals one if tour ¢ is carried out: otherwise, equals 0

7, Replenishment rate of reference i on tour t, (P,/d;,)

T  Maximum replenishment rate (to be fixed, e.g., 2)

well-known Critical Path Method (CPM) used in project
management studies. The motivation for applying the CPM
concept in ALPFP can be explained in this way: in project
management, all the tasks that are on the critical path (longest
path through the network) have a high priority to perform,
and each delay in their performance results in postponing
the entire project. Similarly, this criticality concept could have
the same importance in the ALPFPs. This would mean that if
suitable references are not assigned to the tow trains on each
tour, there might be a greater number of tours, which will lead
to increases in expenses and the use of human resources.

In such circumstances, the primary aim of the proposed
heuristic is to find and assign the critical references to the
tow train(s) on each tour. In order to know the criticality of
the references, a weight is calculated for each reference, and
the higher weight shows the importance of a reference, and it
should be assigned prior to the others.

The weight of each reference is calculated according to
(11). The rationale behind the formula proposed in (11) is
that a reference that has a higher portion of unassigned
bins should get a higher weight as compared to the others,
and it should be assigned earlier. Otherwise, it may create
a bottleneck, which can cause a greater number of tours as
follows:

_ TB(i) - TDB (i)

w(i) = TB() + 1 Vi=1,...,n, 11)

where w (i) is the weight of reference i, TB (i) is the total
number of bins for reference 7 that should be delivered within
the planning horizon, and TDB (i) is the total number of
delivered bins of reference i.

A list of proposed priority heuristics and their corre-
sponding details is presented in Table 2.

5.2. Simulated Annealing-Based Heuristics. Although there
are a variety of metaheuristics in the literature that could be
used to address the ALPFP, simulated annealing (SA) was
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TABLE 2: Proposed priority heuristics.

Number Name of the heuristic Symbol Definition

1 Most critical reference MCR Max.: w(i) Vi=1,...,n
2 Least critical reference LCR Min.: w(i) Vi=1,...,n
3 Smallest reference number SRN Smallest i Vi=1,...,n
4 Greatest reference number GRN Greatest i Vi=1,...,n
5 Maximum storage capacity MaSC Max.: C; Vi=1,...,n
6 Minimum storage capacity MiSC Min.: C; Vi=1,...,n
7 Maximum demand MaD Max.: g d;, Vi=1,...,n
8 Minimum demand MiD Min.: g d;, Vi=1,...,n
9 Maximum slack MaS Max.: NT - [TB(@)/C,]" Vi=1,...,n
10 Minimum slack MiS Min.: NT - [TB@)/C,]" Vi=1,...,n

selected in this study because of its simplicity and effective-
ness in dealing with complicated optimization problems [20-
22].

Simulated annealing (SA) is a family of stochastic neigh-
bourhood search methods that are a useful tool for solving
large-scale combinatorial optimization problems [23]. The
main characteristic of SA is to avoid becoming trapped
at a local optimum as it uses a random search that not
only accepts a neighbour with a better objective function,
but also it accepts a neighbouring solution with a worse
objective function by using an acceptance probability [24].
This acceptance probability (P;) is calculated according to
(12), which is from Wang et al. [25] as follows:

P, = exp<aFZ>,

where T is temperature and 0Z is the change in the value of
the objective function between the two solutions.

In each iteration, if the neighbouring solution is better
than the current solution, the neighbouring solution is
directly accepted. However, if the neighbouring solution is
worse than the current solution, a random number between
[0,1] is uniformly generated. If the generated number is
smaller than or equal to P,, the worse solution will be accepted
[26]. Moreover, the value of T' in each iteration is computed
according to the cooling schedule presented as

(12)

Tyyy = aTy, (13)

where « is a constant value between zero and one, though it
is usually close to one; in this study it is set to 0.95.

Additionally, the initial temperature (T})) is calculated
according to the following:

AZ

0= —m) (14)

where AZ is the difference between the worst and best results
for the objective function of a given problem (Z,,,.« — Zpest)-
P, is the initial worst acceptance probability that is normally
adjusted between [0, 1] but very close to one; in this study it
is set to 0.98.

