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A novel mixed higher order regularizer involving the first and second degree image derivatives is proposed in this paper. Using
spectral decomposition, we reformulate the new regularizer as a weighted L

1
-L
2
mixed norm of image derivatives. Due to the

equivalent formulation of the proposed regularizer, an efficient fast projected gradient algorithm combined with monotone fast
iterative shrinkage thresholding, called, FPG-MFISTA, is designed to solve the resulting variational image recovery problems under
majorization-minimization framework. Finally, we demonstrate the effectiveness of the proposed regularization scheme by the
experimental comparisonswith total variation (TV) scheme, nonlocal TV scheme, and current second degreemethods. Specifically,
the proposed approach achieves better results than related state-of-the-art methods in terms of peak signal to ratio (PSNR) and
restoration quality.

1. Introduction

During image acquisition, the observed images are mainly
degraded by blurring and random noise, which are tightly
linked to imaging system. In order to attenuate the undesired
effects, image recovery plays an integral part of modern
imaging sciences in such areas, including medical imaging,
microscopy, astronomical imaging, remote sensing, and pho-
tography [1–5].

Image recovery which amounts to estimating a desired
image from its degraded measurements is mathematically
an inverse problem [6]. To cope with the ill posedness of
image recovery, the standard approach is to use image a
priori to constrain the solutions so that many variational
regularization approaches have been successfully proposed
for image recovery. As we know, one of the most popular
regularizers is the total variation (TV) seminorm which was
firstly introduced by Rudin et al. for image denoising [7]
and turned out to be very efficient for preserving image
edges. Thus, TV has been widely and effectively used in
many other image applications [8–11] and provides state-of-
the-art result. However, TV-based reconstruction methods
often give rise to the undesired staircase effect, since TV
favors piecewise constant solutions.Thus, the main challenge

for image recovery is to reduce the staircase effect while
preserving edges sharpness as far as possible. As is known
to us, piecewise-vanishing second degree derivatives yield
piecewise-linear solutions which better fit smooth intensity
changes. To alleviate the staircase effect, several regularizers
involving second degree image derivatives were introduced
mainly for image denoising over past few years [12–15]
and provide better performance than TV. Recently, many
novel higher order regularization methods which constitute
valid extensions of TV are effectively introduced for more
image processing tasks [16–18] so that they minimize the
staircase effect and provide state-of-the-art results. However,
the second-order regularizers [16–18] which are the mixed
norms of second degree directional image derivatives tend
to suppress larger second degree directional derivatives thus
leading to blurring across the sharp edges. Thus, the recon-
structed images with better preserved edges and less staircase
effect are more desirable. To this end, as reported in [19–23],
the regularizers that combine first and second degree image
derivatives have been proposed so as to provide better edge
preservation while reducing the staircase effect in smooth
regions of image; thus, we are motivated to investigate the
regularizers involving derivatives of different degrees in this
paper.
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In this paper, our main contributions are twofolds. First,
we reinterpret the isotropic second degree total variation
(ISDTV) regularizer [16] which is the 𝐿

1
-𝐿
2
mixed norms of

the second degree directional derivatives and give its equiv-
alent formulation. We then propose a novel mixed higher
order regularizer involving the first and seconddegree deriva-
tives of the image and reformulate the new regularizer as a
weighted 𝐿

1
-𝐿
2
mixed norm of image derivatives in spectral

decomposition framework.The new regularizer which inher-
its the desirable properties of TV turns out to be well suited
for image recovery. Second, for the proposed variational
image recovery model, a fast projected gradient algorithm
combined with monotone fast iterative shrinkage thresh-
olding (FPG-MFISTA) which is derived from majorization-
minimization (MM) framework has been utilized to solve the
minimization problem under additional convex constraints.
Finally, we compare our proposed schemes with TV [24],
nonlocal TV [25], and current second degree methods [18,
26], which currently provide state-of-the-art results.

The rest of the paper is organized as follows. In Section 2,
we first present the mathematic formulation of image recov-
ery problem and review the ISDTV regularizer. We then
propose a novel regularizer at the end of Section 2. In
Section 3, we propose our variational regularization-based
image recovery model and give a detailed description of
the corresponding minimization algorithm. In Section 4, we
assess the performance of our approach on both natural and
biomedical images and provide systematic comparisons with
TV, nonlocal TV, and current seconddegreemethods. Finally,
we conclude the paper in Section 5.

2. Mixed Higher Order Total Variation for
Image Recovery

2.1. Regularization for Image Recovery Problem. We first con-
sider the recovery of a continuously differentiable image 𝑓 :
Ω → R from its degraded observation 𝑔, where Ω ⊂ R2 is
the spatial support of the image. The most commonly used
image observation model can be linearly formulated as

𝑔 = 𝐴𝑓 + 𝑒, (1)

where 𝐴 is a linear blur operator and 𝑒 is Gaussian white
noise with standard deviation 𝜎. As we know, the recovery
of 𝑓 from its observation 𝑔 is an ill-posed problem, due
to the fact that the blur operator 𝐴 is ill-conditioned. To
stabilize the recovery process, some available a priori knowl-
edge about the desired image is utilized. Thus, a common
variational regularization approach is employed to formulate
image recovery as an optimization problem:

𝑓 = argmin
𝑓

{𝐶 (𝑓) =
1

2
∫
Ω

𝑔 − 𝐴𝑓


2

𝑑𝑥𝑑𝑦 + 𝜆𝐽 (𝑓)} , (2)

where the first term is known as data fidelity term, which
measures the consistency between estimation and observa-
tion, while the second one is called regularization termwhich
provides some a priori knowledge of the desired image,
and the regularization parameter 𝜆 ≥ 0 provides a balance
between the two terms.

