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The paper introduces a methodology for optimization in multistage industrial processes with multiple quality criteria. Two ways of
formulation of optimization problem and four different approaches to solve the problem are considered. Proposed methodologies
were tested first on a virtual process described by benchmark functions and next were applied in optimization of multistage lead

refining process.

1. Introduction

The main aim of our research is development of an optimiza-
tion strategy, appropriate for optimization tasks based on
multistage and multithread chain structure (i.e., represented
by a linear order or more generally an acyclic graph),
where many intermediate target functions are combined in
a nontrivial way to give optimal quality of the final product.
The inspiration for our considerations comes from the former
authors’ research on modelling of complex production chains
seen in metallurgical industry, for example in the oxidizing
roasting process of zinc sulphide concentrates [1] or metal
forming processes [2, 3].

To serve production purposes, such lines are usually
composed of many aggregates or intermediate stages, where
the output (semiproduct) of one intermediate stage becomes
the input of a consecutive production stage and where specific
needs of production are imposed at any production stage.
In most cases the production chains have linear structure
(Figure1) or a structure of a tree (Figure2). Each node
represents a certain stage of production, and vector x,
represents a semifinished product created at that stage, while
vector p, consists of control parameters. Quality checks

or intermediate goals g, can be applied at all or chosen
production stages.

Optimization of such cycle is not trivial, which will be
shown in the work. The most common research papers
devoted to the topic of optimization in industrial production
usually treat one particular stage of this production, trying to
develop an optimal control strategy which leads to obtain the
best possible semiproduct. This strategy, while definitely suc-
cessful for optimal production at this particular stage, is not
sufficient for reaching the best possible final products as the
result of the whole production cycle. Simply, technological
constraints at one stage rarely can contain all the information
on constraints and goals on consecutive stages of the chain
(they are too complex to be defined in a single criterion and
are too dispersed to be quantified).

In practice, it is usually possible to increase efficiency”of
the process as a whole by a global look at all stages of
production. For example, it may be worthy to decrease quality
of semiproduct (e.g., by decreasing the energy consump-
tion or amount of necessary chemical reagents at further
stages) maintaining sufficient quality of the final product.
Such a possibility is disabled when we perform sequential
optimization, since we do not have sufficient insight into
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FIGURE 1: Production chain of linear structure.
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FIGURE 2: Production chain with acyclic graph structure.

interactions between particular stages of the whole chain.
Then, it is reasonable to investigate and to develop optimiza-
tion methodology applicable to the chain as a whole, obtain-
ing that way new possibilities of optimization of industrial
processes.

The main goal of the present research is solving of the
problems with optimization objectives built on the basis of
chains (acyclic graphs) with internal interrelations between
separate stages. In the simplest case it will be a linearly
ordered sequence of intermediate stages, similar to that
presented in Figure 1. Each stage receives input (supply) or
semiproduct x,, and control parameters p,, and returns, as a
result, another semiproduct x,,,, with quality value g,,. Each
incoming parameter (x, or/and p,) as well as parameters
of outgoing product x,,; and its quality value g, can be
limited by numerous constraints, induced by technological
restrictions, admissible values, characteristics of the process,
and so forth.

Each separate stage of hypothetical industrial process
(e.g., metallurgical process) can be described in terms of
input and control parameters (distinction between x and p is
motivated by the fact that we can control some technological
parameters, while we cannot control parameters of supplies
or semiproducts that we receive at the beginning of this stage;
e.g., we cannot control on-line chemical or technological
parameters of supply). The parameters of semiproduct for
stage n + 1 are a result of the process at stage n, which can
be written by mathematical formula:

Xn+1 = Fn (Xn’ pn) (1)

with some additional constraints motivated by technological
restrictions. Hence, optimization of m-stage linear chain

production can be presented as optimization of the following
composition of functions, where function at stage n + 1
depends on all previous functions:

X, = F, (Pn—l (Fn—Z (Fz (Fl (X1)P1)>P2)"‘Pn—2)>

pn—l) > pn) .

