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Abstract. 
Due to the fact that vastly different variables and constraints are simultaneously considered, truss layout optimization is a typical difficult constrained mixed-integer nonlinear program. Moreover, the computational cost of truss analysis is often quite expensive. In this paper, a novel fitness estimation based particle swarm optimization algorithm with an adaptive penalty function approach (FEPSO-AP) is proposed to handle this problem. FEPSO-AP adopts a special fitness estimate strategy to evaluate the similar particles in the current population, with the purpose to reduce the computational cost. Further more, a laconic adaptive penalty function is employed by FEPSO-AP, which can handle multiple constraints effectively by making good use of historical iteration information. Four benchmark examples with fixed topologies and up to 44 design dimensions were studied to verify the generality and efficiency of the proposed algorithm. Numerical results of the present work compared with results of other state-of-the-art hybrid algorithms shown in the literature demonstrate that the convergence rate and the solution quality of FEPSO-AP are essentially competitive.


1. Introduction
As a typical real world project, truss structural analysis is considered to be computationally expensive [1]. Moreover, truss layout optimization, which solves truss sizing variables (e.g., cross-sectional areas of elements) and shape variables (e.g., coordinates of nodes) simultaneously, is known as a typical multimodal and highly nonlinear problem [2]. The various differences (e.g., physical nature, magnitude, continuity, etc.) between the two types of variables make the truss layout optimization problem a difficult task [3]. Hence, in the past decades, researchers mainly focused on solving truss layout optimization via multilevel methods [4].
Vanderplaats and Moses [5] proposed an alternating gradient method to decompose truss layout optimization into a number of subproblems, each of which optimized a subset of the design variables. The subproblems are solved iteratively until a converged optimal solution is found. Zhou [6] used a similar two-level approximation concept to optimize the cross-sectional areas of the members and the coordinates of the joints. Gil and Andreu [7] used fully stressed design method and conjugate gradient method to optimize the sizing and shape parameters of bridges, respectively.
Due to the strong coupling between the variables, the search efficiency of multilevel methods is often limited [8]. Aiming for addressing this issue and also benefiting from recent rapid advances in computational power, single-level methods which optimize all design variables simultaneously are becoming popular and competitive. Wang et al. [9] presented an optimality criteria (OC) algorithm for spatial truss layout optimization. Fourie and Groenwold [10] used new operators, namely, the elite velocity and the elite particle, in the standard particle swarm optimization (PSO) algorithm to optimize the truss layout, with the purpose of increasing the probability of migration to regions with high fitness. In fact, various metaheuristic algorithms including simulated annealing (SA) [11], genetic algorithm (GA) [12], charged system search (CSS) [13], and artificial bee colony algorithm (ABC) [14] have been introduced to address truss layout optimization problems.











More recently, researchers turn to hybridizing different techniques to further enhance the searching efficiency of metaheuristic algorithms. Lingyun et al. [18] proposed a niche hybrid genetic algorithm to solve the truss shape and sizing optimization in a simple and effective manner. Kaveh and Zolghadr [23] developed a hybridized CSS-BBBC algorithm with trap recognition capability for truss layout optimization. Zuo et al. [24] proposed a hybrid OC-GA approach for fast and global truss layout optimization; Kaveh and Javadi [25] used harmony search and ray optimizer to enhance the PSO algorithm to optimize truss layout under multiple frequency constraints; Liu and Ye [26] designed a genetic simulated annealing algorithm for domes layout optimization. Gholizadeh [17] proposed a hybridized cellular automata and PSO algorithm for truss layout optimization.
However, the common weakness of metaheuristic algorithms based structural optimization is that a huge number of structural analyses are required, which is quite time-consuming. In this paper, we propose a new hybridized algorithm, termed FEPSO-AP for truss layout optimization that aims to enhance the optimal efficiency by using the fitness estimations to partly substitute the computationally expensive fitness calculations. The finite element method (FEM) is adopted to evaluate the structural performance. Empirical results demonstrate that the proposed method is highly promising for truss layout optimization.
2. Statement of Truss Layout Optimization Problem
The main aim of truss layout optimization can be formulated as follows:
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Different types of constraints might be considered simultaneously depending on the problem to be solved. Four typical design constraints involved in this work can be stated by
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3. FEPSO-AP Algorithm
This section describes the fitness estimation based PSO algorithm with an adaptive penalty function approach (FEPSO-AP) developed in this research. As FEPSO-AP integrates PSO, FE, and AP, this section recalls the basic concept of PSO algorithm, fitness estimation strategy, and adaptive constraint handling approach. Finally, a framework of FEPSO-AP algorithm is presented.
3.1. The PSO Algorithm
As one of the most popular metaheuristic algorithms, PSO has found a wide application in real world projects for its structural concision and searching efficiency [17]. In a standard PSO [27], it is assumed that each of the particles has a position and a certain velocity. The position of particle represents a candidate solution to the optimization problem, and the velocity of particle determines the particle’s movement. Hence, the flying of particles can be considered as the swarm searching of design domain.
If the particle flies from its current position to the next position, its velocity and position are updated by
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3.2. The Fitness Estimation Strategy
Sun et al. [28] proposed a novel fitness estimation strategy for PSO to solve computationally expensive problems.
According to (3), the positions of any two arbitrary particles selected from the swarm can be formulated by
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				⃗
				𝑥
			

			

				𝑗
			

			
				(
				𝑡
				)
			

		
	
, 
	
		
			
				⃗
				𝑥
			

			

				𝑗
			

			
				(
				𝑡
				−
				1
				)
			

		
	
, 
	
		
			
				⃗
				𝑝
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
, and 
	
		
			
				⃗
				𝑝
			

			

				𝑗
			

			
				(
				𝑡
				)
			

		
	
, respectively.





	
		
			
		
			
		
	




















	
		
		
			
		
	


	
		
			
		
			
		
	



	
		
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	



	
		
			
		
			
		
	



	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	



	
		
			
		
			
		
	



	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
		
		
			
		
	



	
		
			
		
			
		
	



	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	


	
		
	
	
		
	
	
		
	
	
		
		
	
	
		
	
	
		
		
	


	
		
			
		
	





Figure 1: Illustration of the virtual position.


3.3. Adaptive Constraint Handling Approach
As mentioned in Section 2, truss layout optimization problem is often taken as a multiple constrained optimization problem. Coello Coello [29] pointed out that the constraint handling procedure plays an important role in the exploration and exploitation of constrained optimization problems. Similar to other metaheuristic algorithms, FEPSO is designed for unconstrained problems. Hence, it is necessary to incorporate constraint handling approach into FEPSO to solve truss layout optimization problems.
In this work, we use penalty function methods (PEM) to transfer a constrained problem into an unconstrained problem by adding the influence of violated constraints to the initial fitness function. A pseudoobjective function is stated as follows:
								
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				Φ
				(
				𝐗
				)
				=
				𝑓
				(
				𝐗
				)
				+
				𝑊
				×
				𝐺
				(
				𝐗
				)
				,
			

		
	

							where 
	
		
			

				𝑊
			

		
	
 and 
	
		
			
				𝐺
				(
				𝐗
				)
			

		
	
 are positive penalty factor and penalty function. The common difficulty existing in standard PEM is to set the constant penalty factor 
	
		
			

				𝑊
			

		
	
 properly. Runarsson and Yao [30] pointed out that if the penalty factor 
	
		
			

				𝑊
			

		
	
 turns out to be too large, the searching landscape would be quite rough, and thus qualified exploitation and exploration of the design domain are hard to be achieved; on the contrary, if the penalty factor 
	
		
			

				𝑊
			

		
	
 is too small, it would be quite possible to lose feasible solutions.
As summarized in [29], the common target of adaptive penalty factors is to make a good balance between the objective function and the constraints violation. In this work, we developed a laconic adaptive penalty factor as follows:
								
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				𝑊
				=
				2
			

			
				1
				−
				𝜌
			

			

				,
			

		
	

							in which 
	
		
			

				𝜌
			

		
	
 is the ratio of feasible solutions in current population. It can be concluded that if 
	
		
			

				𝑊
			

		
	
 is too small, the obtained unfeasible solutions will increase the value of 
	
		
			

				𝜌
			

		
	