2.2. Isotropic Second Degree Total Variation and Equivalent
Formulation. Hu and Jacob have introduced the isotropic
higher degree total variation (I-HDTV) scheme [16], which
inherits the desirable properties of TV, such as, convexity
and invariance to rotations and translations. As detailed in
[16], the first degree directional derivative of 𝑓 along the unit
vector s

0
(𝜃) = (cos 𝜃, sin 𝜃)T at coordinate (𝑥, 𝑦) denoted by

𝑓
𝜃,1
(𝑥, 𝑦) is defined as

𝑓
𝜃,1
(𝑥, 𝑦) = [cos 𝜃, sin 𝜃]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

sT
0
(𝜃)

[
[
[
[

[

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑥

𝜕𝑓 (𝑥, 𝑦)

𝜕𝑦

]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

g0(𝑥,𝑦)

, (3)

where g
0
(𝑥, 𝑦) denotes the gradient of 𝑓 at coordinate

(𝑥, 𝑦) and (⋅)T denotes transpose operator. Specially, as pro-
ved in [16], the standard TV is reinterpreted as the 𝐿

1
-𝐿
2

mixed norms of the first degree directional derivative, form-
ulated as

TV (𝑓) = ∫
Ω

g0(𝑥, 𝑦)
2
𝑑𝑥𝑑𝑦

= √2∫
Ω

𝑓𝜃,1(𝑥, 𝑦)
𝐿2[0,2𝜋]

𝑑𝑥𝑑𝑦

= √2∫
Ω

√
1

2𝜋
∫

2𝜋

0

𝑓𝜃,1(𝑥, 𝑦)


2

𝑑𝜃 𝑑𝑥𝑑𝑦,

(4)

where ‖ ⋅ ‖
2
denotes the Euclidean norm.

Now, we consider the isotropic second degree total vari-
ation (ISDTV) of image 𝑓, which is defined as

𝐽
2
(𝑓) = ∫

Ω

𝑓𝜃,2(𝑥, 𝑦)
𝐿2[0,2𝜋]

𝑑𝑥𝑑𝑦

= ∫
Ω

√
1

2𝜋
∫

2𝜋

0

𝑓𝜃,2 (𝑥, 𝑦)


2

𝑑𝜃 𝑑𝑥𝑑𝑦,

(5)

where 𝑓
𝜃,2
(𝑥, 𝑦) is the second degree directional derivative of

image 𝑓 at coordinate (𝑥, 𝑦), defined as

𝑓
𝜃,2
(𝑥, 𝑦) = sT (𝜃) g (𝑥, 𝑦) , (6)

with

s (𝜃) = (cos2𝜃, 2 sin 𝜃 cos 𝜃, sin2𝜃)
T
, (7)

g (𝑥, 𝑦) = (
𝜕
2
𝑓 (𝑥, 𝑦)

𝜕𝑥2
,
𝜕
2
𝑓 (𝑥, 𝑦)

𝜕𝑥𝜕𝑦
,
𝜕
2
𝑓 (𝑥, 𝑦)

𝜕𝑦2
)

T

. (8)

Based on the work of [16], we derive an equivalent for-
mulation of the integrand of (5) in following proposition,
whose proof is provided in Appendix A.

Proposition 1. Let W = (1/(2√2)) [
1 0 −1

√2 0 √2

0 2 0

]; then the 𝐿
2
[0,

2𝜋] norm of the second degree directional derivative of 𝑓 at
coordinate (𝑥, 𝑦) is equal to ‖Wg(𝑥, 𝑦)‖

2
, where ‖ ⋅ ‖

2
stands

for the Euclidean norm.
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Therefore, according to the differential operator U defined
in Table 1, the ISDTV regularizer in (5) can be equivalently
expressed as

𝐽
2
(𝑓) = ∫

Ω

WU𝑓(𝑥, 𝑦)2𝑑𝑥𝑑𝑦. (9)

2.3. Mixed Higher Order Total Variation and Equivalent
Formulation. Based on the discussion in above Section 2.2,
TV is reinterpreted as the 𝐿

1
-𝐿
2
mixed norms of first degree

directional derivative of the image and can well preserve
image edges, and ISDTV is defined as the 𝐿

1
-𝐿
2
mixed

norms of second degree directional derivatives of the image
and can effectively preserve image features sharpness and
minimize the staircase effect. As we know, the recovered
image with well-preserved edges and features while not
suffering from severely staircase effect is more desirable in
image recovery. Furthermore, as detailed in [19–23], the
regularizers that combine first and second degree derivatives
of the image are reported to well preserve edges and reduce
the staircase effect at the same time, and it enables us to
extend TV and ISDTV to mixed higher order case. To this
end, we thus propose a new regularizer which combines first
and second degree derivatives of the image in this subsection.

Firstly, with the definitions of s
0
(𝜃), g

0
(𝑥, 𝑦), s(𝜃), and

g(𝑥, 𝑦) in (3), (7), and (8), we define

S (𝜃) = (cos 𝜃, sin 𝜃, cos2𝜃, 2 sin 𝜃 cos 𝜃, sin2𝜃)
T
,

G (𝑥, 𝑦)

=(
𝜕𝑓 (𝑥, 𝑦)

𝜕𝑥
,
𝜕𝑓 (𝑥, 𝑦)

𝜕𝑦
,
𝜕
2
𝑓 (𝑥, 𝑦)

𝜕𝑥2
,
𝜕
2
𝑓 (𝑥, 𝑦)

𝜕𝑥𝜕𝑦
,
𝜕
2
𝑓 (𝑥, 𝑦)

𝜕𝑦2
)

T

.

(10)

Based on the definitions in (10), we define the new regularizer
as

𝐽
1,2
(𝑓) = ∫

Ω


ST(𝜃)G(𝑥, 𝑦)𝐿2[0,2𝜋]𝑑𝑥𝑑𝑦

= ∫
Ω

√
1

2𝜋
∫

2𝜋

0

ST (𝜃)G (𝑥, 𝑦)


2

𝑑𝜃 𝑑𝑥𝑑𝑦.

(11)

Definition (11) leads to a convex regularizer which is also
homogeneous, rotation, and translation invariant. Moreover,
we have

ST (𝜃)G (𝑥, 𝑦) = sT
0
(𝜃) g
0
(𝑥, 𝑦) + sT (𝜃) g (𝑥, 𝑦)

= 𝑓
𝜃,1
(𝑥, 𝑦) + 𝑓

𝜃,2
(𝑥, 𝑦) ;

(12)

namely, the regularizer in (11) involves the first and second
degree directional derivatives of the image which are related
to TV and ISDTV, respectively, and takes full advantage of
the ability to preserve edges andminimize the staircase effect.
Thus, the resulting regularizer constitutes a valid extension of
TV and ISDTV. For simplicity, we term the new regularizer
in (11) as mixed higher order total variation (MHOTV).

Based on the following proposition whose proof is given
in Appendix B, we give an equivalent formulation of the
MHOTV regularizer.

Table 1: Definition of differential operators.

