Legendre Transform-Dual Solution for a Class of Investment and Consumption Problems with HARA Utility

Hao Chang¹ and Xi-min Rong²

¹ School of Science, Tianjin Polytechnic University, Tianjin 300387, China
² School of Science, Tianjin University, Tianjin 300072, China

Correspondence should be addressed to Hao Chang; ch8683897@126.com

Received 19 April 2014; Revised 17 May 2014; Accepted 18 May 2014; Published 28 May 2014

Academic Editor: Rajan Rakkiyappan

Copyright © 2014 H. Chang and X.-m. Rong. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper provides a Legendre transform method to deal with a class of investment and consumption problems, whose objective function is to maximize the expected discount utility of intermediate consumption and terminal wealth in the finite horizon. Assume that risk preference of the investor is described by hyperbolic absolute risk aversion (HARA) utility function, which includes power utility, exponential utility, and logarithm utility as special cases. The optimal investment and consumption strategy for HARA utility is explicitly obtained by applying dynamic programming principle and Legendre transform technique. Some special cases are also discussed.

1. Introduction

The investment and consumption problem was originated from the seminal work of Merton [1, 2], who first used stochastic optimal control to deal with a continuous-time portfolio selection problem with consumption behavior and obtained the closed-form solution of the optimal investment and consumption strategy under power utility and logarithm utility. In the following years, many scholars began to pay attention to the investment and consumption problems and obtained many research results. One can refer to the papers of Chacko and Viceira [3], Liu [4], Noh and Kim [5], Chang and Rong [6], and Chang et al. [7]. But these results were generally achieved under power utility, which was taken as a special case of hyperbolic absolute risk aversion (HARA) utility function.

HARA utility includes power utility, exponential utility, and logarithm utility as special cases. From the expression of HARA utility, we can see that HARA utility has more complicated structure than other utility functions, which leads to that there is a little work on portfolio selection problems with HARA utility in the existing literature. As a matter of fact, Grasselli [8] investigated a portfolio selection problem with HARA utility in the stochastic interest rate environment and verified that the optimal policy corresponding to HARA utility converges to the one corresponding to exponential utility and logarithm utility. Jung and Kim [9] provided a Legendre transform method to deal with an optimal portfolio model with HARA utility.

In recent years, Legendre transform is often used to deal with the complicated portfolio selection problems, for example, the optimal investment problems under the CEV model. One can refer to the work of Jonsson and Sircar [10], Xiao et al. [11], and Gao [12, 13]. The advantage of Legendre transform is to transform the nonlinear HJB equation into a linear dual one and the structure of the solution under HARA utility is easy to conjecture. Therefore, it is very possible for us to use Legendre transform to obtain the optimal investment strategy of more complicated portfolio selection problems.

In this paper, we consider a class of investment and consumption problems, whose objective function is to maximize the expected discount utility of intermediate consumption and terminal wealth, and wish to obtain the optimal investment and consumption strategy for HARA utility. We provide a Legendre transform method to deal with this problem and obtain the explicit expression of the optimal investment and consumption strategy under HARA utility. Some special cases are also discussed. There are two main
contributions in this paper. (i) We study a class of investment and consumption problems, whose objective function is more complicated than that of the optimal investment problems. In other words, we not only hope to obtain the optimal investment strategy, but also hope to obtain the optimal strategy of consumption. (ii) We obtain the explicit expression of the optimal investment and consumption strategy under HARA utility, which has rarely been studied in the optimal portfolio selection problems. It is all well known that most of portfolio selection problems are studied under power utility or exponential utility.

The structure of this paper is as follows. Section 2 formulates a class of investment and consumption problems with HARA utility, which wish to maximize the expected discount utility of intermediate consumption and terminal wealth. Section 3 uses Legendre transform to obtain the dual one of the HJB equation. Section 4 obtains the optimal investment strategy, but also hope to obtain the optimal strategy of consumption. (ii) We obtain the explicit expression of the optimal consumption strategy. (iii) The SDE (3) has a pathwise unique solution according to \((\pi(t), C(t))\).