, and thus, the algorithm would be pushed to explore more feasible solutions. On the other hand, if the feasible solutions congregate in the population, the value of 
	
		
			

				𝑊
			

		
	
 will approach zero, and thus a detailed exploitation would be performed.
3.4. The Framework of FEPSO-AP Algorithm
The penalty function 
	
		
			
				𝐺
				(
				𝐗
				)
			

		
	
 of truss layout optimization problem is determined by
								
	
 		
 			
				(
				1
				0
				)
			
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				𝐺
				(
				𝐗
				)
				=
				𝑤
				(
				𝐗
				)
				×
				𝑉
				(
				𝐗
				)
				,
				𝑉
				(
				𝐗
				)
				=
				m
				a
				x
				{
				0
				,
				𝑔
				(
				𝐗
				)
				}
				,
			

		
	

							in which 
	
		
			

				𝐗
			

		
	
 is the structural design vector, 
	
		
			
				𝑉
				(
				𝐗
				)
			

		
	
 is the violated constraints, and 
	
		
			
				𝑤
				(
				𝐗
				)
			

		
	
 and 
	
		
			
				𝑔
				(
				𝐗
				)
			

		
	
 are defined by (1).
According to (8)–(10), the pseudoobjective function can be abbreviated to
								
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			
				
				Φ
				(
				𝐗
				)
				=
				𝑤
				(
				𝐗
				)
				×
				1
				+
				2
			

			
				1
				−
				𝜌
			

			
				
				.
				×
				𝑉
				(
				𝐗
				)
			

		
	

To transfer the formulated truss layout optimization problem into an unconstrained optimization problem, the adaptive penalty function, the fitness estimation strategy, and the PSO algorithm are assembled as follows.
Step  1. Set the termination condition of optimization and the initial values of 
	
		
			

				𝜔
			

		
	
, 
	
		
			

				𝑐
			

			

				1
			

		
	
, and 
	
		
			

				𝑐
			

			

				2
			

		
	
. Set the iteration times 
	
		
			
				i
				t
				e
				r
				=
				1
			

		
	
. 
Step  2. Generate the initial positions 
	
		
			
				𝐗
				=
				{
				⃗
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				}
			

		
	
 and the initial velocities 
	
		
			
				⃗
				𝑣
				𝐕
				=
				{
			

			

				𝑖
			

			
				(
				𝑡
				)
				}
			

		
	
 of particles population randomly, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				3
				,
				…
				,
				p
				o
				p
				s
				i
				z
				e
			

		
	
. 
Step  3. Calculate the fitness values 
	
		
			
				𝑓
				(
				⃗
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				)
			

		
	
 of all particles and update every particle’s historical best position 
	
		
			
				⃗
				𝑝
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
 and the global best position 
	
		
			
				⃗
				𝑝
			

			

				𝑔
			

			
				(
				𝑡
				)
			

		
	
 by
								
	
 		
 			
				(
				1
				3
				)
			
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				𝑓
				
				⃗
				𝑥
			

			

				𝑖
			

			
				
				
				(
				𝑡
				)
				=
				Φ
				⃗
				𝑥
			

			

				𝑖
			

			
				
				,
				(
				𝑡
				)
				⃗
				𝑝
			

			

				𝑖
			

			
				
				𝑓
				
				(
				𝑡
				)
				=
				m
				i
				n
				⃗
				𝑥
			

			

				𝑖
			

			
				
				𝑡
			

			

				
			

			
				
				
				
				,
				𝑡
			

			

				
			

			
				=
				1
				,
				2
				,
				3
				,
				…
				,
				𝑡
				,
				⃗
				𝑝
			

			

				𝑔
			

			
				
				𝑓
				
				(
				𝑡
				)
				=
				m
				i
				n
				⃗
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
				
				
				,
				𝑖
				=
				1
				,
				2
				,
				3
				,
				…
				,
				p
				o
				p
				s
				i
				z
				e
				.
			

		
	

Step  4. Update the velocity 
	
		
			
				⃗
				𝑣
			

			

				𝑖
			

			
				(
				𝑡
				+
				1
				)
			

		
	
 and the position 
	
		
			
				⃗
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				+
				1
				)
			

		
	
 of every particle based on (3). Set the iteration times 
	
		
			
				i
				t
				e
				r
				=
				i
				t
				e
				r
				+
				1
			

		
	
. 
Step  5. Calculate the distances between every pair of particles.
	
		
			
				(
				5
				.
				1
				)
			

		
	
Select particle 
	
		
			

				𝑖
			

		
	
 randomly and calculate its fitness value 
	
		
			
				𝑓
				(
				⃗
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				+
				1
				)
				)
			

		
	
 based on (13).
	
		
			
				(
				5
				.
				2
				)
			

		
	
Choose a particle 
	
		
			

				𝑗
			

		
	
 nearby particle 
	
		
			

				𝑖
			

		
	
 and calculate the virtual position 
	
		
			
				⃗
				𝑥
			

			

				𝜈
			

			
				(
				𝑡
				+
				1
				)
			

		
	
 by using the historical information of particle 
	
		
			

				𝑗
			

		
	
 based on (5).
	
		
			
				(
				5
				.
				3
				)
			

		
	
If 
	
		
			
				⃗
				𝑥
			

			

				𝜈
			

			
				(
				𝑡
				+
				1
				)
			

		
	
 does not coincide with 
	
		
			
				⃗
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				+
				1
				)
			

		
	
, 
	
		
			
				⃗
				𝑥
			

			

				𝑗
			

			
				(
				𝑡
				)
			

		
	
, 
	
		
			
				⃗
				𝑝
			

			

				𝑗
			

			
				(
				𝑡
				)
			

		
	
, 
	
		
			
				⃗
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				−
				1
				)
			

		
	
, 
	
		
			
				⃗
				𝑥
			

			

				𝑗
			

			
				(
				𝑡
				+
				1
				)
			

		
	
, 
	
		
			
				⃗
				𝑥
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
, 
	
		
			
				⃗
				𝑝
			

			

				𝑖
			

			
				(
				𝑡
				)
			

		
	
, or 
	
		
			
				⃗
				𝑥
			

			

				𝑗
			

			
				(
				𝑡
				−
				1
				)
			

		
	
, estimate the fitness value 
	
		
			

				𝑓
			

			

				𝑒
			

			
				(
				⃗
				𝑥
			

			

				𝑗
			

			
				(
				𝑡
				+
				1
				)
				)
			

		
	
 of particle 
	
		
			

				𝑗
			

		
	
 by (6); otherwise, calculate the fitness value of particle 
	
		
			

				𝑗
			

		
	
 based on (13).
	
		
			
				(
				5
				.
				4
				)
			

		
	
Repeat 
	
		
			
				(
				5
				.
				1
				)
				-
				-
				(
				5
				.
				4
				)
			

		
	
 till the fitness values of all particles are evaluated.
Step  6. Update every particle’s historical best position 
	
		
			
				⃗
				𝑝
			

			

				𝑖
			

			
				(
				𝑡
				+
				1
				)
			

		
	
 and the global best position 
	
		
			
				⃗
				𝑝
			

			

				𝑔
			

			
				(
				𝑡
				+
				1
				)
			

		
	
. If 
	
		
			
				⃗
				𝑝
			

			

				𝑔
			

			
				(
				𝑡
				+
				1
				)
			

		
	
 is obtained by estimation, recalculate the corresponding particle’s fitness value by (13), and rechoose the global best position 
	
		
			
				⃗
				𝑝
			

			

				𝑔
			

			
				(
				𝑡
				+
				1
				)
			

		
	
. Repeat this step till a nonestimated value of 
	
		
			
				⃗
				𝑝
			

			

				𝑔
			

			
				(
				𝑡
				+
				1
				)
			

		
	
 is obtained. 
Step  7. Repeat Steps 4–6 till the termination condition is reached. Output the global best position 
	
		
			
				⃗
				𝑝
			

			

				𝑔
			

			
				(
				𝑡
				+
				1
				)
			