Vectorial operators
𝑈 = (𝜕

𝑥𝑥
, 𝜕
𝑥𝑦
, 𝜕
𝑦𝑦
)
T

𝑉 = (𝜕
𝑥
, 𝜕
𝑦
, 𝜕
𝑥𝑥
, 𝜕
𝑥𝑦
, 𝜕
𝑦𝑦
)
T

Proposition 2. Let R = (1/(2√2)) [

0 0 1 0 −1

2 0 0 0 0

0 2 0 0 0

0 0 √2 0 √2

0 0 0 2 0

]; then the

integrand of (11) is equal to ‖RG(𝑥, 𝑦)‖
2
, where ‖ ⋅ ‖

2
stands

for the Euclidean norm.
Therefore, according to the differential operator V defined

in Table 1, we further express our MHOTV regularizer as

𝐽
1,2
(𝑓) = ∫

Ω

RV𝑓(𝑥, 𝑦)
2
𝑑𝑥𝑑𝑦. (13)

With the equivalent formulations of the ISDTV and
MHOTV regularizers defined in (9) and (13), which can be
also understood as weighted 𝐿

1
-𝐿
2
mixed norm of image deri-

vatives, thus the two equivalent formulations are more prefer-
able for the minimization algorithm we will propose in
Section 3.

3. FPG-MFISTA: The Efficient Algorithm for
the Proposed Model

Using the ISDTV and MHOTV regularizers described in (9)
and (13), we present a unified variational regularization image
recovery model to reconstruct the desired image from its
noisy observation, which is formulated as

𝑓 = argmin
𝑓

{𝐶 (𝑓) =
1

2
∫
Ω

𝑔 − 𝐴𝑓


2

𝑑𝑥𝑑𝑦 + 𝜆𝐽 (𝑓)}

𝐽 (𝑓) ∈ {𝐽
2
(𝑓) , 𝐽

1,2
(𝑓)} ,

(14)

where the last expression in (14)means that the regularization
term can be either ISDTV or MHOTV regularizer.

3.1. Discrete Formulation for ISDTV- and MHOTV-Based
Image Recovery Model. Now we consider the discrete for-
mulation of proposed model (14). In order to simplify our
analysis, we assume that the image with size 𝑚× 𝑛 is stacked
in a vector of size 𝑁 = 𝑚× 𝑛. Then, the objective function in
(14) can be discretized as

𝐶 (f) = 1
2

g − Af
2

2
+ 𝜆𝐽 (f) , (15)

where A ∈ R𝑁×𝑁 is the blurring matrix and g, f ∈ R𝑁 are
the vectorized versions of the observed image and the image
to be recovered, respectively. To discretize the differential
operators defined in Table 1, we assume reflexive boundary
conditions for the images and use forward finite differences
to approximate the partial derivatives [27].

To simplify our analysis, we will introduce some auxiliary
definitions and notations as follows.

First, we define operators U : R𝑁 → R3×𝑁 and
V : R𝑁 → R5×𝑁 to refer to the discrete versions
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of the operators 𝑈 and 𝑉 defined in Table 1, respectively.
For simplicity, we denote space 𝑋

𝑗
= R𝑗 ×𝑁 = {u =

(u
1
, u
2
, . . . , u

𝑁
) | u

𝑖
∈ R𝑗, ∀𝑖 = 1, 2, . . . , 𝑁} and equip

the space 𝑋
𝑗
with the inner product ⟨⋅, ⋅⟩

𝑋𝑗
and norm ‖ ⋅ ‖

𝑋𝑗
.

Let u = (u
1
, u
2
, . . . , u

𝑁
) ∈ 𝑋

𝑗
and k = (k

1
, k
2
, . . . , k

𝑁
) ∈ 𝑋

𝑗
;

we define them as

⟨u, k⟩𝑋𝑗 =
𝑁

∑

𝑖=1

uT
𝑖
k
𝑖
,

‖u‖
𝑋𝑗
= √⟨u, u⟩𝑋𝑗 .

(16)

Next, let us define the adjoint operators
of U and V which are the discrete operators UT

: 𝑋
3
→

R𝑁and VT
: 𝑋
5
→ R𝑁, respectively. Thus, let p ∈ 𝑋

3
,

q ∈ 𝑋
5
and f ∈ R𝑁; we have

⟨p,Uf⟩
𝑋3
= ⟨UTp, f⟩

2
,

⟨q,Vf⟩
𝑋5
= ⟨VTq, f⟩

2
,

(17)

where ⟨⋅, ⋅⟩
2
stands for the inner product in Euclidean

space R𝑁.
Furthermore, with the 𝑙

1
-𝑙
2
mixed norm of a vector

field u = (u
1
, u
2
, . . . , u

𝑁
) ∈ 𝑋

𝑗
defined as ‖u‖

1,2
=

∑
𝑁

𝑖=1
‖u
𝑖
‖
2
, we thus write the discrete versions of the ISDTV

and MHOTV regularizers defined in (9) and (13) as

𝐽
2
(f) =

𝑁

∑

𝑖=1

W(Uf)𝑖
2
= ‖WUf‖1,2, (18)

𝐽
1,2
(f) =

𝑁

∑

𝑖=1

R(Vf)𝑖
2
= ‖RVf‖1,2, (19)

where (⋅)
𝑖
denotes the 𝑖th column element of the corre-

sponding vector filed.
Therefore, we can write the discrete formulation of

proposed model (14) as

f̂ = argmin
f

{𝐶 (f) = 1
2

g − Af
2

2
+ 𝜆‖Hf‖1,2}

H ∈ {WU,RV} ,
(20)

with the last expression H ∈ {WU,RV } in (20) meaning
that the regularization term can be either ISDTV orMHOTV
regularizer.

3.2. Majorization-Minimization (MM). In the following, we
focus on the minimization of model (20). Due to the
fact that the ISDTV and MHOTV regularizers are both
nondifferentiable, we solve model (20) by a majorization-
minimization (MM) approach [28–30]. As described in
the MM framework, an iterative algorithm for solving the
proposedmodel (20) at 𝑘th iterate f(𝑘) involves the following
two steps:

(1) constructing the surrogate functional 𝐿(f ; f(𝑘)) that
satisfies the following properties:

𝐶 (f) ≤ 𝐿 (f ; f(𝑘)) , ∀f ; 𝐶 (f(𝑘)) = 𝐿 (f(𝑘); f(𝑘)) , (21)

(2) solving the next iterate f(𝑘+1) = argminf 𝐿(f ; f
(𝑘)
).

Under the MM framework, we find the optimal solution
of model (20) by iteratively minimizing a sequence of sur-
rogate functionals {𝐿(f ; f(𝑘))} that upper bound the objective
function 𝐶(f).