Assume that the set of all admissible investment and consumption strategies \((\pi(t), C(t))\) is denoted by \(\Gamma = \{(\pi(t), C(t)) : 0 \leq t \leq T\} \). In this paper, we assume that the investor wishes to maximize the following objective function:

\[
\max_{(\pi(t), C(t)) \in \Gamma} \mathbb{E} \left(\int_0^T e^{-\beta t} U_1 (C(t)) dt + (1 - \alpha) e^{\beta T} U_2 (X(T)) \right),
\]

where \(U_1(x)\) and \(U_2(x)\) are all utility functions and \(\beta > 0\) is the subjective discount rate. The parameter \(\alpha\) determines the relative importance of intermediate consumption and terminal wealth. When \(\alpha = 0\), expected utility only depends on terminal wealth and the problem (5) is reduced to an asset allocation problem.

In this paper, we choose hyperbolic absolute risk aversion (HARA) utility function for our analysis. HARA utility function with parameters \(\eta, p, q\) and \(q\) is given by

\[
U_1(x) = U_2(x) = U(\eta, p, q, x) = \frac{1 - p}{q p} \left(\frac{q}{1 - p} x + \eta \right)^p, \quad q > 0, \quad p < 1, \quad p \neq 0.
\]

As a matter of fact, HARA utility function recovers power utility, exponential utility, and logarithm utility as special cases.

(i) If we choose \(\eta = 0\) and \(q = 1 - p\), then we have

\[
U(0, p, 1 - p, x) = \frac{x^p}{p} = U_{\text{power}}(x).
\]
(ii) If we choose $\eta = 1$ and $p \to -\infty$, then we have
\[U(1, p, q, x) = -e^{-q x} = U_{\text{exp}}(x). \] (8)

(iii) If we choose $\eta = 0$, $p \to 0$, and $q \to 1$, then we have
\[U(0, p, q, x) = \ln x = U_{\text{log}}(x). \] (9)

3. HJB Equation and Legendre Transform

We define the value function $V(t, x)$ as
\[V(t, x) = \sup_{(\pi(t), C(t)) \in \Gamma} E \left(\int_t^T a e^{-\beta t} U_1(C(t)) \, dt + (1 - \alpha) e^{-\beta T} U_2(X(T)) \mid X(t) = x \right), \] (10)
with boundary condition given by $V(T, x) = (1 - \alpha) e^{-\beta T} U_2(x)$.

Applying the principle of optimality (referring to Fleming and Soner [14]), if the value function $V(t, x) \in C^{1,2}([0, T] \times \mathbb{R})$, then $V(t, x)$ satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:
\[\sup_{(\pi(t), C(t)) \in \Gamma} \{ \partial V(t, x) \} = 0, \] (11)
with $\partial V(t, x) = V_t(t, x) + r(t) x V_x(t, x) + (1 - \alpha) e^{-\beta T} U_2(X(T)) \mid X(t) = x$.

For HARA utility, it is very difficult to directly conjecture the form of the solution of (14). Therefore, we introduce the following Legendre transform technique.

Definition 2. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a convex function. Legendre transform can be defined as follows:
\[L(z) = \max_x \{ f(x) - z x \}, \] (15)
and then the function $L(z)$ is called the Legendre dual function of $f(x)$ (cf. Jonsson and Sircar [10], Xiao et al. [11], and Gao [12, 13]).