There are two other parameters to be set, which are the
number of iterations at each temperature (inner loop) and the

final temperature (Ty), which is known as the termination
criterion of the outer loop. In this study, the number of
iterations at each temperature is defined as being equal to
the number of part references in each problem, and the final
temperature is set to be one. At the same time, both the inner
loop and outer loop can also be terminated earlier if the
value of the objective function for five consecutive solutions
remains unchanged.

5.2.1. Hybridization of Priority Heuristics and SA. In this
study, the SA algorithm is combined with the proposed
priority heuristics so that a string of heuristics is created and
the part references are selected for assignment to the tow
train on each tour according to the respective heuristic on
the string. In fact, the algorithm tries to find the best amount
of each reference that should be assigned to the tow train on
each tour, and this aim can be achieved through finding the
best combination of different heuristic rules in the created
solution string. The length of the string is equal to the total
number of bins that should be delivered and each element of
the string is a number that refers to a priority heuristic with
the same number in Table 2. A schematic view of the solution
string, for an example, with 10 total bins is presented in
Figure 2, where each element of the string includes a number
that refers to a priority heuristic with the same number given
in Table 2. For instance, the first element in the solution string
in Figure 2 is 3, which refers to the smallest reference number
(SRN).

After each iteration, the objective function is calculated
for the current solution string according to (15), in which
both objectives are combined into a single objective function
where the lexicographic method is used to prioritize the
objectives, and thus a much higher importance is assigned to
the first objective (minimizing the number of tours) than the
second objective (minimizing the inventory level) due to the
real need in the case under study (VW-Navarra), which we
believe to be the same in a number of plants as follows:

Obj. = af, (x) + Bf, (x), (15)

where f,'n(x) is the normalized mth objective value calculated
by (16), while f,;, and f,,., are the least desirable value and
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FIGURE 2: Solution string.

the largest value for the corresponding objective, respectively.
Moreover, f(x) is the current value of the following objective:

i f (x) - fmin
= 16
fm (x) fmax - fmin ( )

The solution string is modified iteration by iteration by
comparing the calculated objective function for the cur-
rent solution string and the neighbouring solution string.
Moreover, to generate a neighbouring solution, two mutation
operators, namely, INSERT and SWAP, are employed with a
probability of 0.1. According to Homayouni and Tang [27],
SWAP is a commonly used operator in the area of scheduling
that helps to generate neighbouring solutions by interchang-
ing the elements of the solution string. Moreover, the INSERT
operator is also applied in the algorithm presented here
to replace the elements of the solution string with a new
value. Examples of both the INSERT and SWAP operators are
shown in Figure 3.

To better understand the SA-based heuristics proposed
here, an algorithmic description of the solving procedure is
presented in the form of pseudocode in two parts. In the
first part, there has been an attempt to minimize the number
of tours while the initial number of tours is given, and bins
are assigned to the tow trains on each tour according to the
created solution string (see Algorithm 1). The second part
starts while the minimum number of tours found in the first
part is an input, and the algorithm tries to minimize the
inventory level through assigning the bins to the tow trains
as Just-In-Time as possible with the use of the given solution
string (see Algorithm 2).

Notations used in the proposed heuristic and their expla-
nations are given in Table 3.

In the second stage of the algorithm, the heuristic
seeks to minimize the inventory level in the line through
implementing the JIT part supply system. In this regard, all
unnecessary bins on each tour are transferred to the latest
possible available tour (the tour which is not already removed
in the first stage).

For a better understanding of the proposed algorithm, a
simple illustrative example is solved in the next subsection.

5.3. Illustrative Example. To show the solving process of the
proposed algorithm, a simple example is presented and solved
as follows.

The number of tours and capacity of the tow train are
assumed to be six and ten, respectively. It is also assumed
that each reference corresponds to one station, and all the
demands and the capacity of the stations are counted based on
the bins. The information for the illustrative example is given
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TABLE 3: Notations used in the pseudocode.

h Nearest available tour before the tth tour
TB(i) Total number of bins for reference i
AB, Number of assigned bins of reference i on tour ¢
TDB(i)  Total number of delivered bins of reference i
(B]* The nearest integers greater than or equal to B
[B]” The nearest integers smaller than or equal to B
AT Set of available tours
NA Number of available tours
FCL(¢) First candidate list on the tth tour
SCL(t) Second candidate list on the tth tour
FICL(t)  Final candidate list on the tth tour
RT(t) Set of consecutive removed tour(s) after the tth tour
OBy Objective function of the new solution
OB Objective function of the current solution
C, Current solution
N, New solution
B, Best solution
. A uniformly generated random number in the range of
(0,1]
NI Number of iterations
TABLE 4: Illustrative example information.
Reference Total demand  Capacity of station Demand/tour
number
1 2 2 0.333
2 5 2 0.833
3 3 2 0.5
4 4 3 0.666
5 8 4 1.333

in Table 4. Moreover, a supposed solution string for solving
the current example is presented in Figure 4.

