Research Article

Nonlinear Stochastic H_{∞} Control with Markov Jumps and (x, u, v)-Dependent Noise: Finite and Infinite Horizon Cases

Li Sheng, 1 Meijun Zhu, 1 Weihai Zhang, 2 and Yuhong Wang 1

1 College of Information and Control Engineering, China University of Petroleum (East China), Qingdao 266580, China
2 College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China

Correspondence should be addressed to Li Sheng; victory8209@163.com

Received 8 April 2014; Accepted 1 June 2014; Published 18 June 2014

Academic Editor: Xuejun Xie

Copyright © 2014 Li Sheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is concerned with the H_{∞} control problem for nonlinear stochastic Markov jump systems with state, control, and external disturbance-dependent noise. By means of inequality techniques and coupled Hamilton-Jacobi inequalities, both finite and infinite horizon H_{∞} control designs of such systems are developed. Two numerical examples are provided to illustrate the effectiveness of the proposed design method.

1. Introduction

H_{∞} control is one of the most important robust control approaches, which can efficiently eliminate the effect of the exogenous disturbance [1, 2]. Since Hinrichsen and Pritchard introduced H_{∞} control to linear stochastic systems [3], the nonlinear stochastic H_{∞} control and filtering problems have received considerable attention in both theory and practical applications [4–9]. In [4], the nonlinear stochastic H_{∞} designs were first developed by solving a second-order nonlinear Hamilton-Jacobi inequality. The H_{∞} filtering problems for general nonlinear continuous-time and discrete-time stochastic systems were discussed in [6] and [7], respectively. In [8], the quantized H_{∞} control problem for a class of nonlinear stochastic time-delay network-based systems with probabilistic data missing is studied.

On the other hand, Itô stochastic systems with Markov jumps have attracted increasing attention due to their powerful modeling ability in many fields [10, 11]. For linear stochastic systems with Markov jumps, many important issues have been studied, such as stability and stabilization [12, 13], observability and detectability [14], optimal control [15], and H_2/H_{∞} control [16]. The control issues for nonlinear stochastic Markov jump systems (NSMJSs) have also been widely investigated. In [17], the notion of exponential dissipativity of NSMJSs was introduced, and it was used to estimate the possible variations of the output feedback control. In [18], the stabilization of nonlinear Markov jump systems with partly unknown transition probabilities was studied via fuzzy control. In [19], the H_{∞} control problems of NSMJSs were studied, which extended the results of [4] to stochastic systems with Markovian jump parameters.

Most of the existing literature was concerned with stochastic Markov jump systems with state-dependent noise or both state and disturbance dependent noise ((x, v)-dependent noise for short) [16, 19]. However, for most natural phenomena described by Itô stochastic systems, not only state but also control input or external disturbance maybe corrupted by noise. By introducing three coupled Hamilton-Jacobi equations (HJEIs), the finite and infinite horizon H_{∞} control problems were solved for Itô stochastic systems with all system state, control, and disturbance-dependent noise ((x, u, v)-dependent noise for short) in [20] and [21], respectively. In [22], the finite/infinite horizon H_{∞} control of nonlinear stochastic systems with (x, u, v)-dependent noise never been tackled and deserved further research.

In this paper, the finite and infinite horizon H_{∞} control problems are studied for nonlinear stochastic Markov jumps...
systems with \((x, u, v)\)-dependent noise. Firstly, a very useful elementary identity is proposed. Then, by using the technique of squares completion, a sufficient condition for finite/infinite horizon \(H_\infty\) control of NSMJIs is presented based on a set of coupled HJIs. By means of linear matrix inequalities (LMIs), a sufficient condition for infinite horizon \(H_\infty\) control of linear stochastic Markov jump systems is derived. Finally, two numerical examples are provided to show the effectiveness of our obtained results.

For conveniences, we make use of the following notations throughout this paper. \(R^n\) is the \(n\)-dimensional Euclidean space. \(R^{m \times n}\) is the set of all \(n \times m\) real matrices. \(A\) is a positive definite (positive semi-definite) symmetric matrix. \(A^t\) is the transpose of a matrix. \(I\) is the identity matrix. \(\|x\|\) is the Euclidean norm of a vector \(x\). \(L^2_\infty([0, T]; R^n)\) (resp., \(L_\infty^2(R^n; R^n)\)) is the space of nonanticipative stochastic processes \(y(t) \in R^n\) with respect to increasing \(\sigma\)-algebras \(\mathcal{F}_i\) \((t \geq 0)\) satisfying \(\|y(t)\|_{L^2_\infty([0, T]; R^n)} = (E \int_0^T \|y(t)\|^2 dt)^{1/2} < \infty\) (resp., \(\|y(t)\|_{L^2_\infty([0, T]; R^n)} = (E \int_0^\infty \|y(t)\|^2 dt)^{1/2} < \infty\)).

2. Definitions and Preliminaries

Consider the following time-varying nonlinear stochastic Markov jump systems with \((x, u, v)\)-dependent noise:

\[
dx(t) = \left[f(t, x, r_t) + g(t, x, r_t) u(t) + h(t, x, r_t) v(t) \right] dt \\
+ \left[I(t, x, r_t) + q(t, x, r_t) u(t) \\
+ s(t, x, r_t) v(t) \right] dw(t), \\
z(t) = \text{col}(m(t, x, r_t), u(t)) := \left[\begin{array}{c} m(t, x, r_t) \\
u(t) \end{array} \right], \\
x(0) = x_0 \in R^n, \\
(1)
\]

where \(x(t) \in R^n, u(t) \in R^m, v(t) \in R^n,\) and \(z(t) \in R^n\) represent the system state, control input, exogenous input, and regulated output, respectively. \(u(t)\) is the one-dimensional standard Wiener process defined on the complete probability space \((\Omega, \mathcal{F}, P)\), with the natural filter \(\mathcal{F}_i\) generated by \(w(\cdot)\) and \(r(\cdot)\) up to time \(t\). The jumping process \([r_t, t \geq 0]\) is a continuous-time discrete-state Markov process taking values in a finite set \(\mathcal{T} = \{1, \ldots, N\}\). The transition probabilities for the process \(r_t\) are defined as