		
	
 and its objective value.
4. Benchmark Examples
The following four benchmark examples have been used to demonstrate the generality and efficiency of the FEPSO-AP algorithm:(i)a planar 15-bar truss subjected to a single load condition and stress constraints,(ii)a spatial 25-bar truss subjected to a single load condition under stress and displacement constraints,(iii)a planar 37-bar truss subjected to multiple frequency constraints,(iv)a planar 47-bar truss subjected to three load conditions under stress and local buckling constraints.
Programs of FEPSO-AP algorithm and structural finite element method (FEM) algorithm are developed by using MATLAB R2013a. A personal computer with a Pentium E5700 processor and 2 GB memory under the Microsoft Windows 7 operating system has been used to run the optimization software.
For all benchmarks examined in this study, the FEPSO-AP algorithm parameters are set as the usual constants of standard PSO which are obtained by [31]: 
	
		
			
				𝜔
				=
				0
				.
				7
				2
				9
				8
			

		
	
, 
	
		
			

				𝑐
			

			

				1
			

			
				=
				2
				.
				0
				5
			

		
	
, and 
	
		
			

				𝑐
			

			

				2
			

			
				=
				2
				.
				0
				5
			

		
	
. According to the design dimensions of four benchmarks, the population sizes are set as 46, 26, 38, and 88, while the maximum numbers of FEM analyses are set as 4000, 4500, 8000, and 20000, respectively.
Twenty-five independent runs are performed with the best one being selected for each problem.
4.1. Planar 15-Bar Truss
The original geometry of planar 15-bar truss is shown in Figure 2(a). Two nodes (ID: 1 and 5) are totally fixed and the 
	
		
			

				𝑥
			

		
	
-coordinates of other two nodes (ID: 4 and 8) are fixed as well. The single loading condition is listed in Table 1.
Table 1: Loading condition acting on the planar 15-bar truss.
	

	Case	Node	
	
		
			

				𝐹
			

			

				𝑥
			

		
	
 (kips)	
	
		
			

				𝐹
			

			

				𝑦
			

		
	
 (kips)
	

	1	8	0	−10.0
	








	


	


	



	



	



	



	



	



	



	



	



	



	



	
	



	
	



	
	



	
	



	
	




	
	


	
		
		
			
		
	


	
		
		
			
		
	



	


	


	


	


	
		
	


	
		
	

















(a) Geometry and element definitions of the planar 15-bar truss





	


	


	


	


	


	


	
	
	
	


	




	













(b) Best solution of the planar 15-bar truss
Figure 2: Layout optimization of the planar 15-bar truss.


All design variables are classified into 23 groups: sizing variables: 
	
		
			

				𝐴
			

			

				𝑖
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
				,
				…
				,
				1
				5
			

		
	
; shape variables: 
	
		
			

				𝑥
			

			

				2
			

			
				=
				𝑥
			

			

				6
			

		
	
; 
	
		
			

				𝑥
			

			

				3
			

			
				=
				𝑥
			

			

				7
			

		
	
; 
	
		
			

				𝑦
			

			

				2
			

		
	
; 
	
		
			

				𝑦
			

			

				3
			

		
	
; 
	
		
			

				𝑦
			

			

				4
			

		
	
; 
	
		
			

				𝑦
			

			

				6
			

		
	
; 
	
		
			

				𝑦
			

			

				7
			

		
	
; 
	
		
			

				𝑦
			

			

				8
			

		
	
.
Material parameters and design constraints are listed in Table 2.
Table 2: Material parameters, design constraints, and search range of the planar 15-bar truss optimization problem.
	

	Category	Values
	

	Material Parameters	 
	    Density	0.1 lb/in3
	    Modulus of elasticity	
	
		
			
				1
				×
				1
				0
			

			

				4
			

		
	
 ksi
	Constraints	 
	    Stress	The allowable elements stress interval: 
	
		
			

				[
			

		
	
−25 ksi,  25 ksi
	
		
			

				]
			

		
	

	Search range	 
	    Shape variables	
	
		
			
				1
				0
				0
				i
				n
				.
				≤
				𝑥
			

			

				2
			

			
				≤
				1
				4
				0
				i
				n
				.
				;
				2
				2
				0
				i
				n
				.
				≤
				𝑥
			

			

				3
			

			
				≤
				2
				6
				0
				i
				n
				.
				;
				1
				0
				0
				i
				n
				.
				≤
				𝑦
			

			

				2
			

			
				≤
				1
				4
				0
				i
				n
				.
				;
				1
				0
				0
				i
				n
				.
				≤
				𝑦
			

			

				3
			

			
				≤
				1
				4
				0
				i
				n
				.
			

		
	
; 
	
		
			
				5
				0
				i
				n
				.
				≤
				𝑦
			

			

				4
			

			
				≤
				9
				0
				i
				n
				.
				;
				−
				2
				0
				i
				n
				.
				≤
				𝑦
			

			

				6
			

			
				≤
				2
				0
				i
				n
				.
				;
				−
				2
				0
				i
				n
				.
				≤
				𝑦
			

			

				7
			

			
				≤
				2
				0
				i
				n
				.
				;
				2
				0
				i
				n
				.
				≤
				𝑦
			

			

				8
			

			
				≤
				6
				0
				i
				n
				.
				;
				𝑥
			

			
				1
				,
				5
			

			
				=
				0
				i
				n
				.
			

		
	
;  
	
		
			

				𝑦
			

			

				1
			

			
				=
				1
				2
				0
				i
				n
				.
				;
				𝑥
			

			
				4
				,
				8
			

			
				=
				3
				6
				0
				i
				n
				.
			

		
	

	    Sizing variables	
	
		
			

				𝑆
			

		
	
 = {0.111, 0.141, 0.174, 0.220, 0.270, 0.287, 0.347, 0.440, 0.539, 0.954, 1.081, 1.174, 1.333, 1.488, 1.764, 2.142, 2.697, 2.800, 3.131, 3.565, 3.813, 4.805, 5.952, 6.572, 7.192, 8.525, 9.300, 10.850, 13.330, 14.290, 17.170, 19.180} in.2 
	
		
			

				𝐴
			

			

				𝑖
			

			
				∈
				𝑆
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				1
				5
			

		
	

	



Figure 2(b) shows the optimum design found by this work, of which two nodes (ID: 4 and 8) are highly overlapped. Table 3 compares the best design found by this work with those reported in the literature. It can be seen that the results achieved by the proposed algorithm are quite close to the best results reported in the literature.
Table 3: Comparison of optimized designs found for the planar 15-bar truss.
	

	No.	Variable	FA [15]	FM-GA [16]	PSO [17]	CPSO [17]	SCPSO [17]	FEPSO-AP
	

	1	
	
		
			

				𝐴
			

			

				1
			

		
	
	0.954	1.081 	0.954 	1.174 	0.954 	1.081
	2	
	
		
			

				𝐴
			

			

				2
			

		
	
	0.539	0.539 	1.081 	0.539 	0.539 	0.539
	3	
	
		
			

				𝐴
			

			

				3
			

		
	
	0.220	0.287 	0.270 	0.347 	0.270 	0.270
	4	
	
		
			

				𝐴
			

			

				4
			

		
	
	0.954	0.954 	1.081 	0.954 	0.954 	0.954
	5	
	
		
			

				𝐴
			

			

				5
			

		
	
	0.539	0.539 	0.539 	0.954 	0.539 	0.539
	6	
	
		
			

				𝐴
			

			

				6
			

		
	
	0.220	0.141 	0.287 	0.141 	0.174 	0.111
	7	
	
		
			

				𝐴
			

			

				7
			

		
	
	0.111	0.111 	0.141 	0.141 	0.111 	0.111
	8	
	
		
			

				𝐴
			

			

				8
			

		
	
	0.111	0.111 	0.111 	0.111 	0.111 	0.111
	9	
	
		
			

				𝐴
			

			

				9
			

		
	
	0.287	0.539 	0.347 	1.174 	0.287 	0.347
	10	
	
		
			

				𝐴
			

			
				1
				0
			

		
	
	0.440	0.440 	0.440 	0.141 	0.347 	0.347
	11	
	
		
			

				𝐴
			

			
				1
				1
			

		
	
	0.440	0.539 	0.270 	0.440 	0.347 	0.440
	12	
	
		
			

				𝐴
			

			
				1
				2
			

		
	
	0.220	0.270 	0.111 	0.440 	0.220 	0.287
	13	
	
		
			