Therefore, to obtain the surrogate functionals {𝐿(f ; f(𝑘))},
we first upper bound the data fidelity term of 𝐶(f) at 𝑘th
iterate f(𝑘) using the following majorizer:

𝑄(f ; f(𝑘)) = 𝛼
2
‖f − z‖2

2
+ 𝑐, (22)

where z = f(𝑘)+(1/𝛼)AT
(g−Af(𝑘)) and 𝑐 is a constant which

is independent of f . To make sure that 𝑄(f ; f(𝑘)) is valid, we
choose 𝛼 > ‖ATA‖ tomake 𝛼I−ATA positive definite.Thus,
the whole resulting majorizer of 𝐶(f) at 𝑘th iterate f(𝑘) can
be written as

𝐿 (f ; f(𝑘)) = 𝑄 (f ; f(𝑘)) + 𝜆‖Hf‖1,2

=
𝛼

2
‖f − z‖2

2
+ 𝜆‖Hf‖1,2 + 𝑐.

(23)

Then, the minimization problem (20) is converted to
iteratively minimizing (23) with regard to f , which can be
formulated as

f(𝑘+1) = argmin
f

{𝐿 (f ; f(𝑘)) = 𝛼
2
‖f − z‖2

2
+ 𝜆‖Hf‖1,2 + 𝑐}

H ∈ {WU,RV} .
(24)

As we can see, the resulting minimization problem (24) is
much simpler and its solution can be alternatively interpreted
as the solution of a denoising problem with z being the noisy
observation. In the following, we will present a primal-dual
approach based on the monotone fast iterative shrinkage
thresholding algorithm (MFISTA) [24] to seek the optimal
solution of (24).

3.3. FPG-MFISTA. Considering that f is a digital image
whose intensities are finite and bounded, we can use a convex
closed set to constrain the range of image intensities. Based
on that, the resulting denoising subproblem (24) can be
equivalently formulated as

f(𝑘+1) = argmin
f

𝛼

2
‖f − z‖2

2
+ 𝜆‖Hf‖1,2 + 𝐼𝑆 (f)

= argmin
f∈𝑆

𝛼

2
‖f − z‖2

2
+ 𝜆‖Hf‖1,2,

(25)

where H ∈ {WU,RV} means that the regularization term
can be either ISDTV or MHOTV regularizer, 𝑆 = {f ∈

R𝑁 | f
𝑖
∈ [𝑙, 𝑢], ∀𝑖 = 1, . . . , 𝑁} is a convex closed set which

enforces bounded constraints on the solution, and 𝐼
𝑆
(f) is

the indicator function of 𝑆 that takes the value 0 for f ∈

𝑆 and ∞ otherwise.
Next, we present a primal-dual approach which can

efficiently compute the solution of the constrained problem
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(25). Without loss of generality, here we just describe all the
steps of the minimization algorithm for model (25) involving
the proposedMHOTV regularizer, which corresponds to the
case that H = RV.

Therefore, by denoting 𝜇 = 𝜆/𝛼, the corresponding
MHOTV based denoising subproblem can be further rewrit-
ten as

f(𝑘+1) = argmin
f∈𝑆

1

2
‖f − z‖2

2
+ 𝜇‖RVf‖1,2. (26)

As referred in [31], ‖ ⋅ ‖
∞,2

is the dual norm of ‖ ⋅ ‖
1,2
,

and then the 𝑙
1
-𝑙
2
mixed norm of the vector field u =

(u
1
, u
2
, . . . , u

𝑁
) ∈ 𝑋
𝑗
can be rewritten as

‖u‖1,2 = max
𝜔 ∈𝑋

⟨u,𝜔⟩𝑋𝑗 , (27)

where 𝑋 = {𝜔 = (𝜔
1
,𝜔
2
, . . . ,𝜔

𝑁
) ∈ 𝑋

𝑗
| ‖𝜔
𝑖
‖
2
≤ 1, ∀𝑖 =

1, . . . , 𝑁} denotes the 𝑙
∞
-𝑙
2
unit norm ball. Using (27), we

rewrite model (26) as

f(𝑘+1) = argmin
f∈𝑆

1

2
‖f − z‖2

2
+ 𝜇max
𝜔∈𝑋

⟨RVf ,𝜔⟩𝑋5

= argmin
f∈𝑆

1

2
‖f − z‖2

2
+ 𝜇max
𝜔∈𝑋

⟨f ,VTRT
𝜔⟩
2
;

(28)

thus, the resulting formulation (28) makes us to solve the
following minimax problem:

min
f∈𝑆

max
𝜔∈𝑋

{𝐸 (f ,𝜔) = 1
2
‖f − z‖2

2
+ 𝜇⟨f ,VTRT

𝜔⟩
2
} . (29)

Since the cost function 𝐸(f ,𝜔) is strictly convex in f and
concave in 𝜔, we can exchange the order of the minimum
and maximum, and the saddle-point (f(𝑘+1),𝜔(𝑘)) of (29) is
attained as reported in [32]. Therefore,

min
f∈𝑆

max
𝜔∈𝑋

𝐸 (f ,𝜔) = 𝐸 (f(𝑘+1),𝜔(𝑘)) = max
𝜔∈𝑋

min
f∈𝑆

𝐸 (f ,𝜔) .
(30)

As we know, 𝐸(f ,𝜔) can be equivalently written as

𝐸 (f ,𝜔) = 1

2


f − (z − 𝜇VTRT

𝜔)


2

2

+
1

2
‖z‖2
2
−
1

2


z − 𝜇VTRT

𝜔



2

2
.

(31)

Based on (30) and (31), we can obtain the saddle-
point (f(𝑘+1),𝜔(𝑘)) of (29) by solving

f(𝑘+1) = argmin
f∈𝑆

{max
𝜔∈𝑋

1

2


f − (z − 𝜇VTRT

𝜔)


2

2

+
1

2
‖z‖2
2
−
1

2


z − 𝜇VTRT

𝜔



2

2
}

= 𝑃
𝑆
(z − 𝜇VTRT

𝜔
(𝑘)
) ,

(32)

where 𝑃
𝑆
denotes the orthogonal projection onto the convex

set 𝑆, while 𝜔(𝑘) is the maximizer of the dual problem,
formulated as

𝜔
(𝑘)
= argmax
𝜔∈𝑋

{ℎ (𝜔) =
1

2


𝑃
𝑆
(z − 𝜇VTRT

𝜔)

−(z − 𝜇VTRT
𝜔)


2

2

+
1

2
‖z‖2
2
−
1

2


z − 𝜇VTRT

𝜔



2

2
} .