\[
P(r_{t+h} = j | r_t = k) = \begin{cases}
\pi_{kj} h + o(h), & \text{if } k \neq j, \\
1 + \pi_{kk} h + o(h), & \text{if } k = j,
\end{cases}
\]

where \(h > 0, \lim_{h \to 0} o(h)/h = 0, \) and \(\pi_{jk} \geq 0 \) \((k, j \in \mathcal{T}, k \neq j)\) denotes the switching rate from mode \(k\) at time \(t\) to mode \(j\) at time \(t + h\) and \(\pi_{kk} = -\sum_{j=1, j \neq k} \pi_{kj}\) for all \(k \in \mathcal{T}\). In this paper, the processes \(r_t\) and \(w(t)\) are assumed to be independent. For every \(r_t = k \in \mathcal{T}, f(t, x, k), g(t, x, k), h(t, x, k), I(t, x, k), q(t, x, k), s(t, x, k),\) and \(m(t, x, k)\) are Borel measurable functions of suitable dimensions, which guarantee that system \((1)\) has a unique strong solution [23].

The finite horizon \(H_\infty\) control for system \((1)\) is defined as follows.

Definition 1. For given \(\gamma > 0,\) the state feedback control \(u^*_{\infty}(t) \in L_\infty^2(R^n; R^m)\) is called a finite horizon \(H_\infty\) control of system \((1)\), if for the zero initial state and any nonzero \(v(t) \in L_\infty^2([0, T]; R^n)\), we have \(\|z_T\| < \gamma\) with

\[
\|z_T\| = \sup_{v(t) \in L_\infty^2([0, T]; R^n), v(t) \neq 0, u(t) = u^*_\infty(t), x(0) = x_0} \frac{\|z(t)\|_{L_\infty^2([0, T]; R^n)}}{\|v(t)\|_{L_\infty^2([0, T]; R^n)}} = \sup_{v(t) \in L_\infty^2([0, T]; R^n), v(t) \neq 0, u(t) = u^*_\infty(t), x(0) = x_0} \left\{ E \left\{ \int_0^T \|m(t, x, r_t)\|^2 dt \right\} \right\}^{1/2} + \left\{ \int_0^T \|u^*_\infty(t)\|^2 dt \right\}^{1/2} \right\}^{1/2},
\]

where \(z_T\) is an operator associated with system \((1)\) which is defined as

\[
\mathcal{L}_T : L_\infty^2([0, T]; R^n) \rightarrow L_\infty^2([0, T]; R^n), \\
\mathcal{L}_T(v(t)) = z(t)|_{x(0) = 0}, \quad t \in [0, T].
\]

Consider the time-invariant nonlinear stochastic Markov jump systems with \((x, u, v)\)-dependent noise:

\[
dx(t) = \left[f(t, x, r_t) + g(t, x, r_t) u(t) + h(t, x, r_t) v(t) \right] dt \\
+ \left[I(t, x, r_t) + q(t, x, r_t) u(t) \\
+ s(t, x, r_t) v(t) \right] dw(t), \\
z(t) = \text{col}(m(t, x, r_t), u(t)) := \left[\begin{array}{c} m(t, x, r_t) \\
u(t) \end{array} \right], \\
x(0) = x_0 \in R^n. \\
(5)
\]

The infinite horizon \(H_\infty\) control for system \((5)\) is defined as follows.

Definition 2. For given \(\gamma > 0,\) the control \(u^*_{\infty}(t) \in L_\infty^2(R^n; R^m)\) is called an infinite horizon \(H_\infty\) control of system \((1)\), if the following is considered.
(i) For the zero initial state and any nonzero \(v(t) \in L^2_\mathcal{P}(\mathcal{R}_+; \mathcal{R}^n) \), we have \(\| \mathcal{L}_\infty \| < \gamma \) with
\[
\| \mathcal{L}_\infty \| = \sup_{v(t) \in L^2_\mathcal{P}(\mathcal{R}_+; \mathcal{R}^n)} \| z(t) \|_{L^2_\mathcal{P}(\mathcal{R}_+; \mathcal{R}^n)} = \sup_{v(t) \neq 0, u(t) = u_0 } E \left(\int_0^\infty \left(\| m(x, r_t) \| ^2 + \| u^*_0(t) \| ^2 \right) dt \right)^{1/2} \times \left(E \left(\int_0^\infty \| v(t) \| ^2 dt \right) \right)^{-1/2}
\]
where \(\mathcal{L}_\infty \) is an operator associated with system (5) which is defined as
\[
\mathcal{L}_\infty : L^2_\mathcal{P}(\mathcal{R}_+; \mathcal{R}^n) \rightarrow L^2_\mathcal{P}(\mathcal{R}_+; \mathcal{R}^n),
\]
\[
\mathcal{L}_\infty (v(t)) = z(t) \big|_{x_0=0}, \quad t \in T_+.
\]
(ii) System (5) is internally stable; that is, the following system
\[
dx(t) = \left[f(x, r_t) + g(x, r_t) u^*_0(x, r_t) \right] dt + \left[l(x, r_t) + q(x, r_t) u^*_0(x, r_t) \right] dw(t),
\]
is globally asymptotically stable in probability [10].

To give our main results, we need the following lemmas.