Let us observe that there are numerous problems that arise
immediately. First of all, entry data x,, at each stage can be very
specific, carrying lots of technological or practical restrictions
(constraints of optimization). In practice it means that in
many cases we will be able to calculate value of the final
quality function Q,, only for some restricted set of parameters
X, or p,. As a consequence, it is really hard to speak about
global objective function, since for majority of parameters
it cannot be properly defined. Additionally, intermediate
quality functions Q, can be important for the assessment
of the quality of the whole process. These parameters may
not be visible “in sensu stricto” in the final quality function
Q,,; however, they can have an important impact on the
whole process and its optimality. Therefore, even in the
simplest case of the linear production chain, a list of natural
questions arises, and answers to these questions are of the first
importance for the optimization procedure.

2)

(1) How to properly synchronize parameters of semi-
products x,, at stage n with constraints of the function
F n+l ?

(2) How to build an optimization strategy to achieve
satisfactory effects (intermediate quality criteria) at
each stage and at the end of the chain when the overall

quality function of the resulting product is calculated?
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(3) Is it better to apply sequential treatment of the
problem at some stages, or is it better to search for a
more global strategy (when possible)?

A search for answers to the above questions or more ad-
equately search for appropriate methodology that can be
applied in the context of multiobjectives multithreaded op-
timization problems is the main objective of the present
research.

The paper presents the preliminary results of research
on the optimization methodology of the production chains.
The results are limited to the linear structure of production
chain (Figure 1). The quality criteria will be applied at the
intermediate stages, as well as at the very end of production
(quality requirements of the final product). Results of the
optimization of the hypothetical production chains described
by the benchmark functions are presented first. Also the
results of the validation of the proposed optimization strategy
on the real, industrial data originated from the initial stages
of the lead refining production cycle are presented.

2. Formulation of the Problem

Assume that we have a technological process consisting of
m aggregates interconnected in the linear structure (see
Figure 1). We assume that each stage, say with number #,
demands, as an input, a vector x, of semiproducts from
previous step (we also have x; which can be a semiproduct
from previous production cycle, etc.) and a vector p, of
controlling parameters (optimization design variables). We
have a direct access to p,, which can be freely modified in
this step (in admissible range, of course), while we have only
a small influence on x,, which can be modified by change
in control parameters on previous stages i < n. Clearly, in
practice, we do not have complete freedom in choice of values
of control vector, neither we can accept all resources delivered
to our stage (compound of industrial process). Simply, we
are always restricted by production demands, ranges of
parameters that can ensure proper execution of technological
process, and so forth. To cover all these restrictions we will
assume that at each stage we have the following constraints:

(X5 P,) €C,s 3)

where set C, aggregates all constraints. In most practical
applications C,, will be simply a collection of inequalities
on respective coordinates. However, in general, we cannot
ensure that there will be no interactions between admissible
values of all vectors; for example, admissible range of some
coordinates in x,, can determine range of some parameters
(coordinates in p,,), and so forth.

To describe effect of the production process at stage n we
will use two functions F,, Q,, which define

Xo+1 = Fn (Xn’ Pn) >
(4)
Gn = Q (X, Py) -

Herex,,, is a vector of parameters connected with semiprod-
uct obtained as a result of production at stage n, p, is a

vector of design parameters, and ¢, determines quality of
that production. For example, it can be a quality of the
semiproduct, or quality of production itself (e.g., usage of
electricity and amount of wastes). For simplicity, we do not
assume that quality g, is a vector; however, it is obviously
possible to have various measures related to a single stage in
the production chain. If it is the case, we assume that g,, is a
result of multiple quality objectives at that step calculated by
the use of one of the methods presented later in Section 3.

As the result of our production chain we will get the final
product x,,,,, obtained as the result of production in the last,
mth aggregate. The final quality of this product is calculated
as

qr = Qp (Xm+1)' (5)

We use the special symbols gz, Qg instead of g,,,,;, Q,,,,; to
highlight the special, most important role of the final quality
check.