(33)

Since the dual function ℎ(𝜔) in (33) is differentiable and
has Lipschitz continuous gradient, as referred in [24], thenwe
can compute the gradient of ℎ(𝜔) as

∇ℎ (𝜔) = 𝜇RV𝑃
𝑆
(z − 𝜇VTRT

𝜔) . (34)

To accelerate the convergence, we use Nesterov’s iterative
method [33] to solve model (33), which is a gradient-based
approach that exhibits convergence rates of one order higher
than the standard gradient ascent method. Furthermore, we
employ the operator 𝑃

𝑋
to return the orthogonal projection

onto the 𝑙
∞
-𝑙
2
unit norm ball 𝑋, where this operation is per-

formed by projecting independently each component 𝜔
𝑖
, 𝑖 =

1, 2, . . . , 𝑁 of 𝜔 onto the 𝑙
2
unit norm ball.

Therefore, as described above, we first find themaximizer
of the dual problem (33) and then obtain the optimal solution
of our primal problem (26) through (32).

In the same way, by using (28)–(33) and replacing R and
V with W and U, respectively, we can obtain the solution of
model (25) involving the ISDTV regularizer.

Finally, a detailed description of the fast projected gradi-
ent algorithm combined with monotone fast iterative shrink-
age thresholding (FPG-MFISTA) for ISDTV and MHOTV
regularization-based image recovery is given in Algorithm 1,
while the corresponding denoising subproblem (24) can
be efficiently solved by a fast projected gradient algorithm
described in Algorithm 2.

4. Experimental Results

To evaluate the performance of our proposed ISDTV and
MHOTV regularization schemes in the context of image
deblurring, we provide systematical experimental compar-
isons with five state-of-the-art methods, namely, TV regu-
larization method [24], nonlocal TV regularization method
[25], Hessian Frobenius-norm and Hessian Spectral-norm
regularization methods [18], and the Hessian Nuclear-norm
regularization method [26]. Finally, the quality of the recon-
structed image is evaluated in terms of peak signal-to-noise
ratio (PSNR), which is measured in decibels (dB) and defined
as

PSNR = 10 log
10
(

max
1≤𝑖≤𝑁


f(0)
𝑖



2

(1/𝑁)

f(0) − f̂

2

2

) , (35)

where f̂ ∈ R𝑁 and f(0) ∈ R𝑁 are the vectorized versions of
the reconstructed image and the original image, respectively.
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Step 1. Input g, A, 𝜆 > 0, 𝛼 > 
ATA , 𝜀 (𝜀 > 0 is a tolerance),𝑀𝑎𝑥𝑖𝑡𝑒𝑟

(Number of iterations). Set 𝑘 = 0. Initialize k(1) = f (0), 𝑡
1
= 1, 𝑐

1
= 𝐶(f (0)).

Step 2. Compute

s(𝑘) ← FPG (k(𝑘) +
1

𝛼
AT
(g − Ak(𝑘)) , 𝜆

𝛼
);

𝑡
𝑘+1

←

1 + √1 + 4𝑡
2

𝑘

2
; 𝑐
𝑘+1

= 𝐶 (s(𝑘));
if 𝑐
𝑘+1

> 𝑐
𝑘
then

𝑐
𝑘+1

= 𝑐
𝑘
; f (𝑘+1) ← f (𝑘);

else
f (𝑘+1) ← s(𝑘);

end
k(𝑘+1) ← f (𝑘+1) + 𝑡

𝑘

𝑡
𝑘+1

(s(𝑘) − f (𝑘+1)) +
𝑡
𝑘
− 1

𝑡
𝑘+1

(f (𝑘+1) − f (𝑘)).

Step 3. Terminate if f
(𝑘+1)

− f (𝑘)2/

f (𝑘)2 < 𝜀. Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 2

Step 4. Output f̂-An optimal solution of (20).

Algorithm 1: FPG-MFISTA for ISDTV and MHOTV regularizer-based image recovery.

Step 1. Input z,Η, 𝜇 > 0, 𝛾 > Η
T
Η


, 𝜀
0
(𝜀
0
> 0 is a tolerance), 𝐼𝑛𝑛𝑒𝑟𝑖𝑡𝑒𝑟

(Number of iterations). Set 𝑘 = 0. Initialize u(1) = 𝜔(0) = 0, 𝑡
1
= 1.

Step 2. Compute

𝜔
(𝑘)
← 𝑃

𝑋
(u(𝑘) + 1

𝜇𝛾
Η𝑃
𝑆
(z − 𝜇ΗTu(𝑘)));

𝑡
𝑘+1

←

1 + √1 + 4𝑡
2

𝑘

2
;

u(𝑘+1) ← 𝜔(𝑘) + 𝑡𝑘 − 1
𝑡
𝑘+1

(𝜔
(𝑘)
− 𝜔
(𝑘−1)

);

Step 3. Terminate if 𝜔
(𝑘+1)

− 𝜔
(𝑘)2

/

𝜔
(𝑘)2

< 𝜀
0
. Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 2

Step 4. Output f (𝑘) = 𝑃
𝑆
(z − 𝜇ΗT𝜔(𝑘−1))—An optimal solution of (25).

Algorithm2: FPG (z, 𝜇) (fast projected gradient) algorithm for image denoising under ISDTV (Η =WU) orMHOTV (Η = RV) regularizer.

4.1. Experiment Setting. For the image deblurring experi-
ments, our test images contain six natural images and six
biomedical cell images which are shown in Figures 1 and 2,
respectively, where the cell images are part of the biomedical
image database [34], and they are all converted to grayscale.
In our experiments, the intensities of all the test images are
initially normalized to the range [0, 1], andweuse three kinds
of point spread function (PSF) to produce the blurred images,
which are a 9×9 Gaussian PSF of standard deviation 𝜎

𝑏
= 6,

a 9 × 9 uniform one, and a 19 × 19 motion one, respectively.
Furthermore, the Gaussian noise of two different levels
corresponding to a blurred SNR (BSNR) of {20, 30} dB is
added to generate the eventually degraded images, and the
BSNR is defined as

BSNR = var (Af)
𝜎2
𝑛

, (36)

where var(Af) is the variance of blurred image and 𝜎
𝑛
is

the standard deviation of Gaussian noise. In addition, we
constrain the intensities of image recovered by all the seven
methods to lie in the convex closed set 𝑆 = {f ∈ R𝑁 | f

𝑖
∈

[0, 1], ∀𝑖 = 1, . . . , 𝑁}. For the sake of fair comparisons, the
regularization parameter 𝜆 for each regularizationmethod is
chosen to give the best PSNRperformance. Finally, we set 𝜀 =
10
−5, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 = 100, 𝜀

0
= 10
−3
, and 𝐼𝑛𝑛𝑒𝑟𝑖𝑡𝑒𝑟 = 10 in our

experiments.