Lemma 3 (see [10]). (Generalized Itô formula). Let \(\alpha(t, x, k) \) and \(\beta(t, x, k) \) be given \(\mathcal{R}^n \)-valued, \(\mathcal{T} \)-adapted process, \(k \in \mathcal{T} \), and \(dx(t) = \alpha(t, x(t), r_t) dt + \beta(t, x(t), r_t) dw(t) \). Then for given \(V(t, x, k) \in \mathcal{C}^{1,2}([0, T); \mathcal{R}^n) \), \(k \in \mathcal{T} \), we have
\[
E\left[V(T, x(T), r_T) - V(s, x(s), r_s) \big| r_s = k \right]
= E \left(\int_s^T \mathcal{L}_V(t, x(t), r_t) dt \right) \big|_{r_s = k},
\]
where
\[
\mathcal{L}_V(t, x, k) = \frac{\partial V(t, x, k)}{\partial t} + \frac{\partial V'(t, x, k)}{\partial x} \alpha(t, x, k) + \sum_{j=1}^N \pi_{kj} V(t, x, k)
+ \frac{1}{2} \beta'(t, x, k) \frac{\partial V^2(t, x, k)}{\partial x^2} \beta(t, x, k).
\]

Lemma 4. If \(x, b \in \mathcal{R}^n, A \in \mathcal{R}^{n \times n} \) is a symmetric matrix and \(A^{-1} \) exists, we have
\[
x'Ax + x'b + b'x = (x + A^{-1}b)'A(x + A^{-1}b) - b'A^{-1}b.
\]
Proof. This lemma is very easily proved by using completing squares technique, so the proof is omitted.

\[\square \]

3. Main Results

3.1. Finite Horizon Case

The following sufficient condition is presented for the finite horizon \(H_\infty \) control of system (1). For convenience, denote \((\cdot)_k := (\cdot)(t, x, k) \) in this subsection.

Theorem 5. Assume that there exists a set of nonnegative functions \(V(t, x, k) \in \mathcal{C}^{1,2}([0, T] \times \mathcal{R}^n \times \mathcal{T}; \mathcal{R}), V(0, 0, k) = 0, \) and \(\partial^2 V(t, x, k)/\partial x^2 \geq 0 \) for all nonzero \(x \in \mathcal{R}^n, k \in \mathcal{T} \). If \(V(t, x, k) \) solves the following coupled HJs:
\[
\Delta_k = \frac{\partial V_k}{\partial t} + \frac{\partial V'_k}{\partial x} f_k + \frac{1}{2} \frac{\partial^2 V_k}{\partial x^2} l_k + m_k^2 m_k + \sum_{j=1}^N \pi_{kj} V_j
+ \frac{1}{4} \left(l_k \frac{\partial^2 V_k}{\partial x^2} s_k + \frac{\partial V'_k}{\partial x} h_k \right) \left(y^2 I - s_k^2 \frac{\partial^2 V_k}{\partial x^2} s_k \right)^{-1}
\times \left(s_k \frac{\partial^2 V_k}{\partial x^2} s_k + h_k \frac{\partial V_k}{\partial x} \right)
+ \frac{1}{4} \left(l_k \frac{\partial^2 V_k}{\partial x^2} q_k + \frac{\partial V'_k}{\partial x} g_k \right) \left(I + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1}
\times \left(q_k \frac{\partial^2 V_k}{\partial x^2} q_k + g_k \frac{\partial V_k}{\partial x} \right) < 0,
\]
then
\[
u^*_k(t, x, k) = -\frac{1}{2} \left(I + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} \left(q_k \frac{\partial^2 V_k}{\partial x^2} q_k + \frac{\partial V_k}{\partial x} \right)
\]
is a finite horizon \(H_\infty \) control of system (1).

Proof. For any \(T > 0 \) and the initial state \(x_0 = 0, r_0 = k \), applying Lemma 3, we have
\[
E \left[V(t, x(t), r_T) - V(0, r_0) \big| r_0 = k \right] = E \left(\int_0^T \left[\frac{\partial V_k}{\partial t} + \frac{\partial V'_k}{\partial x} f_k + \frac{1}{2} \frac{\partial^2 V_k}{\partial x^2} l_k + m_k^2 m_k + \sum_{j=1}^N \pi_{kj} V_j \right] \right) \big|_{r_0 = k}.
\]
where \((\cdot)_n \) denotes \((\cdot)(t, x, r_n) \) and

\[
\begin{align*}
\Theta_1(t, v, x, r_n) &= v' \left(-y^2 I + \frac{1}{2} s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} \right) v \\
&\quad + \frac{1}{2} \left(l_n' \frac{\partial^2 V_{r_n}}{\partial x^2} s_n + \frac{\partial V_{r_n}'}{\partial x} h_n \right) v \\
&\quad + \frac{1}{2} v' \left(s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} l_n + h_n' \frac{\partial V_{r_n}}{\partial x} \right), \\
\Theta_2(t, x, r_n) &= \frac{\partial V_{r_n}}{\partial t} + \frac{\partial V_{r_n}'}{\partial x} f_n + \frac{1}{2} \frac{\partial^2 V_{r_n}}{\partial x^2} l_n + m_n' m_n, \quad (15) \\
\Theta_3(t, u, x, r_n) &= u' \left(l + \frac{1}{2} l_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} \right) u \\
&\quad + \frac{1}{2} \left(l_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} + \frac{\partial V_{r_n}'}{\partial x} g_n \right) u \\
&\quad + \frac{1}{2} u' \left(q_{r_n} \frac{\partial^2 V_{r_n}}{\partial x^2} l_n + g_n' \frac{\partial V_{r_n}}{\partial x} \right). \\
\end{align*}
\]

Since \(\frac{\partial^2 V_{r_n}}{\partial x^2} \geq 0, k \in \mathcal{A} \), we have

\[
\frac{1}{2} \left(-u q_{r_n}' + v' s_n' \right) \frac{\partial^2 V_{r_n}}{\partial x^2} \left(-q_{r_n} u + s_n v\right) \geq 0, \quad (16)
\]

which means that

\[
\begin{align*}
\frac{1}{2} \left(u q_{r_n}' \frac{\partial^2 V_{r_n}}{\partial x^2} s_n v + v' s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} u \right) \\
\leq \frac{1}{2} u q_{r_n}' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} u + \frac{1}{2} v' s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} s_n v. \\
\end{align*}
\]