				𝐴
			

			
				1
				3
			

		
	
	0.220	0.220 	0.347 	0.141 	0.220 	0.287
	14	
	
		
			

				𝐴
			

			
				1
				4
			

		
	
	0.270	0.141 	0.440 	0.141 	0.174 	0.111
	15	
	
		
			

				𝐴
			

			
				1
				5
			

		
	
	0.220	0.287 	0.220 	0.347 	0.270 	0.270
	16	
	
		
			

				𝑥
			

			

				2
			

		
	
	114.9670	101.5775	106.052 	102.287 	137.222 	100.009
	17	
	
		
			

				𝑥
			

			

				3
			

		
	
	247.0400	227.9112	239.025 	240.505 	259.909 	248.078
	18	
	
		
			

				𝑦
			

			

				2
			

		
	
	125.9190	134.7986	130.356 	112.584 	123.501 	131.524
	19	
	
		
			

				𝑦
			

			

				3
			

		
	
	111.0670	128.2206	114.273 	108.043 	110.002 	123.211
	20	
	
		
			

				𝑦
			

			

				4
			

		
	
	58.2980	54.8630	51.987 	57.795 	59.936 	54.077
	21	
	
		
			

				𝑦
			

			

				6
			

		
	
	−17.5640	−16.4484	1.814 	−6.430 	−5.180 	−9.039
	22	
	
		
			

				𝑦
			

			

				7
			

		
	
	−5.8210	−13.3007	9.183 	−1.801 	4.219 	−14.905
	23	
	
		
			

				𝑦
			

			

				8
			

		
	
	31.4650	54.8572	46.909 	57.799 	57.883 	54.084
	Best weight (lb)	75.5473	76.6854	82.2344	77.6153	72.6153	74.1673
	Maximum displacement (in.)	24.9993	24.9992	24.9999	24.9909	24.9912	24.9999
	Number of structural analyses	8,000	8,000	4,500	4,500	4,500	4,000
	



4.2. Spatial 25-Bar Truss
The original geometry of spatial 25-bar truss is shown in Figure 3(a). Two nodes (ID: 1 and 2) are totally fixed and the 
	
		
			

				𝑧
			

		
	
-coordinates of four nodes (ID: 7, 8, 9. and 10) are fixed as well. The loading condition is listed in Table 4.
Table 4: Loading condition acting on the spatial 25-bar truss.
	

	Case	Node	
	
		
			

				𝐹
			

			

				𝑥
			

		
	
 (kips)	
	
		
			

				𝐹
			

			

				𝑦
			

		
	
 (kips)	
	
		
			

				𝐹
			

			

				𝑧
			

		
	
 (kips)
	

	1	1	1.0	−10.0	−10.0
	2	0.0	−10.0	−10.0
	3	0.5	   0.0	   0.0
	6	0.6	   0.0	   0.0
	








	
		
	


	
		
	


	
		
	


	
	
	
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
	
	
		
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
			
		
	
	
	
	
	
	
		
			
				
			
		
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
	
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
	
	
		
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
	
	
		
	
	
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
			
		
	
	
		
	
	
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
	
	
	
	
		
			
				
			
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
	
	
	
	
		
	
	
		
			
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	
	
	
	
	
	
		
			
				
				
			
		
	
	
		
			
				
				
			
		
	


	


	
		
	


	
		
	


	
		
	





(a) Geometry and element definitions of the spatial 25-bar truss





	
		
			
		
	


	
		
			
		
	




	
		
			
		
			
		
	


	
		
			
		
			
		
	






	
		
			
		
	












	
		
			
		
	






	
		
			
		
			
		
	


	
		
			
		
	


	
		
			
		
	




	
		
			
		
	


	
		
			
		
	





	
		
			
		
	


	
		
			
			
		
	


	
		
	


	
		
	


	
		
	

















(b) Best solution of the spatial 25-bar truss
Figure 3: Layout optimization of the spatial 25-bar truss.


To ensure the structural symmetries, all design variables are classified into 13 groups: sizing variables: 
	
		
			

				𝐴
			

			

				1
			

		
	
; 
	
		
			

				𝐴
			

			

				2
			

			
				=
				𝐴
			

			

				3
			

			
				=
				𝐴
			

			

				4
			

			
				=
				𝐴
			

			

				5
			

		
	
; 
	
		
			

				𝐴
			

			

				6
			

			
				=
				𝐴
			

			

				7
			

			
				=
				𝐴
			

			

				8
			

			
				=
				𝐴
			

			

				9
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				0
			

			
				=
				𝐴
			

			
				1
				1
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				2
			

			
				=
				𝐴
			

			
				1
				3
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				4
			

			
				=
				𝐴
			

			
				1
				5
			

			
				=
				𝐴
			

			
				1
				6
			

			
				=
				𝐴
			

			
				1
				7
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				8
			

			
				=
				𝐴
			

			
				1
				9
			

			
				=
				𝐴
			

			
				2
				0
			

			
				=
				𝐴
			

			
				2
				1
			

		
	
; 
	
		
			

				𝐴
			

			
				2
				2
			

			
				=
				𝐴
			

			
				2
				3
			

			
				=
				𝐴
			

			
				2
				4
			

			
				=
				𝐴
			

			
				2
				5
			

		
	
; shape variables: 
	
		
			

				𝑥
			

			

				4
			

			
				=
				𝑥
			

			

				5
			

			
				=
				−
				𝑥
			

			

				3
			

			
				=
				−
				𝑥
			

			

				6
			

		
	
; 
	
		
			

				𝑥
			

			

				8
			

			
				=
				𝑥
			

			

				9
			

			
				=
				−
				𝑥
			

			

				7
			

			
				=
				−
				𝑥
			

			
				1
				0
			

		
	
; 
	
		
			

				𝑦
			

			

				3
			

			
				=
				𝑦
			

			

				4
			

			
				=
				−
				𝑦
			

			

				5
			

			
				=
				−
				𝑦
			

			

				6
			

		
	
; 
	
		
			

				𝑦
			

			

				7
			

			
				=
				𝑦
			

			

				8
			

			
				=
				−
				𝑦
			

			

				9
			

			
				=
				−
				𝑦
			

			
				1
				0
			

		
	
; 
	
		
			

				𝑧
			

			

				3
			

			
				=
				𝑧
			

			

				4
			

			
				=
				𝑧
			

			

				5
			

			
				=
				𝑧
			

			

				6
			

		
	
.
Material parameters and design constraints are listed in Table 5.
Table 5: Material parameters, design constraints, and search range of the spatial 25-bar truss optimization problem.
	

	Category	Values
	

	Material parameters	 
	    Density	0.1 lb/in3
	    Modulus of elasticity	
	
		
			
				1
				×
				1
				0
			

			

				4
			

		
	
 ksi
	Constraints	 
	    Stress	The allowable elements stress interval: 
	
		
			

				[
			

		
	
−40 ksi, 40 ksi
	
		
			

				]
			

		
	

	    Displacement	The allowable nodal displacement interval: 
	
		
			

				[
			

		
	
−0.35 in., 0.35 in.
	
		
			

				]
			

		
	

	Search range	 
	    Shape variables	
	
		
			
				2
				0
				i
				n
				.
				≤
				𝑥
			

			

				4
			

			
				≤
				6
				0
				i
				n
				.
				;
				4
				0
				i
				n
				.
				≤
				𝑥
			

			

				8
			

			
				≤
				8
				0
				i
				n
				.
				;
				4
				0
				i
				n
				.
				≤
				𝑦
			

			

				4
			

			
				≤
				8
				0
				i
				n
				.
				;
				1
				0
				0
				i
				n
				.
				≤
				𝑦
			

			

				8
			

			
				≤
				1
				4
				0
				i
				n
				.
				;
				9
				0
				i
				n
				.
				≤
				𝑧
			

			

				4
			

			
				≤
				1
				3
				0
				i
				n
				.
				;
				−
				𝑥
			

			

				1
			

			
				=
				𝑥
			

			

				2
			

			
				=
				3
				7
				.
				5
				i
				n
				.
				;
				𝑦
			

			
				1
				,
				2
			

			
				=
				0
				i
				n
				.
				;
				𝑧
			

			
				1
				,
				2
			

			
				=
				2
				0
				0
				i
				n
				.
			