If $f(x)$ is strictly convex, the maximum in (15) will be attained at just one point, which we denoted by x_0. We can attain at the unique solution by the first-order condition:
\[\frac{df(x)}{dx} - z = 0. \] (16)

So we have
\[L(z) = f(x_0) - z x_0. \] (17)

Following Jonsson and Sircar [10], Xiao et al. [11], and Gao [12, 13], Legendre transform can be defined by
\[\tilde{H}(t, z) = \sup_{x > 0} \{ H(t, x) - z x \}, \] (18)
where $z > 0$ denotes the dual variable to x. The value of x where this optimum is attained is denoted by $g(t, z)$; so we have
\[g(t, z) = \inf_{x > 0} \{ x \mid H(t, x) \geq z x + \tilde{H}(t, z) \}. \] (19)

The relationship between $H(t, z)$ and $g(t, z)$ is given by
\[g(t, z) = -\tilde{H}_x. \] (20)

Hence, we can choose either one of two functions $g(t, z)$ and $\tilde{H}(t, z)$ as the dual function of $H(t, x)$. In this paper we choose $g(t, z)$. Moreover, we have
\[H_x = z, \quad \tilde{H}(t, z) = H(t, g) - zg, \quad g(t, z) = x. \] (21)

Differentiating (21) with respect to t and z, we get
\[H_t = \tilde{H}_t, \quad H_x = z, \quad H_{xx} = -\frac{1}{H_{zz}}. \] (22)

Notice that $H(T, x) = (1 - \alpha) e^{-\beta T} U_2(x)$; then at the terminal time T, we can define
\[\tilde{H}(T, z) = \sup_{x > 0} \{ H(T, x) - z x \}, \] (23)
\[g(T, z) = \inf_{x > 0} \{ x \mid H(T, x) \geq z x + \tilde{H}(T, z) \}. \]

So we have $g(T, z) = \tilde{U}_2^{-1}(z / ((1 - \alpha) e^{-\beta T}))$, where $(\tilde{U}_2^{-1}(\cdot))$ is taken as the inverse of marginal utility.
Putting (22) into (14), we obtain
\[\ddot{H}_t + r(t) z + g + \frac{1}{2} \theta(t)^2 z^2 \dddot{H}_{zz} - C^*(t) z + a e^{-\beta t} U_1(C^*(t)) = 0. \] (24)

Differentiating (24) with respect to \(z \) and using (20), we derive
\[g_t - r(t) g + (\|\theta(t)\|^2 - r(t)) zg_z + \frac{1}{2} \|\theta(t)\|^2 z^2 g_{zz} \]
\[+ \frac{\partial (C^*(t) z)}{\partial z} - \frac{\partial (ae^{-\beta t} U_1(C^*(t)))}{\partial z} = 0, \] (25)
with boundary condition given by \(g(T, z) = U^{-1}_2(z/(1 - \alpha) e^{-\beta T}). \)

Under HARA utility, we have
\[g(T, z) = 1 - p \frac{q}{q} (1 - \alpha)^{1/(p-1)} (e^{\beta t})^{1/(p-1)} z^{1/(p-1)} - 1 - p \frac{q}{q} \eta. \] (26)

4. The Optimal Investment and Consumption Strategy

Applying (22) to (13), we get
\[C^*(t) = \frac{1 - p}{q} \alpha^{1/(p-1)} (e^{\beta t})^{1/(p-1)} z^{1/(p-1)} - 1 - p \frac{q}{q} \eta. \] (27)

Assume that a solution \(g(t, z) \) of (25) with terminal condition (26) is given by
\[g(T, z) = \frac{1 - p}{q} (1 - \alpha)^{1/(p-1)} (e^{\beta t})^{1/(p-1)} z^{1/(p-1)} D_1(t) \]
\[- 1 - p \frac{q}{q} \eta D_2(t), \quad D_1(T) = 1, \quad D_2(T) = 1. \] (28)

Then the partial derivatives are derived as follows:
\[g_t = \frac{1 - p}{q} (1 - \alpha)^{1/(p-1)} (e^{\beta t})^{1/(p-1)} z^{1/(p-1)} \]
\[\times \left(\frac{1}{p - 1} \beta D_1(t) + D_1’(t) \right) - \frac{1 - p}{q} \eta D_2(t), \] (29)
\[g_z = \frac{1 - p}{q} \cdot \frac{1}{p - 1} (1 - \alpha)^{-1/(p-1)} (e^{\beta t})^{1/(p-1)} \]
\[\times z^{1/(p-1)} D_1(t), \] (30)
\[g_{zz} = \frac{1 - p}{q} \cdot \frac{2 - p}{(p - 1)^2} (1 - \alpha)^{-1/(p-1)} (e^{\beta t})^{1/(p-1)} \]
\[\times z^{1/(p-1)-2} D_1(t). \] (31)