Considering the above inequality and (14), we have

\[
\begin{align*}
E \left[V(x(T), r_T) - V(0, r_0) \mid r_0 = k \right] \\
&\leq E \left[\int_0^T \Theta_1(t, v, x, r_n) + \Theta_2(t, x, r_n) + \Theta_3(t, u, x, r_n) \\
&\quad + \frac{1}{2} \left(u q_{r_n}' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} u + v' s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} s_n v \right) \right] dt \mid r_0 = k \right] \\
&\leq E \left[\Theta_1(t, v, x, r_n) + \Theta_2(t, x, r_n) + \Theta_3(t, u, x, r_n) \\
&\quad + \frac{1}{2} \left(u q_{r_n}' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} u + \frac{1}{2} \left(u q_{r_n}' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} u + v' s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} s_n v \right) \right) \right] dt \mid r_0 = k \right] \\
&\leq E \left[\Theta_1(t, v, x, r_n) + \Theta_2(t, x, r_n) + \Theta_3(t, u, x, r_n) \\
&\quad + \frac{1}{2} \left(u q_{r_n}' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} u + \frac{1}{2} \left(u q_{r_n}' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} u + v' s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} s_n v \right) \right) \right] dt \mid r_0 = k \right], \\
\end{align*}
\]

where

\[
\begin{align*}
\overline{\Theta}_1(t, v, x, r_n) &= v' \left(-y^2 I + \frac{1}{2} s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} \right) v \\
&\quad + \frac{1}{2} \left(l_n' \frac{\partial^2 V_{r_n}}{\partial x^2} s_n + \frac{\partial V_{r_n}'}{\partial x} h_n \right) v \\
&\quad + \frac{1}{2} v' \left(s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} l_n + h_n' \frac{\partial V_{r_n}}{\partial x} \right), \\
\overline{\Theta}_2(t, x, r_n) &= \frac{\partial V_{r_n}}{\partial t} + \frac{\partial V_{r_n}'}{\partial x} f_n + \frac{1}{2} \frac{\partial^2 V_{r_n}}{\partial x^2} l_n + m_n' m_n, \\
\overline{\Theta}_3(t, u, x, r_n) &= u' \left(l + \frac{1}{2} l_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} \right) u \\
&\quad + \frac{1}{2} \left(l_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} + \frac{\partial V_{r_n}'}{\partial x} g_n \right) u \\
&\quad + \frac{1}{2} u' \left(q_{r_n} \frac{\partial^2 V_{r_n}}{\partial x^2} l_n + g_n' \frac{\partial V_{r_n}}{\partial x} \right). \\
\end{align*}
\]

Applying Lemma 4 to \(\overline{\Theta}_1(t, v, x, r_n) \) and \(\overline{\Theta}_3(t, u, x, r_n) \), we have

\[
\begin{align*}
\overline{\Theta}_1(t, v, x, r_n) &= (v + \Gamma_1)' \left(-y^2 I + \frac{1}{2} s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} \right) (v + \Gamma_1) \\
&\quad - \frac{1}{4} \left(l_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} + \frac{\partial V_{r_n}'}{\partial x} g_n \right) \left(-y^2 I + \frac{1}{2} s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} \right)^{-1} \\
&\quad \times \left(-y^2 I + \frac{1}{2} s_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} \right), \\
\overline{\Theta}_3(t, u, x, r_n) &= u' \left(l + \frac{1}{2} l_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} \right) u \\
&\quad + \frac{1}{2} \left(l_n' \frac{\partial^2 V_{r_n}}{\partial x^2} q_{r_n} + \frac{\partial V_{r_n}'}{\partial x} g_n \right) u \\
&\quad + \frac{1}{2} u' \left(q_{r_n} \frac{\partial^2 V_{r_n}}{\partial x^2} l_n + g_n' \frac{\partial V_{r_n}}{\partial x} \right). \\
\end{align*}
\]
\[\mathcal{S}_s(t,u,x,r_t) = (u + \Gamma_2)' \left(I + q' r_t \frac{\partial V_n}{\partial x^2} q_t \right) (u + \Gamma_2) \]
\[- \frac{1}{4} \left(I + q' r_t \frac{\partial V_n}{\partial x^2} q_t \right) \left(I + q' r_t \frac{\partial V_n}{\partial x^2} q_t \right)^{-1} \times \left(I + q' r_t \frac{\partial V_n}{\partial x^2} q_t \right) - \frac{1}{4} \left(q'_t \frac{\partial V_n}{\partial x^2} q_t \right) \frac{\partial V_n}{\partial x_t} + g'_t \frac{\partial V_n}{\partial x} \right), \]
(20)

where
\[\Gamma_1 = \frac{1}{2} \left(\gamma^2 I + s' r_t \frac{\partial V_n}{\partial x^2} s_t \right)^{-1} \left(\gamma^2 I + s' r_t \frac{\partial V_n}{\partial x^2} s_t \right), \]
\[\Gamma_2 = \frac{1}{2} \left(\gamma^2 I + s' r_t \frac{\partial V_n}{\partial x^2} s_t \right)^{-1} \left(\gamma^2 I + s' r_t \frac{\partial V_n}{\partial x^2} s_t \right). \]

Substituting (20) into (18), and considering (12), it yields
\[E \left[V(x(T),r_T) - V(0,r_0) \mid r_0 = k \right] \]
\[< E \left[\int_0^T \left((v + \Gamma_1)' \left(-\gamma^2 I + s' r_t \frac{\partial V_n}{\partial x^2} s_t \right) (v + \Gamma_1) \right) \right] + (u + \Gamma_2)' \left(I + q' r_t \frac{\partial V_n}{\partial x^2} q_t \right) (u + \Gamma_2) \]
\[+ \gamma^2 \| y \|^2 - \| z \|^2 \right] dt \mid r_0 = k \}
(22)