4.2. Recovery on Natural Images. In Table 2, we provide
systematic comparative results for all the regularization
schemes on the natural images under different degradation
conditions. As we can see from Table 2, regarding com-
parisons among the seven regularization schemes, the best
PSNR results, on average, are achieved for the proposed
MHOTV regularizer, the nonlocal TV regularizer provides
better results than TV regularizer for most of the cases, and
ISDTV regularizer outperforms TV and Hessian Spectral-
norm regularizers for most of the cases, while the Hessian
Frobenius-norm regularizer always performs similar results
with ISDTV scheme, and the PSNR results of Hessian
Nuclear-norm regularizer are almost always a little better
than that of Hessian Spectral-norm and Frobenius-norm
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Table 2: PSNR (dB) results of the seven regularization methods on natural images for three blurring kernels and two different noise levels.

Blur Gaussian Uniform Motion Gaussian Uniform Motion
BSNR (dB) 20 30 20 30 20 30 20 30 20 30 20 30

Barbara Boat
TV 23.22 24.12 23.26 24.15 23.34 24.72 26.83 29.12 26.97 29.35 26.23 28.79
Nonlocal TV 23.42 24.21 23.45 24.22 23.28 25.02 26.94 29.25 27.07 29.46 25.87 28.67
Hessian Spectral 23.32 24.18 23.35 24.22 23.32 24.68 26.91 29.11 27.00 29.30 26.05 28.47
Hessian Frobenius 23.36 24.23 23.38 24.27 23.37 24.78 27.01 29.27 27.12 29.47 26.15 28.60
Hessian Nuclear 23.38 24.26 23.40 24.29 23.41 24.85 27.07 29.34 27.19 29.57 26.19 28.65
ISDTV 23.35 24.22 23.37 24.26 23.36 24.76 26.98 29.23 27.09 29.43 26.13 28.58
MHOTV 23.42 24.28 23.45 24.32 23.50 24.88 27.15 29.46 27.27 29.67 26.48 28.96

Face Fingerprint
TV 26.13 28.83 26.11 28.73 24.97 28.43 23.47 26.37 23.31 26.26 22.43 25.30
Nonlocal TV 26.90 29.28 26.73 29.32 24.44 27.77 24.86 26.88 24.57 26.72 23.03 25.84
Hessian Spectral 26.84 29.61 26.74 29.49 25.70 29.23 24.68 27.07 24.53 27.04 23.75 26.30
Hessian Frobenius 26.98 29.77 26.89 29.69 25.79 29.39 24.79 27.13 24.62 27.11 23.79 26.36
Hessian Nuclear 27.03 29.79 26.96 29.69 25.83 29.46 24.75 27.07 24.60 27.06 23.80 26.32
ISDTV 26.95 29.82 26.87 29.67 25.78 29.44 24.74 27.09 24.58 27.06 23.76 26.32
MHOTV 27.12 30.01 27.00 29.84 25.86 29.58 24.69 27.27 24.43 27.16 23.45 26.23

Lena Peppers
TV 25.49 27.40 25.54 27.56 25.59 28.37 26.21 29.35 26.54 29.49 24.77 27.19
Nonlocal TV 25.57 27.49 25.67 27.57 25.07 28.17 26.53 28.64 26.82 28.98 24.24 27.64
Hessian Spectral 25.34 27.10 25.41 27.20 25.25 28.16 26.19 28.98 26.46 29.08 25.12 27.97
Hessian Frobenius 25.44 27.22 25.50 27.32 25.39 28.33 26.35 29.14 26.64 29.25 25.23 28.15
Hessian Nuclear 25.51 27.26 25.56 27.37 25.51 28.43 26.48 29.23 26.77 29.37 25.31 28.16
ISDTV 25.42 27.19 25.48 27.29 25.36 28.29 26.29 29.09 26.59 29.21 25.19 28.11
MHOTV 25.78 27.60 25.83 27.73 25.81 28.73 26.69 29.65 27.01 29.75 25.56 28.66

Figure 1: Set of natural images (left to right): Barbara, Boat, Face, Fingerprint, Lena, and Peppers.

Figure 2: Set of biomedical cell images (left to right): Fluorescent cell 1, Fluorescent cell 2, Fluorescent cell 3, CIL 248, CIL 7437, and CIL
12293.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Results of different methods on the Fingerprint image degraded by Gaussian blurring and noise corresponding to a BSNR
level of 30 dB: (a) original image, (b) degraded image (PSNR= 18.56 dB), (c) TV solution (PSNR= 26.37 dB), (d) nonlocal TV solution
(PSNR= 26.88 dB), (e) Hessian Frobenius-norm solution (PSNR= 27.13 dB), (f) Hessian Spectral-norm solution (PSNR= 27.07 dB), (g)
Hessian Nuclear-norm solution (PSNR= 27.07 dB), (h) ISDTV solution (PSNR= 27.09 dB), and (i) MHOTV solution (PSNR= 27.27 dB).

regularizers. Thus, we can conclude that our MHOTV-based
regularization scheme is proven to be a valid approach for
image recovery.

Furthermore, we show the representative Fingerprint,
Face, and Peppers deblurring examples in Figures 3, 4, and 5,
which are degraded by Gaussian blurring, uniform blurring,
and motion blurring with different Gaussian noise levels,
respectively.