Plugging (27)–(31) into (25), we obtain
\[\frac{1 - p}{q} (1 - \alpha)^{-1/(p-1)} (e^{\beta t})^{1/(p-1)} z^{1/(p-1)} \]
\[\times \left(D_1(t) + \frac{p}{2(p - 1)} \|\theta(t)\|^2 \right) \]
\[- \frac{p}{p - 1} r(t) + \frac{1}{p - 1} \beta D_1(t) \]
\[+ \left(\frac{\alpha}{1 - \alpha} \right)^{-1/(p-1)} \] (32)
\[- 1 - p \frac{q}{q} \eta (D_2(t) - r(t) D_2(t) + 1) = 0. \]

Further, (32) can be decomposed into the following two equations:
\[\dot{D}_1(t) + \frac{p}{2(p - 1)} \|\theta(t)\|^2 - \frac{p}{p - 1} r(t) + \frac{1}{p - 1} \beta D_1(t) \]
\[+ \left(\frac{\alpha}{1 - \alpha} \right)^{-1/(p-1)} = 0, \quad D_1(T) = 1; \]
\[\dot{D}_2(t) - r(t) D_2(t) + 1 = 0, \quad D_2(T) = 1. \] (33)

Solving (33), we get
\[D_1(t) = e^{\int_T^t a(s) ds} + \left(\frac{\alpha}{1 - \alpha} \right)^{-1/(p-1)} \int_t^T e^{\int_t^u a(\sigma) d\sigma} du, \] (34)
\[D_2(t) = e^{-\int_T^t r(s) ds} + \int_t^T e^{-\int_t^u r(\sigma) d\sigma} du, \] (35)

where
\[a(t) = \frac{p}{2(p - 1)} \|\theta(t)\|^2 - \frac{p}{p - 1} r(t) + \frac{1}{p - 1} \beta. \] (36)

Applying (20), (22), (28), and (30), we have
\[\frac{H_t}{H_{zz}} = -z \dddot{H}_{zz} = zg_z \]
\[= \frac{1 - p}{q} \cdot \frac{1}{p - 1} (1 - \alpha)^{-1/(p-1)} (e^{\beta t})^{1/(p-1)} z^{1/(p-1)} D_1(t) \]
\[= \frac{1}{p - 1} \left(g + \frac{1 - p}{q} \eta D_2(t) \right) \]
\[= \frac{1}{p - 1} \left(x + \frac{1 - p}{q} \eta D_2(t) \right). \] (37)

Meantime, (27) can be rewritten as
\[C^*(t) = \left(\frac{\alpha}{1 - \alpha} \right)^{-1/(p-1)} \left(x + \frac{1 - p}{q} \eta D_2(t) \right) D_1^{-1}(t) \]
\[- \frac{1 - p}{q} \eta. \] (38)
On the other hand, according to \(g(t, z) = x \) and (28), we derive
\[
\frac{\partial}{\partial z} \left(\frac{q}{1 - p} x + \eta D_2(t) \right) D_1^{-1}(t) \right)^{p-1}.
\] (39)

Considering \(H_z = z \), we obtain the following optimal value function:
\[
H^*(t, x) = \left(\frac{1 - p}{p} \right) \frac{q}{1 - p} \left(x + \eta D_2(t) \right) D_1(t)
\] (40)

Summarizing what is mentioned above and considering \(X(t) = x \), we can draw the following conclusions.