Taking \(u = u^*_T = -\Gamma_2 \) and considering the second item of (12), (22) leads to
\[E \left[\int_0^T \| z(t) \|^2 dt \mid r_0 = k \right] \]
\[< \gamma^2 E \left[\int_0^T \| v(t) \|^2 dt \mid r_0 = k \right] \]
\[- E \left[\int_0^T (v(t) + \Gamma_1)' \right] \]
\[\times \left(\gamma^2 I - s_t' \frac{\partial V_n}{\partial x^2} s_t \right) \]
\[\times (v(t) + \Gamma_1) \right] dt \mid r_0 = k \}
(23)

which means \(\| \mathcal{L}_T \| < \gamma \) in Definition 1. The theorem is proved. \(\square \)

Remark 6. The proof of Theorem 5 is based on an elementary identity (11), which avoids using stochastic dissipative theory as done in [4, 5]. We believe that the identity (11) will have many other applications in system analysis and synthesis.

3.2. Infinite Horizon Case. In contrast to the finite horizon case, the infinite horizon \(H_\infty \) control exhibits more complexity due to the additional requirement of stabilizing the closed-loop system internally. The following sufficient condition is derived for the infinite horizon \(H_\infty \) control of system (5). In this subsection, denote \((\cdot)_{k} := (\cdot)(x,k) \).

Theorem 7. Assume that there exists a set of nonnegative functions \(V(x,k) \in \mathcal{C}^2(\mathcal{R}^n \times \mathcal{T}; \mathcal{R}), V(0,k) = 0, \) and \(\frac{\partial V(x,k)}{\partial x^2} \geq 0 \) for all nonzero \(x \in \mathcal{R}^n, k \in \mathcal{T} \). If \(V(x,k) \) solves the following coupled HJI:
\[\Lambda_k = \frac{\partial V'_k}{\partial x} f_k + \frac{1}{2} \frac{\partial^2 V_k}{\partial x^2} q_k + m'_k m_k + \sum_{j=1}^{N} \pi_{k,j} V_j \]
\[+ \frac{1}{4} \left(l_k \frac{\partial V_k}{\partial x^2} s_k + \frac{\partial V'_k}{\partial x} l_k \right) \left(\gamma^2 I - s_k \frac{\partial V_k}{\partial x^2} s_k \right)^{-1} \]
\[\times \left(s_k \frac{\partial V_k}{\partial x^2} l_k + h_k \frac{\partial V_k}{\partial x} \right), \]
\[- \frac{1}{4} \left(l_k \frac{\partial V_k}{\partial x^2} q_k + \frac{\partial V'_k}{\partial x} g_k \right) \left(I + q'_k \frac{\partial V_k}{\partial x^2} q_k \right)^{-1} \]
\[\times \left(q'_k \frac{\partial V_k}{\partial x^2} l_k + g_k \frac{\partial V_k}{\partial x} \right) < 0, \]
\[\gamma^2 I - s_k \frac{\partial V_k}{\partial x^2} s_k > 0, \]

then
\[u^*_T(x,k) = -\frac{1}{2} \left(I + q'_k \frac{\partial V_k}{\partial x^2} q_k \right)^{-1} \left(q'_k \frac{\partial V_k}{\partial x^2} l_k + g_k \frac{\partial V_k}{\partial x} \right) \]
(25)
is an infinite horizon \(H_\infty \) control of system (5).

Proof. Similar to the proof of Theorem 5, it is easy to show \(\| \mathcal{L}_T \| < \gamma \) under condition (24). Next, we need to prove system (8) to be globally asymptotically stable in probability. Let \(u^*_k = u_{T}^*(x,k) \) and let \(\mathcal{L}_\infty \) be the infinitesimal generator of the system (8) which is similar to \(\mathcal{L}_T \) in Lemma 3; then
\[\mathcal{L}_\infty V_k = \frac{\partial V'_k}{\partial x} f_k + \frac{\partial V'_k}{\partial x} g_k \]
\[+ \frac{1}{2} \left(l_k + q'_k \right) \frac{\partial V_k}{\partial x} l_k + q'_k \]
\[= \frac{\partial V'_k}{\partial x} f_k + \frac{\partial V'_k}{\partial x} g_k + \sum_{j=1}^{N} \pi_{k,j} V_j \]
\[+ \frac{1}{2} \frac{\partial^2 V_k}{\partial x^2} l_k + \frac{1}{2} \frac{\partial^2 V_k}{\partial x^2} q_k \]
where
\[
Y_{1k} = \frac{\partial V'_k}{\partial x} g_k u_k + \frac{1}{2} l_k^2 \frac{\partial^2 V_k}{\partial x^2} q_k u_k + \frac{1}{2} (q_k u_k^*)' \frac{\partial^2 V_k}{\partial x^2} (q_k u_k^*)' \\
= -\frac{1}{2} \frac{\partial V'_k}{\partial x} g_k I + \left(q_k \frac{\partial^2 V_k}{\partial x^2} l_k + g_k \frac{\partial V_k}{\partial x} \right) \\
\times \left(1 + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} \left(q_k \frac{\partial V_k}{\partial x} I + g_k \frac{\partial V_k}{\partial x} \right) \\
\times \left(1 + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} q_k \frac{\partial^2 V_k}{\partial x^2} I_k. \\
Y_{2k} = \frac{1}{2} (q_k u_k^*)' \frac{\partial^2 V_k}{\partial x^2} (q_k u_k^*) \\
= \frac{1}{8} \left(\frac{\partial V'_k}{\partial x} g_k + l_k^2 \frac{\partial^2 V_k}{\partial x^2} q_k \right) \left(1 + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} \left(q_k \frac{\partial V_k}{\partial x} I + g_k \frac{\partial V_k}{\partial x} \right) \\
\times \left(1 + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} q_k \frac{\partial^2 V_k}{\partial x^2} I_k. \\
\]