5.3.1 First Stage

(1) Start the first tour and create the first candidate list,
FCL = {1,2,3,4,5}. According to the demand per
tour in Table 4, one bin of reference 1 to 4 and two
bins of reference 5 should be assigned to the tow train
without any condition. The total assigned bins are six
and there are still four free places in the tow train.
Therefore, the second candidate list (SCL) should be
created and a reference will be selected for assignment
according to the solution string.

(2) SCL = {1,2,3,4,5} and the first element in the
solution string is 4, which is the “greatest reference
number”. Therefore, one bin of reference 5 is assigned
to the tow train. There are still three more spaces on
the tow train and the second element in the string
is 1, which is “most critical reference” The criticality
weight of the references is calculated according to (11)



Mathematical Problems in Engineering 7

3 4 1 7 10 2 6 10 5 1

S~ l

SWAP INSERT

(a) Solution string before applying mutation operators.

(b) Solution string after applying mutation operators.

FIGURE 3: INSERT and SWAP operators.

TaBLE 5: The results of assignment process in the first stage of the
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proposed heuristic.

FIGURE 4: Supposed solution string. Reference number

Tour Sum
1 2 3 4 5
1 1 1+1 1 1+1 2+2 10

and the weightsarew (1) = 0.33, w (2) = 0.66,w (3) = 2 — — — — — —

0.5,w(4) = 0.6,w(5) = 0.55. Therefore, one bin of 3 0+1 1 1+1 0+2 0+2 8

reference 2 is assigned to the tow train as it has the 4 _ 1 _ _ 042 3

highest weight. There are still two more spaces on the 5 N 1 . - - 1

tow train, and the updated SCL includes references 6 . B . . . .

number 1, 3, 4, and 5. The third element of the string

is 1, so therefore the criticality weight of the references

is calculated again and the highest weight belongs to TaBLE 6: Final delivery schedule.

reference 4. Thus, one bin of reference 4 is assigned

to the tow train. The fourth element of the string is Tour Reference number Sum

5, which is “maximum capacity of station” Therefore, 1 2 3 4

one bin of reference 5 is assigned to the tow train. 1 1 2 1 2 9

There is no free space on the tow train and a new tour 2 — — — — — —

should be started. 3 — 1 1 — 1 3
(3) Start the second tour, updating the station capacity =~ 4 1 1 - 2 2 6

and stock level for each reference according to the 5 — 1 1 — 2 4

consumption rate of each reference (demand per 6 — — — — — —

tour). As there are enough inventories for all the
references, the FCL is empty. This means that there

is no candidate to be assigned to the second tour, and (2) As the fourth tour already exists, only the demand for
therefore the second tour can be removed. one tour should be covered in the third tour. Therefore
one bin of references 1and 3 and two bins of references

The assigning process is continued in the same way until 4 and 5 should be transferred to the fourth tour.

all bins are assigned. A summary of the assigning process by

the supposed solution string is given in Table 5. (3) For the same reason, as the fifth tour already exists, the
inventory in the fourth tour only needs to be enough
5.3.2. Second Stage for one tour. Thus, one bin of reference 3 and two bins

of reference 5 should be transferred to the fifth tour.
In the first stage, the minimum number of tours is found to

be four, and in this stage the aim is to minimize the inventory. (4) As all bins are assigned and the number of bins

assigned to the tow train does not exceed the tow

(1) The second tour is removed, so the assigned bins train capacity on any of the tours, the algorithm is
plus the previous inventory in the first tour should terminated.
be enough for two tours, and the extra bins should
be transferred to the next available tour. In such The final delivery schedule, including the number of bins

circumstance, one bin of reference 5 is transferred to  of each reference to be loaded in the tow trains, is given in
the third tour (next available tour). Table 6.
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While T, > 1
For k = 1 to NI
While (i) is not satisfied

NT NT
Y AB,>)d, Vi=1,...n )
t=1 t=1

Start a new tour, m = 1, and create the FCL according to (ii).
i € FCL(t) = IL, < d, (ii)
If FCL is not empty
While FCL is not empty
Select a part reference which is in the FCL and assign as many bins as necessary to
satisfy (iii). Remove the selected reference from FCL.