3. Optimization Techniques

Before we proceed to a more complete description of research
objectives, let us present a few classical methodologies for
solving multiobjectives problems. Even at the level of single
element of the whole structure (described by an acyclic
graph) it may happen that we need to optimize the parameters
against a few (sometimes contradictory) criteria. For the
completeness of our considerations we present a standard
form of multiobjective optimization task:

(C1) find minimum of functions: Q,, Q,, ..., Q,,, Qg
(C2) under sets:

a; < x; < b,
gs (x) >0, (6)
hj (x) =0,
where 1 < i,j,s < k, Q,Q,,...,Q,, are intermediate

objective functions; Qg-objective function related with final
product; x-variables; a, b, g, h-constraints. Note that condi-
tion (Cl) consists of a few functions (criteria of utility or
quality); hence, it is impossible to find a unique optimal
solution suitable for all of them. This leads us to the notion of
Pareto-optimal solution, that is a solution which is admissible
and such that any other admissible solution is worse than that
in at least one criterion in (Cl); for example, see [4, 5].

There are several techniques to deal with multiobjectives
tasks. Below we will recall a few standard techniques which
we are going to use later on, when performing tests on
concrete examples.

Weighted Sum Method. It is one of the simplest methods
to apply. We simply assign weight (of importance) to each
quality criterion and that way we build an aggregated func-
tion, measuring kind of average quality in the process. More
formally, we consider the objective function, where values are
computed by formula

q=wq, W+ -+ Wy Gy, + Wy 1 gE- (7)



Clearly, we can assume that all the intermediate quality
functions values g, as well as g are going to be minimized,
so minimizing of g have a chance to lead to a proper solution
[5-8].

Weighted Metric Method. It is a generalization of weighted
sum method. The main difference is that instead of mini-
mizing intermediate weights, we minimize their distance to
desired optimal solution:

q =409 ar)- (8)

We also have freedom to choose the metric, but the most
standard is metric given by L -norm with 1 < p < co. Strictly
speaking, we have to minimize the following formula:
*|P *|P
q=(w |g-a;" +++w, |, -4,
1 9)
*|P /p
T Wy |‘1F _QFl ) .

This method is more demanding in practical applications
than weighted sum method. The main difficulty is that we
should provide a good candidate for reference solution g*.
When we do not know bounds for values of intermediate
quality functions g;, g it may be very hard to estimate proper
values of g*.

Another metric, which defines so-called Tchebycheff
method, is metric given by L™ norm. With this norm (9)
changes to

q = max {mﬁx {wila - a7} Wi |95 - q;l} . (0)

Method of e-Constraints. In this method we replace weights
by specific constraints on all but one intermediate quality
function (objectives of optimization). In other words, we look
for max g under constraints a; < g; < a; + ¢ for all i. That
way we have to optimize value of only one quality function,
keeping all the other functions within properly defined
bounds (e-constraints). This method can be especially useful
when we know bounds for “good” quality and can accept
solutions in that interval. Obviously, main difficulty here is
proper choice of constraints (i.e., bounding parameters 4; and
€), which in practice, when our knowledge about problem is
limited, can be a challenging task.

4. Optimization Strategies of
Solving Multistage Problems

Elaboration of the optimization strategy of solving multistage
processes is much more complex than in case of single-
objective or even multiobjective tasks. To define a strategy,
it is necessary to:

(1) formulate the optimization problem,

(2) choose the approach to solve the problem,

(3) choose the optimization method.

All these steps are described in following sections.
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4.1. Formulation of Optimization Problem. The proposed
multistages optimization problem considered in this work
can be formulated in two ways: global and local. The differ-
ence in these formulations lies in the aim of optimization
procedure. In the global (G) formulation the objective of
optimization procedure is to optimize the final product only.
The qualities of semiproducts are not taken into account
during the optimization procedure. The objective function
has the following form:

q=Q(qr)- (11)

Alternative for the global formulation is a local (L) one. In
the local formulation of optimization problem, the objective
function is any combination (described in Section 3) of the
qualities of semiproducts. The quality of the final product is
not taken into account. In this case, the objective function is
described by equation:

q=Q(q192--->qm) - (12)

We assume that ensuring the optimal semiproducts we gain
the optimal final product.

4.2. Approach to Solve the Optimization Problem. The real-
ization of the optimization procedure to solve the problem
formulated in one of described ways can be performed
using different approaches. In this paper we introduce four
approaches:

(1) simultaneous (SIM),

(2) sequential (SEQ),

(3) simultaneous with freezing (SIMF).
(4) sequential with credits (SEQC).