Theorem 3. Under HARA utility (6), the optimal investment and consumption strategy of the problem (5) is given by
\[
\pi^*(t) = \frac{1}{1 - p} \left(\sigma(t) \sigma'(t) \right)^{-1} B(t) \left(X(t) + \frac{1 - p}{q} \eta D_2(t) \right),
\] (41)

\[
C^*(t) = \left(\frac{\alpha}{1 - \alpha} \right)^{1/(p-1)} \left(X(t) + \frac{1 - p}{q} \eta D_2(t) \right) D_1^{-1}(t)
\] (42)

where \(D_1(t) \) and \(D_2(t) \) are given by (34) and (35), respectively.

Theorem 4 (Verification theorem). Let \(H(t, x) \in C^{1,2}([0, T] \times \mathbb{R}) \) be a solution to (11); then, for all admissible strategies \((\pi(t), C(t)) \in \Gamma \), we have \(V(t, x) \leq H(t, x) \); if there exists \((\pi^*(t), C^*(t)) \in \Gamma \) satisfies
\[
(\pi^*(t), C^*(t)) \in \arg \sup_{(\pi(t), C(t)) \in \Gamma} \{ \delta H(t, x) \};
\]
(43)

then we conclude that \(V(t, x) = H(t, x) \) and \((\pi^*(t), C^*(t)) \) given by Theorem 3 is the optimal investment and consumption strategy of the problem (5).

Proof. Considering \(H(t, x) \in C^{1,2}([0, T] \times \mathbb{R}) \) and using Itô formula from \(t \) to \(T \) for \(H(t, x) \), we obtain
\[
H(T, X(T)) = H(t, x) + \int_t^T \delta H(s, X(s)) ds + \int_t^T \pi'(s) \sigma(s) H_x(s, X(s)) dW(s).
\]
(44)

Considering that \(H(t, x) \) is a solution to (11); that is, we have \(\sup_{(\pi(t), C(t)) \in \Gamma} \delta H(s, X(s)) = 0 \). So we obtain
\[
H(T, X(T)) \leq H(t, x) + \int_t^T \pi'(s) \sigma(s) H_x(s, X(s)) dW(s).
\]
(45)

The last one term in (45) is a local martingale and its expected value is equal to zero. Thus, we get
\[
E(\int_t^T (H(T, X(T)) - H(t, x)) dW(s)) = 0.
\]
(46)

Maximizing (46) for all admissible strategies \((\pi(t), C(t)) \in \Gamma \), we derive
\[
V(t, x) \leq H(t, x).
\]
(47)

When \((\pi(t), C(t)) = (\pi^*(t), C^*(t)) \), all inequalities become equalities; that is, \(H(t, x) = V(t, x) \), and it shows that \((\pi^*(t), C^*(t)) \) given by Theorem 3 is the optimal investment and consumption strategy of the problem (5).

The proof is completed.

In particular, we can obtain the following three special cases.

Corollary 5. If \(\eta = 0 \) and \(q = 1 - p \), HARA utility is degenerated to power utility. Therefore, the optimal investment and consumption strategy of the problem (5) under \(U_1(x) = x^p/p \) is given by
\[
\pi^*(t) = \frac{1}{1 - p} \left(\sigma(t) \sigma'(t) \right)^{-1} B(t) X(t),
\]
\[
C^*(t) = \left(\int_t^T \left(\frac{\alpha}{1 - \alpha} \right)^{1/(p-1)} e^{B(t, X(t))} ds \right)^{-1} X(t),
\]
(48)

where \(a(t) \) is given by (36).

Corollary 6. If \(\eta = 1 \) and \(p \to -\infty \), HARA utility is reduced to exponential utility. Therefore, the optimal investment and consumption strategy of the problem (5) under \(U_1(x) = x \) is given by
\[
\pi^*(t) = \frac{1}{q} \left(\sigma(t) \sigma'(t) \right)^{-1} B(t) D_2(t),
\]
\[
C^*(t) = D_2^{-1}(t) X(t)
\]
\[
+ \frac{1}{q} D_2^{-1}(t) \left(e^{-\int_t^T r(z) dz} \cdot \ln \frac{\alpha}{1 - \alpha} + e^{-\int_t^T r(z) dz} \cdot \int_t^T \bar{a}(s) ds + \int_t^T \left(e^{-\int_t^T r(z) dz} \int_t^z \bar{a}(z) dz \right) ds \right),
\]
(49)