		
	

	    Sizing variables	
	
		
			
				𝑆
				=
				{
				0
				.
				1
				,
				0
				.
				2
				,
				0
				.
				3
				,
				…
				,
				3
				.
				2
				,
				3
				.
				3
				,
				3
				.
				4
				}
				i
				n
				.
			

			

				2
			

			

				𝐴
			

			

				𝑖
			

			
				∈
				𝑆
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				2
				5
			

		
	

	



Figure 3(b) shows the optimum design found by this work. Table 6 compares the best design found by this work with those reported in the literature. It can be concluded that by using the proposed algorithm it is possible to achieve the best feasible results at a low computational cost.
Table 6: Comparison of optimized designs found for the spatial 25-bar truss.
	

	No.	Variable	FA [15]	FM-GA [16]	PSO [17]	CPSO [17]	SCPSO [17]	FEPSO-AP
	

	1	
	
		
			

				𝐴
			

			

				1
			

		
	
	0.1 	0.1 	0.1 	0.3 	0.1 	0.1
	2	
	
		
			

				𝐴
			

			

				2
			

		
	
	0.1 	0.1 	0.1 	0.1 	0.1 	0.1
	3	
	
		
			

				𝐴
			

			

				6
			

		
	
	0.9	1.1 	1.1 	1.0 	1.0 	1.0
	4	
	
		
			

				𝐴
			

			
				1
				0
			

		
	
	0.1 	0.1 	0.1 	0.1 	0.1 	0.1
	5	
	
		
			

				𝐴
			

			
				1
				2
			

		
	
	0.1 	0.1 	0.4 	0.1 	0.1 	0.1
	6	
	
		
			

				𝐴
			

			
				1
				4
			

		
	
	0.1 	0.1 	0.1 	0.1 	0.1 	0.1
	7	
	
		
			

				𝐴
			

			
				1
				8
			

		
	
	0.1	0.2 	0.4 	0.2 	0.1 	0.1
	8	
	
		
			

				𝐴
			

			
				2
				2
			

		
	
	1.0	0.8 	0.7 	0.9 	0.9 	0.9
	9	
	
		
			

				𝑥
			

			

				4
			

		
	
	37.3200 	33.0487 	27.6169 	33.4976 	36.9520 	36.8958
	10	
	
		
			

				𝑦
			

			

				4
			

		
	
	55.7400 	53.5663 	51.6196 	62.3735 	54.5786 	54.1337
	11	
	
		
			

				𝑧
			

			

				4
			

		
	
	126.6200 	129.9092 	129.9071	114.5945	129.9758	130.0000
	12	
	
		
			

				𝑥
			

			

				8
			

		
	
	50.1400 	43.7826 	42.5526 	40.0531 	51.7317 	51.9924
	13	
	
		
			

				𝑦
			

			

				8
			

		
	
	136.4000 	136.8381 	132.7241 	133.6695 	139.5316 	140.0000
	Best weight (lb)	118.83	120.1149	129.2076	123.5403	117.2271	117.3022
	Maximum displacement (in.)	0.3500 	0.3500 	0.3503 	0.3505 	0.3518 	0.3500
	Maximum stress (ksi)	18.8302 	17.1574 	16.4391 	15.5913 	19.9702 	20.0182
	Minimum stress (ksi)	−9.4017 	−6.4822 	−10.9931 	−6.4102 	−9.4049 	−9.4024
	Number of structural analyses	6,000	10,000	4,500	4,500	4,500	4,500
	



4.3. Planar 37-Bar Truss
The original geometry of planar 37-bar truss is shown in Figure 4(a). Eleven nodes (ID: 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, and 20) are totally fixed and the 
	
		
			

				𝑥
			

		
	
-coordinates of all other nine nodes (ID: 3, 5, 7, 9, 11, 13, 15, 17, and 19) are fixed as well. A nonstructural mass of 10 kg is attached to all free nodes on the lower chord.





	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
		
	
	
		
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
		
	



	
		
			
		
	



	
		
			
		
	



	
		
			
		
	



	
		
			
		
	



	
		
			
		
	



	
		
			
		
	



	
		
			
		
	



	
		
			
		
	




	
		
			
			
		
	


	
		
			
			
		
	



	
		
			
			
		
	




	
		
			
			
		
	


	
		
			
			
		
	



	
		
			
			
		
	




	
		
			
			
		
	


	
		
			
			
		
	



	
		
			
			
		
	




	
		
			
			
		
	


	
		
			
			
		
	



	
		
			
			
		
	




	
		
			
			
		
	


	
		
			
			
		
	



	
		
			
			
		
	




	
		
			
			
		
	


	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
			
		
	



	
		
			
			
		
	




	
		
			
			
		
	


	
		
		
			
		
	


	
		
		
			
		
	


	
		
	


	
		
	





(a) Geometry and element definitions of the planar 37-bar truss





	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	







	







	




	












	



	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	


	
		
			
		
	















(b) Best solution of the planar 37-bar truss
Figure 4: Layout optimization of the planar 37-bar truss.


To ensure the structural symmetric about the 
	
		
			

				𝑦
			

		
	
-axis, all design variables are classified into 19 groups: sizing variables: 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			
				2
				7
			

		
	
; 
	
		
			

				𝐴
			

			

				2
			

			
				=
				𝐴
			

			
				2
				6
			

		
	
; 
	
		
			

				𝐴
			

			

				3
			

			
				=
				𝐴
			

			
				2
				4
			

		
	
; 
	
		
			

				𝐴
			

			

				4
			

			
				=
				𝐴
			

			
				2
				5
			

		
	
; 
	
		
			

				𝐴
			

			

				5
			

			
				=
				𝐴
			

			
				2
				3
			

		
	
; 
	
		
			

				𝐴
			

			

				6
			

			
				=
				𝐴
			

			
				2
				1
			

		
	
; 
	
		
			

				𝐴
			

			

				7
			

			
				=
				𝐴
			

			
				2
				2
			

		
	
; 
	
		
			

				𝐴
			

			

				8
			

			
				=
				𝐴
			

			
				2
				0
			

		
	
; 
	
		
			

				𝐴
			

			

				9
			

			
				=
				𝐴
			

			
				1
				8
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				0
			

			
				=
				𝐴
			

			
				1
				9
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				1
			

			
				=
				𝐴
			

			
				1
				7
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				2
			

			
				=
				𝐴
			

			
				1
				5
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				3
			

			
				=
				𝐴
			

			
				1
				6
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				4
			

		
	
; shape variables: 
	
		
			

				𝑥
			

			

				3
			

		
	
; 
	
		
			

				𝑥
			

			

				5
			

		
	
; 
	
		
			

				𝑥
			

			

				7
			

		
	
; 
	
		
			

				𝑥
			

			

				9
			

		
	
; 
	
		
			

				𝑦
			

			

				3
			

			
				=
				𝑦
			

			
				1
				9
			

		
	
; 
	
		
			

				𝑦
			

			

				5
			

			
				=
				𝑦
			

			
				1
				7
			

		
	
; 
	
		
			

				𝑦
			

			

				7
			

			
				=
				𝑦
			

			
				1
				5
			

		
	
; 
	
		
			

				𝑦
			

			

				9
			

			
				=
				𝑦
			

			
				1
				3
			

		
	
; 
	
		
			

				𝑦
			

			
				1
				1
			

		
	
.
Material parameters and design constraints are listed in Table 7.
Table 7: Material parameters, design constraints, and search range of the planar 37-bar truss optimization problem.
	