4.2.1. The Simultaneous Approach. In a simultaneous ap-
proach the optimization procedure searches the optimal
solution for all stages at once. In SIM approach we look for the
vector composed of control vectors at all stages (p;- .., P,,)-
However, in practice, it is not that simple. Some problems
connected with multidimensionality may arise. Secondly, we
have to ensure that each constraint (3) is satisfied for n =
1,...,m. Otherwise, the function F, may not be defined. If
set C,, of admissible parameters of stage n is very narrow for
each n, then finding a set of admissible values of initial vector
may be almost impossible. The optimization procedure runs
only once, but the number of decision variables is greater than
in SEQ or SEQC cases.

4.2.2. The Sequential Approach. In the sequential approach
(SEQ), the optimization of each stage of the chain process
(see Figurel) is being performed separately. For the stage
n = 1 we look for the value p, that leads to the optimal
value of the quality criterion ¢; under additional condition
(x,p;) € C,. Next, the output x, (semiproduct of that
stage) is transferred to the subsequent stage n = 2 as the
input signal and now we search for the values p, such that
quality criterion g, is optimal under constrains (x,, p,) € C,.
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That way we should reach the last mth aggregate successfully
generating the final product x,,,,, and consequently be able
to check its quality gp. Optimization at each stage ends when
the value of quality function is lower than assumed accuracy ¢
or when number of maximum objective function calls 7, is
reached. This approach, which definitely should lead to some
solution, has one disadvantage. We have no much control
of the final value g during the computation procedure of
subsequent optimizations of nth stage, despite the fact that
qr strongly depends on the preceding p,, which optimizes the
value of q, (not necessarily the value of qz). On the other
hand, its advantage is that dividing the optimization into steps
makes the whole process much faster. Presented approach
can be used as a starting point for another, more advanced
algorithm.

4.2.3. The Simultaneous Approach with Freezing. Optimiza-
tion of all stages at once may cause deterioration of individual
quality functions, because the optimization procedure will
not stop if one of quality functions reaches a given accuracy
limit e. To avoid this situation the control parameters for
stages, at which quality functions are satisfactory low, are
fixed and they are excluded from vector of decision variable.
Fixing of control parameters at certain stage is possible only
if control parameters for all previous stages are already fixed.

4.2.4. The Sequential Approach with Credits. The sequential
approach with credits (SEQC) is a modification of the
described above sequential one. The difference between SEQ
and SEQC approaches lies in the number of maximum objec-
tive function calls at each stage. In the SEQ approach that
number is the same and equals i, at each stage. However,
during optimization of whole process, the total number of
available objective function calls is equal to m - i, .. In SEQC
approach the total number of objective function calls is not
divided equally to all stages. During optimization of first stage
algorithm allows us to use any of the total number of function
calls. In optimization of subsequent stages the total number
of function calls is reduced by the number of calls already
used in preceding stages. Such strategy allows us to “borrow”
some objective function calls from next stage and in as a
consequence, total number of the objective function calls can
exceed i, during optimization for some stages.

4.3. Optimization Method. To have a chance to find a proper
solution it seems important to use algorithms which allow
entire-space search. There are numerous possible choices of
methods, most of them using heuristics motivated by nature.
We decided to employ particle swarm optimization (PSO) in
performed tests of developed optimization methodologies. A
search space of all performed tests remains a multidimen-
sional cube, which simplifies search for a starting point (we
simply pick up value of coordinates at random form specified
intervals).

The PSO method is based on the mechanisms observed
in the nature [9-11]. This method is based on the behaviour
of the individuals in a population. Particles (identified with
the solutions of the problem considered) traverse the decision
space (the area inhabited by the population) following the

particle representing the best hitherto behaviour, at the same
time remembering the best position, in which they have been
so far. Each particle is described by two vectors: the position
vector and velocity vector. In each iteration of the algorithm,
a new velocity vector is determined and the change of the
particle position occurs based on it.