where \(D_2(t) \) is given by (35), and \(\bar{a}(t) \) is given by
\[
\bar{a}(t) = \frac{1}{2} \| \theta(t) \|^2 + \beta - r(t).
\]
(50)
Proof. The equation (41) in Theorem 3 can be rewritten as
\[\pi^*(t) = \frac{1}{1-p} \left(\sigma(t) \sigma'(t) \right)^{-1} B(t) X(t) \]
\[+ \frac{1}{q} \eta D_2(t) \left(\sigma(t) \sigma'(t) \right)^{-1} B(t) . \]
When \(\eta = 1 \) and \(p \to -\infty \), then we have
\[\pi^*(t) = \frac{1}{q} \left(\sigma(t) \sigma'(t) \right)^{-1} B(t) D_2(t) . \]
Therefore, it is obvious that (49) is proved. Similarly, (42) can be changed into
\[C^*(t) = \left(\frac{\alpha}{1-\alpha} \right)^{1/(p-1)} D_1^{-1}(t) X(t) \]
\[+ \frac{1-p}{q} \eta \left(D_2(t) \left(\frac{\alpha}{1-\alpha} \right)^{1/(p-1)} D_1^{-1}(t) - 1 \right) . \]
When \(p \to -\infty \), we have \(a(t) \to -r(t) \) and \(D_1(t) \to D_2(t) \). Therefore, it leads to that
\[\lim_{p \to -\infty} \left(\frac{\alpha}{1-\alpha} \right)^{1/(p-1)} D_1^{-1}(t) X(t) = D_2^{-1}(t) X(t) . \]
For the second term in (54), we get
\[\lim_{p \to -\infty} \frac{1-p}{q} \eta \left(D_2(t) \left(\frac{\alpha}{1-\alpha} \right)^{1/(p-1)} D_1^{-1}(t) - 1 \right) \]
\[= \frac{1}{q} \lim_{p \to -\infty} \frac{D_2(t) (\alpha/(1-\alpha))^{1/(p-1)} D_1^{-1}(t) - 1}{1/(p-1)} , \]
\[= 0 . \]
By using L'Hopital's rule, (56) is equal to
\[\frac{1}{q} D_2^{-1}(t) \left(e^{-\int_t^T r(\bar{z}) d\bar{z}} \cdot \ln \frac{\alpha}{1-\alpha} + e^{-\int_t^T r(\bar{z}) d\bar{z}} \cdot \int_T \bar{a}(s) ds \right) \]
\[+ \int_T \left(e^{-\int_t^T r(\bar{z}) d\bar{z}} \cdot \int_T \bar{a}(z) dz ds \right) . \]
As a result, (50) is also proved.

Corollary 7. If \(\eta = 0 \), \(p \to 0 \), and \(q \to 1 \), HARA utility is reduced to logarithm utility. It leads to \(a(t) = -r(t) \). Therefore, the optimal investment and consumption strategy of the problem (5) under \(U_1(x) = U_2(x) = \ln x \) is given by
\[\pi^*(t) = \left(\sigma(t) \sigma'(t) \right)^{-1} B(t) X(t) , \]
\[C^*(t) = \frac{\alpha}{(1-\alpha) e^{-r(T-t)} - (\alpha/\beta) (e^{-r(T-t)} - 1)} X(t) . \]

5. Conclusions

This paper is concerned with a class of investment and consumption problems with HARA utility. We present a Legendre transform method to deal with them and obtain the explicit expressions of the optimal investment and consumption strategy. Some special cases are also discussed.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This research is supported by National Natural Science Foundation of China (no. 11301376), Humanities and Social Science Research Youth Foundation of Ministry of Education of China (no. 11YJ790006), and Higher School Science and Technology Development Foundation of Tianjin (no. 20100821).

References