	Category	Values
	

	Material parameters	 
	    Density	7800 kg/m3
	    Modulus of elasticity	
	
		
			
				2
				.
				1
				×
				1
				0
			

			
				1
				1
			

		
	
 N/m2
	Constraints	 
	    Natural frequencies	
	
		
			

				𝑓
			

			

				1
			

			
				≥
				2
				0
			

		
	
 Hz; 
	
		
			

				𝑓
			

			

				2
			

			
				≥
				4
				0
			

		
	
 Hz; 
	
		
			

				𝑓
			

			

				3
			

			
				≥
				6
				0
			

		
	
 Hz;
	Search range	 
	    Shape variables	
	
		
			

				𝑥
			

			

				1
			

			
				=
				0
				m
				;
				𝑥
			

			
				2
				,
				3
			

			
				=
				1
				m
				;
				𝑥
			

			
				4
				,
				5
			

			
				=
				2
				m
				;
				𝑥
			

			
				6
				,
				7
			

			
				=
				3
				m
				;
				𝑥
			

			
				8
				,
				9
			

			
				=
				4
				m
				;
				𝑥
			

			
				1
				0
				,
				1
				1
			

			
				=
				5
				m
				;
				𝑥
			

			
				1
				2
				,
				1
				3
			

			
				=
				6
				m
				;
				𝑥
			

			
				1
				4
				,
				1
				5
			

			
				=
				7
				m
			

		
	
; 
	
		
			

				𝑥
			

			
				1
				6
				,
				1
				7
			

			
				=
				8
				m
				;
				𝑥
			

			
				1
				8
				,
				1
				9
			

			
				=
				9
				m
				;
				𝑥
			

			
				2
				0
			

			
				=
				1
				0
				m
				;
				0
				m
				≤
				𝑦
			

			
				3
				,
				5
				,
				7
				,
				9
				,
				1
				1
			

			
				≤
				3
				m
				;
			

		
	

	    Sizing variables	
	
		
			
				1
				×
				1
				0
			

			
				−
				4
			

			

				m
			

			

				2
			

			
				≤
				𝐴
			

			

				𝑖
			

			
				≤
				1
				0
				×
				1
				0
			

			
				−
				4
			

			

				m
			

			

				2
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				1
				4
			

		
	
 
	
		
			

				𝐴
			

			

				𝑗
			

			
				=
				4
				×
				1
				0
			

			
				−
				3
			

			

				m
			

			

				2
			

			
				,
				𝑖
				=
				2
				8
				,
				2
				9
				,
				…
				,
				3
				0
			

		
	

	



Figure 4(b) shows the optimum design explored by this work. Table 8 compares the best design presented by this work with those reported in the literature. It can be seen that the results achieved by the proposed algorithm are even better than the best results reported in the literature.
Table 8: Comparison of optimized designs found for the planar 37-bar truss.
	

	No.	Variable	OC [9]	GA [18]	PSO [19]	RO [20]	FEPSO-AP
	

	1	
	
		
			

				𝐴
			

			

				1
			

		
	
	3.2508 	2.8932 	2.6797 	3.0124	3.4197
	2	
	
		
			

				𝐴
			

			

				2
			

		
	
	1.2364 	1.1201 	1.1568 	1.0623	0.9766
	3	
	
		
			

				𝐴
			

			

				3
			

		
	
	1.0000 	1.0000 	2.3476 	1.0005	0.8313
	4	
	
		
			

				𝐴
			

			

				4
			

		
	
	2.5386 	1.8655 	1.7182 	2.2647	2.8073
	5	
	
		
			

				𝐴
			

			

				5
			

		
	
	1.3714 	1.5962 	1.2751 	1.6339	1.2997
	6	
	
		
			

				𝐴
			

			

				6
			

		
	
	1.3681 	1.2642 	1.4819 	1.6717	1.6483
	7	
	
		
			

				𝐴
			

			

				7
			

		
	
	2.4290 	1.8254 	4.6850 	2.0591	2.4972
	8	
	
		
			

				𝐴
			

			

				8
			

		
	
	1.6522 	2.0009 	1.1246 	1.6607	1.5379
	9	
	
		
			

				𝐴
			

			

				9
			

		
	
	1.8257 	1.9526 	2.1214 	1.4941	1.7590
	10	
	
		
			

				𝐴
			

			
				1
				0
			

		
	
	2.3022 	1.9705 	3.8600 	2.4737	2.7069
	11	
	
		
			

				𝐴
			

			
				1
				1
			

		
	
	1.3103 	1.8294 	2.9817 	1.5260	1.3046
	12	
	
		
			

				𝐴
			

			
				1
				2
			

		
	
	1.4067 	1.2358 	1.2021 	1.4823	1.4004
	13	
	
		
			

				𝐴
			

			
				1
				3
			

		
	
	2.1896 	1.4049 	1.2563 	2.4148	3.0476
	14	
	
		
			

				𝐴
			

			
				1
				4
			

		
	
	1.0000 	1.0000 	3.3276 	1.0034	0.5947
	15	
	
		
			

				𝑦
			

			

				3
			

		
	
	1.2086 	1.1998 	0.9637 	1.0010	0.8756
	16	
	
		
			

				𝑦
			

			

				5
			

		
	
	1.5788 	1.6553 	1.3978 	1.3909	1.2546
	17	
	
		
			

				𝑦
			

			

				7
			

		
	
	1.6719 	1.9652 	1.5929 	1.5893	1.4446
	18	
	
		
			

				𝑦
			

			

				9
			

		
	
	1.7703 	2.0737 	1.8812 	1.7507	1.5889
	19	
	
		
			

				𝑦
			

			
				1
				1
			

		
	
	1.8502 	2.3050 	2.0856 	1.8336	1.6480
	Natural frequencies (Hz)	
	
		
			

				𝑓
			

			

				1
			

		
	
	20.0850 	20.0013 	20.0001 	20.056	20.020
	
	
		
			

				𝑓
			

			

				2
			

		
	
	42.0743 	40.0305 	40.0003 	40.035	40.022
	
	
		
			

				𝑓
			

			

				3
			

		
	
	62.9383 	60.0000 	60.0001 	60.030	60.233
	
	
		
			

				𝑓
			

			

				4
			

		
	
	74.4539 	73.0444 	73.0440 	74.387	72.137
	
	
		
			

				𝑓
			

			

				5
			

		
	
	90.0576 	89.8244 	89.8240 	85.929	84.065
	Best weight (kg)	366.50 	368.84 	377.20 	364.04 	362.8812
	Number of structural analyses	—	—	20,000	32,000	8,000
	



4.4. Planar 47-Bar Truss
The original geometry of planar 47-bar truss is shown in Figure 5(a). Four nodes (ID: 15, 16, 17, and 22) are totally fixed and the 
	
		
			

				𝑦
			

		
	
-coordinates of other two nodes (ID: 1 and 2) are fixed as well. The loading conditions are listed in Table 9.
Table 9: Loading conditions acting on the planar 47-bar truss.
	

	Case	Node	
	
		
			

				𝐹
			

			

				𝑥
			

		
	
 (kips)	
	
		
			

				𝐹
			

			

				𝑦
			

		
	
 (kips)
	

	1	17 and 22	6.0	−14.0
	2	17	6.0	−14.0
	3	22	6.0	−14.0
	








	


	


	


	


	


	


	


	


	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	





	
	





	





	





	





	








	





	








	





	
	





	
	


	
	




















	
	




















	
	





	
	





	
	





	
	





	
	








	
	


	
	


	
	


	
	











	
	





	
	





	
	





	
	











	
	





	
	





	
	








	
	





	
	





	
	





	
	







	
		
			
		
			
		
	


	
		
			
		
			
		
	


	
	


	
		
		
	


	
		
		
	


	
		
		
	


	
	


	
	


	
		
		
	


	
		
		
	


	
		
		
	


	


	


	
		
	
	
		
	


	
		
	
	
		
	


	
	


	
		
	
	
		
	


	
		
	
	
		
	


	


	





(a) Geometry and element definitions of the planar 47-bar truss





	


	


	


	


	


	


	


	


	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	
	


	



	



























	


	





	


	





	


	





	


	

















(b) Best solution of the planar 47-bar truss
Figure 5: Layout optimization of the planar 47-bar truss.