The swarm initialisation consists of giving the particles
a random position and velocity. The position should be
sampled from the permissible area. The size of this area
should be considered when sampling the velocity. If the
velocity is too low, the swarm will not be able to search the
entire permissible area, while excessively high velocity makes
the particles “bumps” against the limits. The velocity vector
changes according to the relationship:

V;<+1 = wv;; Tarn (Pg - X;c) TG (Pi - X;c) , (13)

where x} and v, are the position and velocity vectors of the ith
particle in the kth iteration, respectively; p? denotes vector of
the best position found so far by the whole swarm; vector p’
represents the best solution found so far by the ith particle; w
is defined as the inertia coefficient; ¢; and ¢, are acceleration
coeflicients (called also training coeflicients); r; and r, are
numbers from the interval [0, 1] picked at random with the
uniform distribution. A new position the particle is defined
by

i i
Xpr1 = Xt Vi (14)

After displacement of all particles to their new position,
they are subjected to an assessment and the swarm leader is
chosen and vectors p? and p' are updated. The determination
of the coefficients values affects the swarm behaviour. The
value of the inertia coefficient is usually selected from the
[0,1] interval. A higher value is favourable for the global
searching of the solution space and a lower value for the
local searching. Usually, its value is constant throughout the
entire optimization process. However, it also may change.
Then, at the beginning, it assumes a high value, enabling
global searching, and while approaching to the maximum
that is sought, it gradually decreases. Acceleration coefficients
are usually equal and selected from the [0, 2] interval. When
selecting their values, the maximum velocities, which the par-
ticles should not exceed, must be considered. The exceeding
of the maximum number of iterations or obtaining a satis-
factory solution is taken as the criteria of the computation
completion (stop criteria).

5. Optimization of Virtual Multistage Process

To compare methodologies described in Section 4 we start
with simple virtual multistage production chains. Considered
chains have the linear structure consisting of m stages,
where in our simulations m ranges between 2 and 10. The
first considered chain is evaluated by the following square
function representing a quality function (same for all stages):

k
g; = Qi (x;,p;) = Z (Pi,j - Xi,j)z (15)

j=1
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FIGURE 3: Graphs of one-dimensional Rastrigin function Q,(x;, -) for
different semiproduct vectors x;.

while every stages of the second considered chain is char-
acterized by the quality function defined by the Rastrigin
function:

;= Qi (%, p;)

k R (16)
Z (Pi,j _Xi,j) —cos (18 (Pi,j _Xi)j)) +1
=

In the above formulas all vectors are k-dimensional, that is,
x,p; € [-1,1]%, where in our simulations, the number of
dimensions k ranges between 1 and 10.

In our virtual process, we use simple relation for
semiproducts delivered to next stage by putting: x;,; = p;. In
other words, position of global minimum at x* = 0 is moved
to p; in stage i + 1 (see Figure 3) and its position at initial
stage depends on initial input signal vector x; which we set
for simplicity to be x; = [0,0,...,0].

We do not define the final quality function; therefore, the
problem was formulated in local way only. In simultaneous
approach SIM, the objective function was defined as follows:

q=max(q o> ) - (17)

It ensures that optimization ends successfully only when
all values of quality functions are better than assumed
accuracy .

The benchmark functions (15) and (16) were specially
selected to test proposed strategies in optimization of uni-
modal and multimodal objective function. Note that the
number of local minima of function (16) grows exponentially
with k, so there are exactly 7% local minima for each function
Q-

The Particle Swarm Optimization technique (described in
Section 4.3) was applied. The swarm consisted of 40 particles.
The inertia coeflicient was set to 0.8 and the acceleration coef-
ficients were equal to 1. The number of allowed evaluations
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FIGURE 4: The average number of objective function calls for each
approach for square test function (15). Only data from successful
optimization runs was taken into account.

of quality function in each stage was limited to i.,,, = 1000
in case of square function and to i,,, = 2000 in case of
Rastrigin function, while the required accuracy was set to € =
1/1000 (for both examined processes). The optimization was
considered as successful if the values of all quality functions
were less or equal than assumed accuracy €. The computation
was made for different number of stages m = 2,5,7,10
and for different dimension of test function at each stage
k = 1,5,7,10 (the same value of k fixed for all stages in the
chain). For each combination of the number of stages and
the dimension of test function at each stage, optimization
procedure was performed 100 times. Figures 4-7 present
statistics for results of our tests.