AB, +1L, > d, (iii)
End while
While Equation (iv) is satisfied
Z AB, < A (iv)

i=1

Create the SCL according to (v).
¢ NT
i € SCL(t) & [AB, +IL,]' <C;n ) AB,, < ) d, V)
p=1 t=1

If SCL is not empty
Use the solution string, select a reference according to the given heuristic on the mth
element of the string and assign one bin of the selected reference to the tow train, m = m + 1.
Else
Update the stock level and capacity in the stations according to (vi) and (vii), respectively.
Terminate the assigning process in the current tour.

IL,, =1L, +AB,-d, Vi=1,...,n (vi)
C =[C-IL,,] Vi=1...n (vii)
End if
End while

Else
Leave the current tour without assigning any bins and update the stock level and capacity
in the stations according to (vi) and (vii), respectively.
End if
End while
Continue the solution process in the second part of the algorithm.
Calculate the objective function
If OBy < OB
C,= N,
Else
Calculate the P, according to (12) and generate the r
Ifr <P,
C, =N,
End
End
Generate a neighbouring solution using the defined mutation operators.
Terminate the process in the current inner loop if C, is the same for 5 consecutive iterations
End if
End for
If C, < B,
B, = C,
End if
Reduce the temperature using the decrement function presented as (13).
Terminate the algorithm if B, is the same for 5 consecutive iteration
End while

ALGORITHM I: First stage: minimizing the number of tours.
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te AT & ) AB,#0 Vt=1,...,NT
i
NA= )t

teAT
While AT is not empty

after the selected tour (NR,) according to (x).

n
teRT(t) & ) AB, =0 Vt=t+1,. .. ,NT

the extra bins. Remove the selected tour from AT.
IL, + AB, > (NR, + 1) x d,,
End while
Fort =NAto2
If (xii) is not satisfied

i NA, < A
£

=
While(xii) is not satisfied

iAB,ﬁeo

Create the FICL according to (xiv).

End while
End if
End for

Identify the AT and NA according to (viii) and (ix), respectively.

Select the first possible tour (which is in the AT) and find the number of removed consecutive tour(s)

Keep as many bins as necessary to satisfy (xi) and transfer the extra bins to the
next available tour. Update all the information related to the current tour and the tour that received

Identify the nearest available tour before the current tour (/) that satisfies (iv) and (xiii).

i € FICL(t) & AB,, + [IL,] > d, n[AB, +1L;]" < C, (xiv)

Use the solution string and select a reference that is in the FICL

and transfer one bin of the selected reference to tour h.

Update the information related to the current tour and the tour that received the selected reference

(viii)

(ix)

x)

(xi)

(xii)

(xiii)

ALGORITHM 2: Second stage: minimizing the inventory level.

6. Computational Results

In order to evaluate the efficiency and effectiveness of
the proposed heuristic, a set of instances, including nine
different problems with different sizes (small, medium, and
large), is generated. Moreover, two real cases taken from
the Volkswagen Navarra plant in Spain are also presented.
All nine generated instances are solved with three different
numbers of tours, meaning that 29 instances are solved in
total. The set of generated instances and the two real cases
studied here can be found at http://www.tecnun.es/departa-
mentos/doi/investigacion/optimizacion.html.

The selected criteria for generating the instances are
summarized in Table 7. All notations in Table 7 are identical
to the notation presented in Tables 1 and 3. Moreover, the
theoretical minimum number of tours (represented by X) is
calculated based on the following:

(TB (i) - 1)
(C-1)

Y TB (i) }

X:Max{M(i)= Vi=1,...,n,

17)

A

It should be noted that the capacity of each wagon of a
tow train (A) is 50 bins and each tow train has a maximum of
two wagons, and in some especial cases three. This limitation
is mainly imposed because of the actual situation in the
assembly area where there is scarce space on the shop floor
and difficult sharp turns. Moreover, the maximum number of
tours in the planning horizon (which is one day) is assumed
to not be more than 24. This limitation (maximum number of
tours per day) is mainly defined based on our experience in
case studies, as a frequency of less than one hour is too much
effort for both drivers and logistics personnel.