To ensure the structural symmetric about the 
	
		
			

				𝑦
			

		
	
-axis, all design variables are classified into 44 groups: sizing variables: 
	
		
			

				𝐴
			

			

				1
			

			
				=
				𝐴
			

			

				3
			

		
	
; 
	
		
			

				𝐴
			

			

				2
			

			
				=
				𝐴
			

			

				4
			

		
	
; 
	
		
			

				𝐴
			

			

				5
			

			
				=
				𝐴
			

			

				6
			

		
	
; 
	
		
			

				𝐴
			

			

				7
			

		
	
; 
	
		
			

				𝐴
			

			

				8
			

			
				=
				𝐴
			

			

				9
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				0
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				1
			

			
				=
				𝐴
			

			
				1
				2
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				3
			

			
				=
				𝐴
			

			
				1
				4
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				5
			

			
				=
				𝐴
			

			
				1
				6
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				7
			

			
				=
				𝐴
			

			
				1
				8
			

		
	
; 
	
		
			

				𝐴
			

			
				1
				9
			

			
				=
				𝐴
			

			
				2
				0
			

		
	
; 
	
		
			

				𝐴
			

			
				2
				1
			

			
				=
				𝐴
			

			
				2
				2
			

		
	
; 
	
		
			

				𝐴
			

			
				2
				3
			

			
				=
				𝐴
			

			
				2
				4
			

		
	
; 
	
		
			

				𝐴
			

			
				2
				5
			

			
				=
				𝐴
			

			
				2
				6
			

		
	
; 
	
		
			

				𝐴
			

			
				2
				7
			

		
	
; 
	
		
			

				𝐴
			

			
				2
				8
			

		
	
; 
	
		
			

				𝐴
			

			
				2
				9
			

			
				=
				𝐴
			

			
				3
				0
			

		
	
; 
	
		
			

				𝐴
			

			
				3
				1
			

			
				=
				𝐴
			

			
				3
				2
			

		
	
; 
	
		
			

				𝐴
			

			
				3
				3
			

		
	
; 
	
		
			

				𝐴
			

			
				3
				4
			

			
				=
				𝐴
			

			
				3
				5
			

		
	
; 
	
		
			

				𝐴
			

			
				3
				6
			

			
				=
				𝐴
			

			
				3
				7
			

		
	
; 
	
		
			

				𝐴
			

			
				3
				8
			

		
	
; 
	
		
			

				𝐴
			

			
				3
				9
			

			
				=
				𝐴
			

			
				4
				0
			

		
	
; 
	
		
			

				𝐴
			

			
				4
				1
			

			
				=
				𝐴
			

			
				4
				2
			

		
	
; 
	
		
			

				𝐴
			

			
				4
				3
			

		
	
; 
	
		
			

				𝐴
			

			
				4
				4
			

			
				=
				𝐴
			

			
				4
				5
			

		
	
; 
	
		
			

				𝐴
			

			
				4
				6
			

			
				=
				𝐴
			

			
				4
				7
			

		
	
; shape variables: 
	
		
			

				𝑥
			

			

				1
			

			
				=
				−
				𝑥
			

			

				2
			

		
	
; 
	
		
			

				𝑥
			

			

				3
			

			
				=
				−
				𝑥
			

			

				4
			

		
	
; 
	
		
			

				𝑦
			

			

				3
			

			
				=
				𝑦
			

			

				4
			

		
	
; 
	
		
			

				𝑥
			

			

				5
			

			
				=
				−
				𝑥
			

			

				6
			

		
	
; 
	
		
			

				𝑦
			

			

				5
			

			
				=
				𝑦
			

			

				6
			

		
	
; 
	
		
			

				𝑥
			

			

				7
			

			
				=
				−
				𝑥
			

			

				8
			

		
	
; 
	
		
			

				𝑦
			

			

				7
			

			
				=
				𝑦
			

			

				8
			

		
	
; 
	
		
			

				𝑥
			

			

				9
			

			
				=
				−
				𝑥
			

			
				1
				0
			

		
	
; 
	
		
			

				𝑦
			

			

				9
			

			
				=
				𝑦
			

			
				1
				0
			

		
	
; 
	
		
			

				𝑥
			

			
				1
				1
			

			
				=
				−
				𝑥
			

			
				1
				2
			

		
	
; 
	
		
			

				𝑦
			

			
				1
				1
			

			
				=
				𝑦
			

			
				1
				2
			

		
	
; 
	
		
			

				𝑥
			

			
				1
				3
			

			
				=
				−
				𝑥
			

			
				1
				4
			

		
	
; 
	
		
			

				𝑦
			

			
				1
				3
			

			
				=
				𝑦
			

			
				1
				4
			

		
	
; 
	
		
			

				𝑥
			

			
				1
				9
			

			
				=
				−
				𝑥
			

			
				2
				0
			

		
	
; 
	
		
			

				𝑦
			

			
				1
				9
			

			
				=
				𝑦
			

			
				2
				0
			

		
	
; 
	
		
			

				𝑥
			

			
				1
				8
			

			
				=
				−
				𝑥
			

			
				2
				1
			

		
	
; 
	
		
			

				𝑦
			

			
				1
				8
			

			
				=
				𝑦
			

			
				2
				1
			

		
	
.
Material parameters and design constraints are listed in Table 10.
Table 10: Material parameters, design constraints, and search range of the planar 47-bar truss optimization problem.
	

	Category	Values
	

	Material parameters	 
	    Density	0.3 lb/in3
	    Modulus of elasticity	
	
		
			
				3
				×
				1
				0
			

			

				4
			

		
	
 ksi
	Constraints	 
	    Stress	The allowable elements stress interval: 
	
		
			

				[
			

		
	
−15 ksi, 20 ksi
	
		
			

				]
			

		
	

	    Local buckling	
	
		
			
				|
				|
				
				𝜎
			

			

				𝑐
			

			

				
			

			

				𝑖
			

			
				|
				|
				≤
				𝛽
				𝐸
				𝐴
			

			

				𝑖
			

			
				/
				𝑙
			

			
				2
				𝑖
			

			
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				4
				7
				,
				𝛽
				=
				3
				.
				9
				6
			

		
	

	Search range	 
	    Shape variables	
	
		
			
				0
				i
				n
				.
				≤
				𝑥
			

			

				𝑖
			

			
				≤
				1
				2
				0
				i
				n
				.
				,
				(
				𝑖
				=
				2
				,
				4
				,
				6
				,
				8
				)
				;
				−
				3
				0
				i
				n
				.
				≤
				𝑥
			

			

				𝑗
			

			
				≤
				9
				0
				i
				n
				.
				(
				𝑗
				=
				1
				0
				,
				1
				2
				,
				1
				4
				,
				2
				0
				)
				;
				3
				0
				i
				n
				.
				≤
				𝑥
			

			
				2
				1
			

			
				≤
				1
				5
				0
				i
				n
				.
			

		
	
; 
	
		
			
				6
				0
				i
				n
				.
				≤
				𝑦
			

			

				4
			

			
				≤
				1
				8
				0
				i
				n
				.
				;
				1
				8
				0
				i
				n
				.
				≤
				𝑦
			

			

				6
			

			
				≤
				3
				0
				0
				i
				n
				.
				;
				3
				0
				0
				i
				n
				.
				≤
				𝑦
			

			

				8
			

			
				≤
				4
				2
				0
				i
				n
				.
				;
				3
				6
				0
				i
				n
				.
				≤
				𝑦
			

			
				1
				0
			

			
				≤
				4
				8
				0
				i
				n
				.
				;
				4
				2
				0
				i
				n
				.
			

		
	
  
	
		
			
				≤
				𝑦
			

			
				1
				2
			

			
				≤
				5
				4
				0
				i
				n
				.
				;
				4
				8
				0
				i
				n
				.
				≤
				𝑦
			

			
				1
				4
			

			
				≤
				6
				0
				0
				i
				n
				.
				;
				5
				4
				0
				i
				n
				.
				≤
				𝑦
			

			
				2
				0
			

			
				≤
				6
				6
				0
				i
				n
				.
				;
				5
				4
				0
				i
				n
				.
				≤
				𝑦
			

			
				2
				1
			

			
				≤
				6
				6
				0
				i
				n
				.
			

		
	

	    Sizing variables	
	
		
			
				𝑆
				=
				{
				0
				.
				1
				,
				0
				.
				2
				,
				0
				.
				3
				,
				…
				,
				4
				.
				8
				,
				4
				.
				9
				,
				5
				.
				0
				}
				i
				n
				.
			

			

				2
			

			

				𝐴
			

			

				𝑖
			

			
				∈
				𝑆
				,
				𝑖
				=
				1
				,
				2
				,
				…
				,
				4
				7
			

		
	

	



Figure 5(b) shows the optimum design identified by this work. Table 11 compares the best design of this work with those reported in the literature. It can be seen that by using the proposed algorithm it is possible to achieve better results at a lower computational cost.
Table 11: Comparison of optimized designs found for the planar 47-bar truss.
	