The analysis of obtained results confirms some of expecta-
tions but the others are quite surprising. The optimal solution
was much easier to find in case of square function using
less objective function calls than in case of Rastrigin test
function. When we increased the number of stages and/or the
dimension of quality function at each stage, the probability
of finding optimal solution decreased. Comparison of SEQ
and SIM approaches shows that in case of low number of
stages and low dimension of quality function SEQ approach
is better than the SIM. But when number of stages and/or
number of dimensions are high, the SIM approach turns to be
better. Proposed modifications of SEQ and SIM approaches
(the SEQC and SIMF) improve their performance. Difference
between performance of SIM and SIMF is not visible.

6. Optimization of Industrial Lead
Refining Process

The proposed methodology was used in optimization of
industrial lead refining process presented in Figure 8. The
considered process consisted of the following five stages:

(1) melting and skimming,

(2) decoppering through liquation,
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FIGURE 5: The average number of objective function calls for each
approach for Rastrigin’s test function (16). Only data from successful
optimization runs was taken into account.
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FIGURE 6: The probability of finding the global minimum for each
approach for square test function (15).

(3) decoppering by sulphur,
(4) heating,
(5) refining by oxygen.

Let us briefly present the technology behind the chosen
process. Lead bullion of specific mass and a known chemical
composition are fed to a refining boiler and heated to a
temperature of about 450°C. After reaching the desired
temperature, the lead is being melted and a layer of skims
is formed on a surface layer, which are removed next. Then,
as the result of stirring of the molten metal, temperature
decreases to approximately 330°C and the separation of
copper in solid forms below the 0.1% weight content in lead
(theoretically 0.06%). At the same time, the concentration of
arsenic contents in the lead decreases slightly. The remaining

Number of stages
2 5 7 10

Probability
o I
) %

N
=~
T

o
o

15710 1 5 710 1 5 710 1 5 710
Number of variables
B SEQ B SIM
B SEQC O SIMF

FIGURE 7: The probability of finding the global minimum for each
approach for Rastrigin’s test function (16).

copper is removed by sulphur. Sulphur is discharged in
elementary form and/or in the form of PbS to the funnel
formed by rotation of the agitator. This allows a better use of
sulphur creating a copper sulphide CuS, which rises to the
surface of molten metal. The copper content decreases below
20 ppm and created skims are collected from the surface of
the molten metal. After removal of the copper, the lead is
pumped to the boiler where an oxidising refining occurs.
First, the metal is heated to a temperature of 600°C. Then the
oxygen is fed to bath through the lance with vigorous stirring.
During this process, the oxygen creates a sequence of tin,
arsenic, and antimony oxides, which rise to the surface. The
oxides can form a complex form as a result of cross-reactivity
between them. It is important to remove arsenic to a level
below 10 ppm. This results in a lowering of the tin contents
below 5ppm, and the antimony to several hundred ppm,
but this does not require the complete removal of antimony.
Created dross is removed from the surface of the lead and the
metal is directed to the further stages of refining [12, 13].

The goal of optimization procedure was to find control
parameters for all stages, which ensure the arsenic concen-
tration in refined lead equal to 5 ppm. For the optimization
purposes the processed lead bullion was described by follow-
ing parameters:

(1) temperature (7)),

(2) mass of lead (Pb),

(3) concentration of copper (Cu),
(4) concentration of arsenic (As),
(5) concentration of antimony (Sb),

(6) concentration of tin (Sn).

Therefore, semiproduct vector x; at each stage has the form

x; = [T;, Pb;, Cu;, As;, Sb;, Sn;] . (18)
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FIGURE 8: Selected stages of lead refining production chain.
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FIGURE 9: Comparison of different strategies in optimization of the lead refining process.

At each stage, time was chosen as the control parameter, so p;
was a positive real number for each i. The changes of chemical
composition of lead bullion during the refining process as
well as temperature changes were modelled using Response
Surface Methodology [14] based on industrial data.