All 29 instances are solved by the proposed algorithm
and CPLEX 12.4 to compare and show the efficiency and
effectiveness of the proposed heuristic.

The proposed algorithm was coded in MATLAB 2010b
and both the algorithm and CPLEX-MATLAB interface are
performed on a personal computer with Intel Core i3, a
3.3GHz CPU, and 8GB of RAM. Furthermore, as with
previous studies (e.g., Kang and Kim [28]), a two-hour
running time limitation was applied for CPLEX.

In order to evaluate the performance of the proposed
algorithm, the results from the algorithm and the MILP
model solved by CPLEX are compared with respect to two
improvement criteria (number of tours and inventory level).
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TABLE 7: Selected criteria for generating the instances.

Assumption Large Medium Small

NT X<NT<24 X<NT<24 X<NT<24

n n > 60 30 <n <60 n < 30

C; (TB/24)x3<C; <10 (TB/24)x2<C; <10 (TB/24)x1.5<C; <10

A Zln [TB(i)/NT]* Z,ﬂ [TB(i)/NT]* Zln [TB(i)/NT]*

TB(i) 5 < TB(i) < 50 10 < TB(i) < 75 10 < TB(i) < 100

Moreover, to cover all the possible differences in the solutions
obtained from both the algorithm and CPLEX, a performance
index called Workload Variation (V), presented by Hwang
et al. [29], is also calculated according to (18), in order to
compare the tow trains workload variation. It is obvious that
smaller V value represent smoother workloads as follows:

v o2 U —ﬁ)z) (18)
NT

where LT = fg U,/NT is the average utilization of the total
is the utilization of tow train(s’) ‘on the tth tour. Moreover,
LT, = Y, AB, forallt = 1,...,NT is the total number of
loaded bins on tow train(s) on the tth tour.

The inventory level presented in Table 8 is the Average
Inventory Level (AIL), calculated by

NT n
( t Zi ILit). (19)

AIL =
(NT x n)

The computational results for both the proposed heuristic
and CPLEX are given in Table 8. To facilitate the comparison,
the worst results obtained by the SA-based heuristic relative
to the results from CPLEX appear in bold, and the best are
marked with “*” The notations used in Table 8 are the same
as Table 1.

Due to the importance of the first objective (number of
tours), in Table 8 the comparison of the average inventory
level and variation of tow train workload between both
CPLEX and the proposed algorithm can be made only if the
number of tours is the same.

The analysis of the results given in Table 8 shows that the
proposed algorithm provided the optimum number of tours
in all solved instances. Moreover, it successfully found the
optimum inventory level and variation of tow train workload
in 26 and 27 cases out of 29 solved instances, respectively.
Additionally, although CPLEX could not find the optimum
solution during the limited computation time (2 hours) for
11 instances (which were mostly large-scale problems), the
heuristic presented here found an optimum or very nearly
an optimum solution in almost all the solved instances, and
in a very short computational time. Moreover, in two of the
instances where CPLEX was not able to find the optimum
solution, the SA-based heuristic algorithm found one less
tour as compared to CPLEX. Furthermore, the SA-based
heuristic algorithm also found a better value for the variation
of tow train workload in one of the solved instances.

To facilitate comparison, the percentage error of the
algorithm proposed from CPLEX for the average inventory
level has also been presented in Table 8. It can be observed
that in roughly 89% of the solved samples, the algorithm
found solutions for minimizing the inventory level that were
as good as the solutions provided by the MILP model solved
by CPLEX.

Regarding the real-cases studied here, it is remarkable
that the results of this paper have been productively imple-
mented in VW-Navarra, which has caused the minimization
of the number of tours, the inventory level, or both in the
assembly lines that were under study.

7. Concluding Remarks and Future Directions

In this study, we tried to treat the part feeding problem at a
mixed-model assembly line while considering the supermar-
ket concept. Firstly, the optimization model that is considered
to be a mixed integer linear programing model was presented
based on the actual situation encountered in an automobile
assembly plant. Secondly, an SA-based heuristic algorithm
was presented, and as a part of the algorithm, a set of new
priority heuristics is also presented. In both the MILP model
and the SA-based heuristics, the main decision problems to
solve were tow train loading and delivery schedule while con-
sidering two conflicting improvement criteria with different
levels of importance (the number of tours and the inventory
level).