It can be checked that
\[
Y_{1k} = -\frac{1}{2} \left(l_k^2 \frac{\partial^2 V_k}{\partial x^2} q_k + \frac{\partial V'_k}{\partial x} g_k \right) \\
\times \left(1 + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} \left(q_k \frac{\partial V_k}{\partial x} I + g_k \frac{\partial V_k}{\partial x} \right) \cdot \\
Y_{2k} \leq \frac{1}{8} \left(l_k^2 \frac{\partial^2 V_k}{\partial x^2} q_k + \frac{\partial V'_k}{\partial x} g_k \right) \\
\times \left(1 + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} q_k \frac{\partial^2 V_k}{\partial x^2} I_k + g_k \frac{\partial V_k}{\partial x}. \\
\]

The following inequality is used during the calculation of (29):
\[
(I + X)^{-1} X (I + X)^{-1} \leq (I + X)^{-1} (I + X) (I + X)^{-1} = (I + X)^{-1}, \quad X > 0. \\
\]

Implementing (28) and (29) into (26) and considering (24), it yields
\[
\mathcal{L}_c V_k \leq \frac{\partial V'_k}{\partial x} f_k + \frac{1}{2} l_k^2 \frac{\partial^2 V_k}{\partial x^2} k + \sum_{j=1}^{N} \pi_k V_j \\
- \frac{3}{8} \left(I_k^2 \frac{\partial^2 V_k}{\partial x^2} k + \frac{\partial V'_k}{\partial x} g_k \right) \\
\times \left(1 + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} \left(q_k \frac{\partial^2 V_k}{\partial x^2} I_k + g_k \frac{\partial V_k}{\partial x} \right) \\
\leq \frac{\partial V'_k}{\partial x} f_k + \frac{1}{2} l_k^2 \frac{\partial^2 V_k}{\partial x^2} k + \sum_{j=1}^{N} \pi_k V_j \\
- \frac{1}{4} \left(I_k^2 \frac{\partial^2 V_k}{\partial x^2} k + \frac{\partial V'_k}{\partial x} g_k \right) \\
\times \left(1 + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} \left(q_k \frac{\partial^2 V_k}{\partial x^2} I_k + g_k \frac{\partial V_k}{\partial x} \right) \\
- m_k m_k - \frac{1}{4} \left(I_k^2 \frac{\partial^2 V_k}{\partial x^2} k + \frac{\partial V'_k}{\partial x} g_k \right) \\
\times \left(1 + q_k \frac{\partial^2 V_k}{\partial x^2} q_k \right)^{-1} \left(q_k \frac{\partial^2 V_k}{\partial x^2} I_k + g_k \frac{\partial V_k}{\partial x} \right) \\
\leq 0. \\
\]

which implies that (8) is globally asymptotically stable in probability from [10]. This theorem is completed. □

Remark 8. The methods proposed in [19, 24] cannot be applied to study the H_{∞} problem of NSMJSs with (x, u, v)-dependent noise, although they are suitable for NSMJSs with (x, v)-dependent noise. One reason for this is that u and v are no longer separable in the conditions, when they enter the diffusion term simultaneously. In the proofs of Theorems 5 and 7, we resort to Lemma 4 to solve this problem.

Remark 9. When there is no Markov jump parameters, system (1)-(5) will reduce to general nonlinear stochastic systems with (x, u, v)-dependent noise, which was studied in [20, 21]. However, all the conditions of H_{∞} control design for nonlinear stochastic systems in [20, 21] were given in terms of three coupled HJE}s, which were difficult to be solved. According to this paper, the sufficient condition for H_{∞} control of nonlinear stochastic systems can be derived by means of a single set of coupled HJE}s, which is easier to be verified than three coupled HJE}s in [20, 21].
From Theorem 7, the following nonlinear stochastic bounded real lemma will be derived for Markov jump system:

\[dx(t) = [f(x, r_t) + h(x, r_t) v] \, dt + [l(x, r_t) + z(x, r_t) v] \, dw, \]
\[z(t) = m(x, r_t), \quad x(0) = x_0 \in \mathbb{R}^n. \]

(32)

Lemma 10. For a prescribed \(\gamma > 0 \), system (32) is internally stable and \(\| \mathcal{L}_{x} \| \| \mathbb{R} \| < \gamma \) if there exists a set of nonnegative functions \(V(x, k) \in \mathcal{C}^2(\mathbb{R}^n \times \mathcal{T} ; \mathbb{R}) \), \(V(0, k) = 0 \), and \(\partial^2 V(x, k)/\partial x^2 \geq 0 \) for all nonzero \(x \in \mathbb{R}^n \), \(k \in \mathcal{T} \), satisfying the following coupled HJIs:

\[
\begin{align*}
\frac{dV'_j}{dx} f_k + & \frac{1}{2} l_k' \frac{\partial^2 V_k}{\partial x^2} l_k + m_k' m_k + \sum_{j=1}^{N} \pi_{kj} V_j \\
& + \frac{1}{4} \left(s_k \frac{\partial^2 V_k}{\partial x^2} s_k + h_k' h_k \right) \\
& \times \left(\gamma^2 I - s_k' \frac{\partial^2 V_k}{\partial x^2} s_k \right)^{-1} \\
& \left(s_k \frac{\partial V_k}{\partial x} l_k + h_k \frac{\partial V_k}{\partial x} \right) < 0,
\end{align*}
\]

(33)

Moreover, the state feedback gain matrices are given by \(K_k = Y_k X_k^{-1} \).