The quality of the semiproduct after each stage was com-
puted based on selected component of vector x;. Therefore,
quality functions took form:

* 2
g; = 100 (%) fori=1,...,5 (19
i+1

where tested parameters were f3; = T) for j = 2,3,5; B, =
Cuy; and B¢ = Asg with optimal target values: T, = 450°C;
T; =330°C; Cu, = 20ppm; T; = 600°C; and As; = 5ppm.

The quality of the final product g was equal to quality of
the product obtained in last, 5th stage; that is, gp = gs.

Three different optimization strategies were used to get
the required concentration of arsenic in refined lead. In two
cases optimization problem was formulated in local way,
in third in global way. SEQ and SEQC approaches were
applied when local problem formulation was chosen, and

SIM approach in the case of global problem formulation. As
in the case of virtual process, the PSO method was used as
optimization procedure. The number of allowed evaluations
of quality function in each stage was limited to i, =
200, while the required accuracy was set to ¢ = 0.1. The
optimization was performed 100 times to determine the
probability of finding required solution. The comparison of
results obtained using different optimization methodologies
is presented in Figure 9.

The obtained results showed that when optimization
problem is formulated in local way (SEQ and SEQC ap-
proaches), the probability of finding required solution is
much higher. Comparison of SEQ and SEQC approaches
confirms previous observations that SEQC approach gives
better chances to find required solution using not much more
number of objective function calls in comparison to SEQ.

Figure 10 presents values of probability densities of opti-
mization parameters of the lead refining process, obtained
from considered optimization strategies SEQ, SEQC, and
SIM. Since probability of success is much higher in SEQ/
SEQC strategies, probability of fitting of the value close to
optimum is also much higher than for SIM strategy. This
is also confirmed by the analysis of the box plots of values



Mathematical Problems in Engineering

2 - - 0.04 25 0.05 10 - - 0.4
2+ 4 0.04
1.5} 4 0.03
15} 10.03
1} 40.02 5 40.2
1t 10.02
0.5 40.01
0.5} 10.01
0 1 L 1 0 1 O 1 1 0
440 480 320 18 20 22
T, Cuy
14 — T 0.014 60 — n 1.5
12 ¢ 0.012
1t 0.01
40 11
0.8 F 0.008
0.6 0.006
20 10.5
04} 0.004
0.2} 0.002
O 1 1 O 0 0
550 650 4 5 6
Ts Asg
— SEQ —— SEQ
— SEQC —— SEQC
— SIM — SIM

FIGURE 10: Probability densities (all function calls). Scale for SEQ, SEQC strategies in blue and in green for SIM.

of parameters obtained as a result of optimization (see
Figure 11). As we can see, values for SIM are more spread than
in the other two strategies.

7. Summary and Conclusions

The problem of optimization of multistage industrial pro-
cesses was investigated in the paper. In such production
chain there are many objective functions which assess quality
of semiproducts. The typical multiobjective techniques may
not be suitable to solve this kind of problems. In the

paper a few strategies were developed and tested using two
benchmark functions and industrial process of lead refining.
The presented results prove that problem of optimization of
multistage process is highly not trivial and further investiga-
tion is required.

Based on presented results it is not possible to point out
the best approach to deal with multistage industrial pro-
duction chain; therefore, different combinations of presented
strategies should be tested next. Most likely, some combina-
tions of two different methods should work well, especially
when the chain is long and have complex interactions.
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FIGURE 11: Box plots of obtained values of parameters for different
strategies in optimization of the lead refining process.

Other strategies known from the literature (e.g., dynamic
programming) can be involved, making a kind of hybrid
approach. Possible testing ground for our methodology
which fits well into industrial environment is problems with
finite duration (a limited number of executions of the chain
before full reset) and possessing backward loops (feedback to
previous stages; e.g., semiproducts returning to production
cycle). In this case we may expand the whole process, obtain-
ing a huge production tree, representing stages in different
time (production stage with assigned number of executed
production cycles). That way induced directed tree of stages
can be large, even if in the genuine production chain there
are only a few stages. This also gives many other possibilities
for solutions. For example, one approach is to aggregate all
stages within the loop as a larger stage (optimized separately).
This is an interesting, however also challenging, problem to
be investigated as a next step.
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