From these figures, we can clearly see that the images
recovered by TV regularization method suffer from heavy

blocky artifacts appearing in the smoother regions of
the image and result in some loss of details, the nonlo-
cal TV regularization method preserves the sharp edges
but smoothes some moderate gradient areas, the Hessian
Spectral-norm, Hessian Frobenius-norm, Hessian Nuclear-
norm, and ISDTV regularization methods are very compet-
itive, and they can also preserve some sharp edges and min-
imize the staircase effect, while our MHOTV regularization
method provides the best image quality which can effectively
minimize the staircase effect and better preserve edges
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4: Results of different methods on the Face image degraded by uniform blurring and noise corresponding to a BSNR level of 20 dB:
(a) original image, (b) degraded image (PSNR= 21.77 dB), (c) TV solution (PSNR= 26.11 dB), (d) nonlocal TV solution (PSNR= 26.73 dB),
(e) Hessian Frobenius-norm solution (PSNR= 26.89 dB), (f) Hessian Spectral-norm solution (PSNR= 26.74 dB), (g) Hessian Nuclear-norm
solution (PSNR= 26.96 dB), (h) ISDTV solution (PSNR= 26.87 dB), and (i) MHOTV solution (PSNR= 27.00 dB).

sharpness. For example, in Figure 3, since the Fingerprint
image is mainly composed of smooth transitions and ridge
features, in order to highlight the differences, we present
the details of the corresponding zooming versions of the
region (marked by the black box in Figure 3(a)) for all the
seven methods in Figures 3(c)–3(i). Comparing the results
of these seven methods, we observe that the TV solution
shown in Figure 3(c) results in some loss of fine ridge details
and produces the staircase effect, the nonlocal TV solution
shown in Figure 3(d) smoothes some ridge details, and the

remaining five methods all preserve fine ridge details and
edges better than TV and nonlocal TV methods, while our
MHOTV solution provides the best performance in terms of
both PSNR and image quality.

4.3. Recovery on Biomedical Cell Images. In this section, we
mainly talk about the performance of the proposedMHOTV
regularization scheme on biomedical images, which are
closely related to the practical applications. To evaluate
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5: Results of different methods on the Peppers image degraded by motion blurring and noise corresponding to a BSNR level of 30 dB:
(a) original image, (b) degraded image (PSNR= 18.98 dB), (c) TV solution (PSNR= 27.19 dB), (d) nonlocal TV solution (PSNR= 27.64 dB),
(e) Hessian Frobenius-norm solution (PSNR= 28.15 dB), (f) Hessian Spectral-norm solution (PSNR= 27.97 dB), (g) Hessian Nuclear-norm
solution (PSNR= 28.16 dB), (h) ISDTV solution (PSNR= 28.11 dB), and (i) MHOTV solution (PSNR= 28.66 dB).

the effectiveness of our approach, we provide deblurring
experiments for all the methods on the set of biomedical cell
images, and their comparative results are given in Table 3.

With the PSNR comparisons in Table 3, we can clearly
observe that the proposed MHOTV regularization approach
provides the best PSNR results for most of the cases, the
ISDTV method always performs better than nonlocal TV,
TV, and Hessian Spectral-norm methods, and the nonlocal

TV method provides the better results than TV method for
most of the cases, while the Hessian Frobenius-normmethod
always provides the comparatively similar results to ISDTV
method, and the PSNR results of Hessian Nuclear-norm
method are almost always a little better than that of Hessian
Spectral-norm and Frobenius-norm methods. Meanwhile,
we show the representative Fluorescent cell 3 and CIL
12293 deblurring examples in Figures 6 and 7, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6: Results of different methods on the Fluorescent cell 3 image degraded by Gaussian blurring and noise corresponding to a BSNR
level of 20 dB: (a) original image, (b) degraded image (PSNR= 24.40 dB), (c) TV solution (PSNR= 27.15 dB), (d) nonlocal TV solution
(PSNR= 27.47 dB), (e) Hessian Frobenius-norm solution (PSNR= 27.53 dB), (f) Hessian Spectral-norm solution (PSNR= 27.47 dB), (g)
Hessian Nuclear-norm solution (PSNR= 27.53 dB), (h) ISDTV solution (PSNR= 27.52 dB), and (i) MHOTV solution (PSNR= 27.67 dB).

While carefully inspecting the recovered images shown in
Figures 6 and 7, we obviously find that the advantage of
our MHOTV approach consists in better preserving the
ridges and filament-like features sharpness without intro-
ducing severe block artifacts, and the nonlocal TV, ISDTV,
and the three Hessian-norm regularization methods can
preserve some fine ridge features and alleviate the staircase
effect, as opposed to TV which introduces the heavy block
artifacts which tends to produce the oversmoothed image

ridge and filament-like features. Therefore, we conclude that
our MHOTV regularization approach can be effectively and
successfully applied in the process of biomedical imaging.

5. Conclusion

In this paper, we have proposed a novel MHOTV regularizer
which combines the first and second degree derivatives
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Results of different methods on the CIL 12293 image degraded by uniform blurring and noise corresponding to a BSNR
level of 20 dB: (a) original image, (b) degraded image (PSNR= 21.00 dB), (c) TV solution (PSNR= 25.04 dB), (d) nonlocal TV solution
(PSNR= 24.95 dB), (e) Hessian Frobenius-norm solution (PSNR= 25.43 dB), (f) Hessian Spectral-norm solution (PSNR= 25.33 dB), (g)
Hessian Nuclear-norm solution (PSNR= 25.44 dB), (h) ISDTV solution (PSNR= 25.48 dB), and (i) MHOTV solution (PSNR= 25.56 dB).

of the image. Within spectral decomposition framework,
we reformulate both the ISDTV and MHOTV regulariz-
ers as weighted 𝐿

1
-𝐿
2
mixed norms of image derivatives.

Furthermore, we present a unified variational model based
on the ISDTV and MHOTV regularizers for image recov-
ery. Based on the equivalent formulations of ISDTV and
MHOTV regularizers, we then introduce an efficient fast
projected gradient algorithm combined with monotone fast
iterative shrinkage thresholding (FPG-MFISTA) to solve the

corresponding optimization problems under majorization-
minimization framework. Finally, the performance of the
proposed MHOTV regularization scheme was assessed by
comparing the experimental results on both natural images
and biomedical cell images against various state-of-the-art
methods. Specifically, the proposed MHOTV regularization
scheme performs improved results and can effectively mini-
mize the staircase effect that is commonly met in TV scheme
while better preserving edges sharpness.
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Table 3: PSNR (dB) results of the seven regularization methods on biomedical cell images for two blurring kernels and two different noise
levels.