Both the MILP model and the SA-based heuristics were
tested on two real case studies and a set of generated
instances. The results of the comparisons proved that the
proposed SA-based heuristic is interestingly efficient as it
found a collection of good results in most cases. In fact,
the proposed algorithm found the best number of tours as
compared to the MILP in all the solved instances. Moreover,
it also found good results; around 89% for “average inventory
level” and 93% for “variation of tow train workload.” It is also
interesting to note that although the computational time for
the solved MILP model by CPLEX was significantly higher,
the proposed heuristic found a good solution for almost all
of the solved instances in a very short time.

This study can serve as a starting point for further
research in the area of the assembly line part feeding prob-
lem. Moreover, the proposed algorithm can be employed
to study other types of assembly lines while considering
the same or different improvement criteria with determin-
istic or stochastic demand. Furthermore, due to the nov-
elty of the ALPFP introduced here, future studies can use
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TABLE 8: Results from heuristic and CPLEX for the solved instances.
Sample " NT A SA-based heuristic CPLEX
NT AIL PR-AIL (%)* 1% CPU(s) NT  AIL v CPU (s)
24 350 23 0.515 0.000 0.089 2.476 23 0.515 0.089 7200
1 110 23 350 22 0.573" 0.348 0.080 2.548 22 0.575 0.080 7200
20 350 20 0.413" 0.242 0.056" 2.047 20 0.414 0.057 7200
24 300 23 0.542 0.000 0.089 2.277 23 0.542 0.089 7200
2 95 23 300 22 0.588 0.000 0.076 2.264 22 0.588 0.076 7200
19 350 19 0.438 0.000 0.047 1.775 19 0.438 0.047 7200
24 250 18" 1.255 — 0.124 1.815 19 1.115 0.146 7200
3 75 22 250 20 0.776 0.000 0.104 1.744 20 0.776 0.104 7200
17 300 17 0.458 0.000 0.046 1.128 17 0.458 0.046 34.937
24 150 17 1.482 —2.845 0.112 4.562 17 1.441 0.084 7200
4 60 15 200 15 0.398 0.000 0.058 0.748 15 0.398 0.058 4.507
13 250 13 0.415 0.000 0.053 0.562 13 0.415 0.053 2.062
22 150 16 1.515 -5.722 0.921 2.147 16 1.433 0.067 7200
5 50 16 200 16 0.433 0.000 0.058 0.916 16 0.433 0.058 4.084
1 250 1 0.409 0.000 0.041 0.449 1 0.409 0.041 1.928
23 100 17" 1.986 — 0.117 9.748 18 1.125 0.101 7200
6 40 15 150 15 0.385 0.000 0.059 0.557 15 0.385 0.059 2.097
12 200 12 0.375 0.000 0.054 0.429 12 0.375 0.054 1.281
19 100 12 0.983 -0.614 0.220 0.509 12 0.977 0.220 15.786
7 30 17 100 16 0.515 0.000 0.107 0.470 16 0.515 0.107 87.166
15 100 15 0.406 0.000 0.072 0.498 15 0.406 0.072 1.303
21 50 13 1.216 0.000 0.088 0.421 13 1.216 0.088 27.511
8 20 16 50 13 1.126 0.000 0.069 0.961 13 1.126 0.069 5.943
1 100 1 0.386 0.000 0.057 0.211 1 0.386 0.057 0.633
15 50 8 1.380 0.000 0.122 0.185 8 1.380 0.122 2.019
9 10 1 50 10 0.672 0.000 0.119 0.182 10 0.672 0.119 0.783
8 50 8 0.343 0.000 0.056 0.101 8 0.343 0.056 0.208
Case 1 26 15 100 13 0.484 0.000 0.169 0.121 13 0.484 0.169 2.076
Case 2 23 15 100 15 0.339 0.000 0.077 0.108 15 0.339 0.077 1.574

Percentage error (PR) of the heuristic algorithm from CPLEX for the average inventory level (AIL).

the other metaheuristic algorithms such as Tabu search,
Genetic Algorithm, and Ant Colony to effectively tackle
ALPFP and compare their performance with the algorithm
presented here. Additionally, MILP model as presented in this
paper, would facilitate a solution to various problems in other
similar empirical works.
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