	No.	Variable	GA [21]	FSD-ES [22]	PSO [17]	CPSO [17]	SCPSO [17]	FEPSO-AP
	

	1	
	
		
			

				𝐴
			

			

				3
			

		
	
	2.50	2.70	2.80	2.60	2.50	3.20
	2	
	
		
			

				𝐴
			

			

				4
			

		
	
	2.20	2.50	2.70	2.50	2.50	2.80
	3	
	
		
			

				𝐴
			

			

				5
			

		
	
	0.70	0.70	0.80	0.70	0.80	0.70
	4	
	
		
			

				𝐴
			

			

				7
			

		
	
	0.10	0.10	1.10	0.30	0.10	0.10
	5	
	
		
			

				𝐴
			

			

				8
			

		
	
	1.30	0.90	0.80	1.20	0.70	0.60
	6	
	
		
			

				𝐴
			

			
				1
				0
			

		
	
	1.30	1.10	1.30	1.10	1.40	1.60
	7	
	
		
			

				𝐴
			

			
				1
				2
			

		
	
	1.80	1.80	1.80	1.60	1.70	1.90
	8	
	
		
			

				𝐴
			

			
				1
				4
			

		
	
	0.50	0.70	0.90	0.80	0.80	0.90
	9	
	
		
			

				𝐴
			

			
				1
				5
			

		
	
	0.80	0.90	1.20	1.10	0.90	1.00
	10	
	
		
			

				𝐴
			

			
				1
				8
			

		
	
	1.20	1.30	1.40	1.30	1.30	2.00
	11	
	
		
			

				𝐴
			

			
				2
				0
			

		
	
	0.40	0.30	0.30	0.30	0.30	0.10
	12	
	
		
			

				𝐴
			

			
				2
				2
			

		
	
	1.20	1.10	1.40	0.80	0.90	0.40
	13	
	
		
			

				𝐴
			

			
				2
				4
			

		
	
	0.90	1.00	1.10	1.00	1.00	1.40
	14	
	
		
			

				𝐴
			

			
				2
				6
			

		
	
	1.00	0.90	1.20	1.00	1.10	1.50
	15	
	
		
			

				𝐴
			

			
				2
				7
			

		
	
	3.60	0.80	1.60	0.90	5.00	1.20
	16	
	
		
			

				𝐴
			

			
				2
				8
			

		
	
	0.10	0.10	1.00	0.10	0.10	0.70
	17	
	
		
			

				𝐴
			

			
				3
				0
			

		
	
	2.40	2.70	2.80	2.70	2.50	5.00
	18	
	
		
			

				𝐴
			

			
				3
				1
			

		
	
	1.10	0.80	0.80	0.90	1.00	1.00
	19	
	
		
			

				𝐴
			

			
				3
				3
			

		
	
	0.10	0.10	0.10	0.10	0.10	0.10
	20	
	
		
			

				𝐴
			

			
				3
				5
			

		
	
	2.70	3.00	3.00	3.00	2.80	3.00
	21	
	
		
			

				𝐴
			

			
				3
				6
			

		
	
	0.80	0.90	0.90	1.00	0.90	0.50
	22	
	
		
			

				𝐴
			

			
				3
				8
			

		
	
	0.10	0.00	0.10	0.20	0.10	0.10
	23	
	
		
			

				𝐴
			

			
				4
				0
			

		
	
	2.80	3.20	3.30	3.30	3.00	3.30
	24	
	
		
			

				𝐴
			

			
				4
				1
			

		
	
	1.30	1.00	0.90	0.90	1.00	0.30
	25	
	
		
			

				𝐴
			

			
				4
				3
			

		
	
	0.20	0.10	0.10	0.10	0.10	0.10
	26	
	
		
			

				𝐴
			

			
				4
				5
			

		
	
	3.00	3.30	3.30	3.30	3.20	3.50
	27	
	
		
			

				𝐴
			

			
				4
				6
			

		
	
	1.20	1.10	1.20	1.10	1.20	0.40
	28	
	
		
			

				𝑥
			

			

				2
			

		
	
	114.0000	100.9724	98.8628	99.3630	101.3393	87.7275
	29	
	
		
			

				𝑥
			

			

				4
			

		
	
	97.0000	80.4772	78.6595	83.4439	85.9111	72.4352
	30	
	
		
			

				𝑦
			

			

				4
			

		
	
	125.0000	136.8699	146.7331	126.3845	135.9645	162.6451
	31	
	
		
			

				𝑥
			

			

				6
			

		
	
	76.0000	64.3908	66.5231	69.5148	74.7969	67.2113
	32	
	
		
			

				𝑦
			

			

				6
			

		
	
	261.0000	247.0491	239.0901	218.2013	237.7447	218.2041
	33	
	
		
			

				𝑥
			

			

				8
			

		
	
	69.0000	55.2589	55.6936	58.0004	64.3115	50.6507
	34	
	
		
			

				𝑦
			

			

				8
			

		
	
	316.0000	338.4534	327.7882	322.2272	321.3416	375.4549
	35	
	
		
			

				𝑥
			

			
				1
				0
			

		
	
	56.0000	48.7333	48.8641	51.4015	53.3345	36.6525
	36	
	
		
			

				𝑦
			

			
				1
				0
			

		
	
	414.0000	409.7380	398.6775	401.5626	414.3025	408.7230
	37	
	
		
			

				𝑥
			

			
				1
				2
			

		
	
	50.0000	43.4742	43.1400	46.8605	46.0277	36.9960
	38	
	
		
			

				𝑦
			

			
				1
				2
			

		
	
	463.0000	472.1479	464.7831	458.3021	489.9216	483.4295
	39	
	
		
			

				𝑥
			

			
				1
				4
			

		
	
	54.0000	44.8349	37.8993	46.8885	41.8353	37.9558
	40	
	
		
			

				𝑦
			

			
				1
				4
			

		
	
	524.0000	512.1901	511.0450	527.8575	522.4161	535.7644
	41	
	
		
			

				𝑥
			

			
				2
				0
			

		
	
	1.0000	3.8414	18.2341	16.2354	1.0005	4.6875
	42	
	
		
			

				𝑦
			

			
				2
				0
			

		
	
	587.0000	591.1449	594.0710	610.8496	598.3905	599.7416
	43	
	
		
			

				𝑥
			

			
				2
				1
			

		
	
	99.0000	84.5040	90.9369	98.3239	97.8696	101.4535
	44	
	
		
			

				𝑦
			

			
				2
				1
			

		
	
	631.0000	630.3472	621.3943	624.9580	624.0552	605.4302
	Best weight (lb)	1925.7897	1842.6609	1975.8393	1908.8301	1864.0985	1799.7037
	Maximum stress (ksi)	19.9528	20.0000	19.0636	19.3351	19.4735	19.9808
	Minimum stress (ksi)	−14.9973	−15.0000	−14.9999	−14.9986	−15.0000	−14.9986
	Number of buckling elements	0	0	0	0	0	0
	Number of structural analyses	100,000	55,802	25,000	25,000	25,000	20,000
	



5. Conclusion
In this work, a new hybrid PSO algorithm is proposed to solve a quite challenging task in truss optimization area: truss layout optimization with multiple constraints.
Two computational techniques are adopted to further enhance the performance of PSO algorithm. In the first fitness estimation strategy, the evaluation of particles is partly substituted by the estimation of similar particles, with the purpose to reduce the computational cost of real world optimization problem. In the second adaptive penalty function approach, the iteration information is merged into the penalty function to find a good balance between the exploration and exploitation of the constrained design domain. The resulted algorithm is termed as FEPSO-AP.
Four benchmark truss layout optimization problems, subject to nodal displacement constraints, element stress constraints, natural frequency constraints, and local buckling constraints, are used to verify the performance of FEPSO-AP. Numerical results demonstrate that three out of four benchmarks, to which the FEPSO-AP based optimization is applied, delivered the best feasible designs to the author’s knowledge. Moreover, the convergence rate of the FEPSO-AP algorithm is quite competitive comparing to other state-of-the-art hybrid algorithms published in the former literatures.
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