Blur Gaussian Uniform Gaussian Uniform
BSNR (dB) 20 30 20 30 20 30 20 30

Fluorescent cell 1 Fluorescent cell 2
TV 27.52 29.20 27.62 29.29 28.21 30.12 28.28 30.35
Nonlocal TV 27.44 29.22 27.46 29.23 28.40 30.12 28.41 30.28
Hessian Spectral 27.92 29.63 28.00 29.74 28.61 30.38 28.63 30.61
Hessian Frobenius 27.97 29.73 28.03 29.83 28.72 30.51 28.77 30.69
Hessian Nuclear 27.97 29.75 28.04 29.88 28.74 30.57 28.82 30.77
ISDTV 27.96 29.70 28.01 29.80 28.69 30.48 28.74 30.70
MHOTV 27.97 29.67 28.02 29.76 28.72 30.55 28.78 30.78

Fluorescent cell 3 CIL 248
TV 27.15 29.01 27.15 29.24 27.70 29.65 27.69 29.79
Nonlocal TV 27.47 29.18 27.48 29.25 27.89 29.68 27.80 29.76
Hessian Spectral 27.47 29.25 27.49 29.47 28.23 30.00 28.19 30.10
Hessian Frobenius 27.53 29.35 27.56 29.55 28.26 30.10 28.19 30.18
Hessian Nuclear 27.53 29.37 27.60 29.56 28.23 30.08 28.17 30.18
ISDTV 27.52 29.32 27.55 29.53 28.25 30.11 28.20 30.21
MHOTV 27.67 29.50 27.68 29.73 28.35 30.25 28.30 30.38

CIL 7437 CIL 12293
TV 34.61 36.31 34.66 36.42 24.95 26.81 25.04 27.26
Nonlocal TV 34.63 36.43 34.57 36.43 24.86 26.58 24.95 26.88
Hessian Spectral 35.10 36.79 35.08 36.88 25.31 26.97 25.33 27.37
Hessian Frobenius 35.13 36.85 35.11 36.96 25.40 27.03 25.43 27.44
Hessian Nuclear 35.10 36.83 35.09 36.92 25.42 27.00 25.44 27.40
ISDTV 35.12 36.83 35.10 36.94 25.44 27.04 25.48 27.46
MHOTV 35.19 36.91 35.19 37.01 25.49 27.08 25.56 27.52

Appendix

A. Proof of Proposition 1

Proof. Using the rotation steerability of directional deriva-
tives [35, 36], we simplify the integrand of (5) as

√
1

2𝜋
∫

2𝜋

0

𝑓𝜃,2 (𝑥, 𝑦)


2

𝑑𝜃

=
√
gT (𝑥, 𝑦) ( 1

2𝜋
∫

2𝜋

0

s (𝜃) sT (𝜃) 𝑑𝜃)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

C2

g (𝑥, 𝑦)

= √gT (𝑥, 𝑦)C2g (𝑥, 𝑦).

(A.1)

Here, C2 is a matrix with entries C2(𝑖, 𝑗) = (1/2𝜋) ∫
2𝜋

0
s
𝑖
(𝜃)

s
𝑗
(𝜃)𝑑𝜃, 𝑖, 𝑗 = 1, . . . , 3, where s

𝑖
(𝜃) denotes the 𝑖th element

of s (𝜃). Based on that, we have

C2 =
1

8

[

[

3 0 1

0 4 0

1 0 3

]

]

. (A.2)

Since C2 is a symmetric and positive definite matrix, we can
use the spectral decomposition theorem to rewrite C2 as

C2 = QΛQT
, (A.3)

where Λ = (1/4) [

1 0 0

0 2 0

0 0 2

] and Q = (1/√2) [

1 1 0

0 0 √2

−1 1 0

] are

the diagonal matrix with the eigenvalues of C2 and the
orthogonal matrix with the corresponding eigenvectors in its
columns, respectively. Specially, let us define W = Λ

1/2QT
=

(1/(2√2)) [

1 0 −1

√2 0 √2

0 2 0

]; we then obtain that

√
1

2𝜋
∫

2𝜋

0

𝑓𝜃,2 (𝑥, 𝑦)


2

𝑑𝜃

= √gT (𝑥, 𝑦)C2g (𝑥, 𝑦)

= √gT (𝑥, 𝑦)QΛQTg (𝑥, 𝑦)

= √gT (𝑥, 𝑦)QΛ1/2Λ1/2QT
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

W
g (𝑥, 𝑦)

=
Wg (𝑥, 𝑦)2.

(A.4)
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B. Proof of Proposition 2

Proof. Using the rotation steerability of directional deriva-
tives [35, 36], we can simplify the integrand of (11) as

√
1

2𝜋
∫

2𝜋

0

ST (𝜃)G (𝑥, 𝑦)


2

𝑑𝜃

=
√
GT (𝑥, 𝑦) (

1

2𝜋
∫

2𝜋

0

S (𝜃) ST (𝜃) 𝑑𝜃)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

C

G (𝑥, 𝑦)

= √GT (𝑥, 𝑦)CG (𝑥, 𝑦),
(B.1)

where, C is a matrix with entries C(𝑖, 𝑗) = (1/2𝜋) ∫
2𝜋

0
S
𝑖
(𝜃)

S
𝑗
(𝜃)𝑑𝜃, 𝑖, 𝑗 = 1, . . . , 5, where S

𝑖
(𝜃) denotes the 𝑖th element

of S(𝜃). Based on that, we have

C = 1
8

[
[
[
[
[

[

4 0 0 0 0

0 4 0 0 0

0 0 3 0 1

0 0 0 4 0

0 0 1 0 3

]
]
]
]
]

]

. (B.2)

Since C is a symmetric and positive definite matrix, we
can use the spectral decomposition theorem to reformulate
C as

C = BDBT
, (B.3)

where D = (1/4) [

1 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2

] and B =

(1/√2)[

[

0 √2 0 0 0

0 0 √2 0 0

1 0 0 1 0

0 0 0 0 √2

−1 0 0 1 0

]

]

are the diagonal matrix with the eig-

envalues of C and the orthogonal matrix with the corres-
ponding eigenvectors in its columns, respectively. Specially,
we define

R = D1/2BT
=

1

2√2

[
[
[
[
[

[

0 0 1 0 −1

2 0 0 0 0

0 2 0 0 0

0 0 √2 0 √2

0 0 0 2 0

]
]
]
]
]

]

. (B.4)

Substituting (B.3) into (B.1), we obtain that

√
1

2𝜋
∫

2𝜋

0

ST (𝜃)G (𝑥, 𝑦)


2

𝑑𝜃

= √GT (𝑥, 𝑦)CG (𝑥, 𝑦)

= √GT (𝑥, 𝑦)BDBTG (𝑥, 𝑦)

= √GT (𝑥, 𝑦)BD1/2D1/2BT
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

R
G (𝑥, 𝑦)

=
RG (𝑥, 𝑦)

2
.

(B.5)
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