Proof. Firstly, consider the following unforced linear stochastic Markov jump systems:

\[dx(t) = [A(r_t) x + C(r_t) v] \, dt + [A_1(r_t) x + C_1(r_t) v] \, dw, \]
\[z(t) = D(r_t) x, \quad x(0) = x_0 \in \mathbb{R}^n. \]

(37)

Let \(V_k = x' P_k x, P_k > 0, k \in \mathcal{T} \); (33) in Lemma 10 can be written as follows:

\[
2x' P_k A_k x + x' A'_{1k} P_k A_{1k} x + x' D_k' D_k x + x' \sum_{j=1}^{N} \pi_{kj} P_j x \\
+ (x' A'_{1k} P_k C_{1k} + x' P_k C_k) \\
\times (\gamma^2 I - 2C_{1k}' P_k C_{1k})^{-1} (C_{1k}' P_k A_{1k} x + C_k' P_k x) \\
= x' \left[P_k A_k + A'_{1k} P_k A_{1k} + A'_{1k} P_k A_{1k} + D_k' D_k + \sum_{j=1}^{N} \pi_{kj} P_j \right] \\
+ (A'_{1k} P_k C_{1k} + P_k C_k) (\gamma^2 I - 2C_{1k}' P_k C_{1k})^{-1} \\
\times (C_{1k}' P_k A_{1k} + C_k' P_k) \right] < 0,
\]

(38)

\[
\gamma^2 I - 2C_{1k}' P_k C_{1k} > 0.
\]

(39)

Next, we present a sufficient condition for the following linear stochastic Markov jump systems with \(x, u, v \)-dependent noise:

\[dx(t) = [A(r_t) x + B(r_t) u + C(r_t) v] \, dt + [A_1(r_t) x + B_1(r_t) u + C_1(r_t) v] \, dw, \]
\[z(t) = \text{col}(D(r_t) x, u), \quad x(0) = x_0 \in \mathbb{R}^n. \]

(34)

Corollary 11. System (34) is internally stable and \(\| \mathcal{L}_{x} \| \| \mathbb{R} \| < \gamma \) for given \(\gamma > 0 \), if there exist matrices \(X_k > 0, \, Y_k \in \mathcal{T} \) satisfying the following LMI:

\[
\Sigma_k \begin{bmatrix}
C_k & X_k D_k' & X_k A'_{1k} + Y_k' B_k' & 0 & \psi_k'(X) \\
* & -\gamma^2 I & 0 & C_{1k}' & 0 \\
* & * & -I & 0 & 0 \\
* & * & * & -X_k & 0 \\
* & * & * & * & -\psi_k(X)
\end{bmatrix} < 0,
\]

(35)

where

\[
\Sigma_k = A_k X_k + B_k Y_k + X_k A'_{1k} + Y_k' B_k' + \sum_{k} \pi_{kk} X_k,
\]

\[
\psi_k(X) = [\sqrt{\pi_{k1}} X_1, \ldots, \sqrt{\pi_{kk}} X_k],
\]

\[
\phi_k(X) = \text{diag} \{X_1, \ldots, X_{k-1}, X_{k+1}, \ldots, X_N\}.
\]

(36)

By Schur complement, (38) is equivalent to

\[
\left\{ \begin{array}{l}
A_{1k}' P_k + \sum_{j=1}^{N} \pi_{kj} P_j \\
A'_{1k} P_k A_{1k} + \sum_{j=1}^{N} \pi_{kj} P_j \\
A'_{1k} P_k C_k + P_k C_k \\
D_k' D_k + \sum_{j=1}^{N} \pi_{kj} P_j \\
Y_k' B_k' + \sum_{j=1}^{N} \pi_{kj} X_j \\
\gamma^2 I - 2C_{1k}' P_k C_{1k} \end{array} \right\} < 0,
\]

(40)

which also implies (39). Moreover, (40) can be rewritten as

\[
\left\{ \begin{array}{l}
P_k A_k + A'_{1k} P_k + \sum_{j=1}^{N} \pi_{kj} P_j \\
P_k A_{1k} + \sum_{j=1}^{N} \pi_{kj} P_j \\
P_k C_k \\
D_k' D_k + \sum_{j=1}^{N} \pi_{kj} P_j \\
Y_k' B_k' + \sum_{j=1}^{N} \pi_{kj} X_j \\
\gamma^2 I - 2C_{1k}' P_k C_{1k} \end{array} \right\} < 0,
\]

(41)
which yields
\[
\begin{bmatrix}
P_k A_k + A_k' P_k + \sum_{j=1}^{N} \pi_{kj} P_j & P_k C_k & D_k' \\
* & -\gamma^2 I & 0 & C_k' \\
* & * & -I & 0 \\
* & * & * & -P_k^{-1} \\
* & * & * & * & -P_k^{-1} \\
\end{bmatrix}
< 0,
\]
(42)

according to Schur complement. Pre- and postmultiplying (42) by \(\text{diag}(P_k^{-1} I I I I)\) and denoting \(X_k = P_k^{-1}\), we have
\[
\begin{bmatrix}
A_k X_k + X_k A_k' + \pi_{k} X_k & C_k & X_k D_k' & X_k A_k' \\
* & -\gamma^2 I & 0 & C_k' \\
* & * & -I & 0 \\
* & * & * & -X_k \\
* & * & * & * & -\phi_k(X) \\
\end{bmatrix}
< 0,
\]
(43)

where \(\psi_k(X)\) and \(\phi_k(X)\) are defined as in (35).

Considering closed-loop system (34) with state feedback control \(u(t) = K_k x(t)\), \(k \in \mathcal{S}\). Replacing \(A_k, A_{1k}\) by \(A_k + B_k K_k, A_{1k} + B_{1k} K_k\), respectively, and setting \(Y_k = K_k X_k\) in (43) yield (35). Therefore, the state feedback gain matrices can be obtained by \(K_k = Y_k X_k^{-1}\).

\[\square\]

Remark 12. Although HJIs (12) in Theorem 5 or (24) in Theorem 7 can be solved by trial and error in some simple cases (see Example 13 in Section 4), they are difficult to be dealt with for high-dimensional systems. In order to avoid solving the HJIs, the Taylor series approach [25] or fuzzy approach based on Takagi-Sugeno model [24, 26] can be considered to design the nonlinear stochastic \(H_\infty\) controller.

4. Numerical Example

In this section, two numerical examples are provided to illustrate the effectiveness of the developed results.

Example 13. Consider one-dimensional two-mode time-invariant nonlinear stochastic Markov jump systems with generator matrix \(\Pi = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}\), and the two subsystems are as follows:

I: \[
\begin{align*}
\dot{x} &= x^3 + 4xu + xv \quad dt + \left(x^2 + u + v \right) dw, \\
z &= \text{col}(x^2, u), \quad x(0) = x_0 \in \mathbb{R}^n,
\end{align*}
\]
II: \[
\begin{align*}
\dot{x} &= \left(\frac{1}{2} x^3 + 3xu + \frac{1}{2} xv \right) dt + \left(x^2 + u + v \right) dw, \\
z &= \text{col}(\frac{1}{2} x^2, u), \quad x(0) = x_0 \in \mathbb{R}^n.
\end{align*}
\]
(44)

Set \(V(x) = p_i x^2, i = 1, 2\), with \(p_1 > 0\) and \(p_2 > 0\) to be determined; then HJIs (24) become

\[
\begin{align*}
2 p_1 x^3 + \frac{3}{2} x^2 \cdot 2 p_1 \cdot x^2 + x^2 \cdot x^2 \\
+ \frac{1}{4} \left(x^2 \cdot 2 p_1 + 2 p_1 x \cdot x \right)^2 \left(y^2 - 2 p_1 \right)^{-1} \\
- \frac{1}{4} \left(x^2 \cdot 2 p_1 + 2 p_1 x \cdot 4x \right)^2 \left(1 + 2 p_1 \right)^{-1} \\
- p_1 x^2 + p_2 x^2 < 0, \\
y^2 - 2 p_2 > 0.
\end{align*}
\]
(45)

For given \(y = \sqrt{3}\), the above inequalities have solutions \(p_1 = 1\) and \(p_2 = 1\). According to Theorem 7, the infinite \(H_\infty\) controllers of system (44) are \(u'_0(x, 1) = -(5/3)x^2\) and \(u'_0(x, 2) = -(4/3)x^2\).

Example 14. Consider two-dimensional two-mode linear stochastic Markov jump systems (34) with the following parameters:

\[
\begin{align*}
A_1 &= \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}, \quad B_1 = C_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\
A_{11} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad B_{11} = C_{11} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \\
A_2 &= \begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix}, \quad B_2 = C_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \\
A_{12} &= \begin{bmatrix} 2 & 0 \\ 1 & 11 \end{bmatrix}, \quad B_{12} = C_{12} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \\
D_1 &= \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad D_2 = \begin{bmatrix} 1 & 1 \end{bmatrix}, \\
\Pi &= \begin{bmatrix} -0.5 & 0.5 \\ 0.5 & -0.5 \end{bmatrix}.
\end{align*}
\]
(46)

With the choice of \(y = \sqrt{2}\), a possible solution of LMIs (35) in Corollary 2 can be found by using Matlab LMI control toolbox:

\[
\begin{align*}
X_1 &= \begin{bmatrix} 0.8879 & -0.4074 \\ -0.4074 & 3.6974 \end{bmatrix}, \quad X_2 = \begin{bmatrix} 0.5026 & 0.0464 \\ 0.0464 & 5.4520 \end{bmatrix}, \\
Y_1 &= \begin{bmatrix} -3.1690 & -5.3082 \end{bmatrix}, \quad Y_2 = \begin{bmatrix} -4.5025 & -8.5671 \end{bmatrix}.
\end{align*}
\]
(47)
Then, the H_{∞} control gain matrices of system (34) are as follows:

$$
\begin{align*}
K_1 &= Y_1 X_1^{-1} = \begin{bmatrix} -4.4531 & -1.9263 \end{bmatrix}, \\
K_2 &= Y_2 X_2^{-1} = \begin{bmatrix} -8.8209 & -1.4963 \end{bmatrix}.
\end{align*}
$$

Figure 1 shows the result of the changing between modes during the simulation with the initial mode at mode 1. The initial condition is chosen as $x_0 = [-0.2 \quad 0.3]'$ and exogenous input $v(t) = e^{-t}$. By means of Euler-Maruyama method [27], the state responses of unforced system (37) and controlled system (34) are shown in Figures 2 and 3, respectively. From Figure 3, one can find that the controlled system (34) can achieve stability and attenuation performance in the sense of mean square by using the proposed H_{∞} controller.

5. Conclusions

In this paper, we have studied the H_{∞} control problem for NSMJSs with (x, u, v)-dependent noise. A sufficient condition for finite/infinite horizon H_{∞} control has been derived in terms of a set of coupled HJIs. It can be found that Lemma 4 plays an essential role during the proof of Theorems 5 and 7. The validity of the obtained results has been verified by two examples.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work is supported by National Natural Science Foundation of China (nos. 61203053 and 61174078), China Postdoctoral Science Foundation (no. 2013MS531635), Research Fund for the Doctoral Program of Higher Education of China (no. 20120133120014), Special Funds for Postdoctoral Innovative Projects of Shandong Province (no. 201203096), Fundamental Research Fund for the Central Universities (nos. 11CX04042A, 12CX02010A, and 14CX02093A), Research Fund for the Taishan Scholar Project of Shandong Province of China, and SDUST Research Fund (no. 2011KYTD105).

References

