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We address a fully fuzzy bilevel linear programming problem in which all the coefficients and variables of both objective functions
and constraints are expressed as fuzzy numbers. This paper is to develop a new method to deal with the fully fuzzy bilevel linear
programming problem by applying interval programming method. To this end, we first discretize membership grade of fuzzy
coefficients and fuzzy decision variables of the problem into a finite number of 𝛼-level sets. By using 𝛼-level sets of fuzzy numbers,
the fully fuzzy bilevel linear programming problem is transformed into an interval bilevel linear programming problem for each
𝛼-level set. The main idea to solve the obtained interval bilevel linear programming problem is to convert the problem into two
deterministic subproblems which correspond to the lower and upper bounds of the upper level objective function. Based on the
𝐾th-best algorithm, the two subproblems can be solved sequentially. Based on a series of𝛼-level sets, we introduce a linear piecewise
trapezoidal fuzzy number to approximate the optimal value of the upper level objective function of the fully fuzzy bilevel linear
programming problem. Finally, a numerical example is provided to demonstrate the feasibility of the proposed approach.

1. Introduction

The bilevel programming problem is a nested optimization
problem including two optimization problems in which the
feasible region of the upper level problem is determined
implicitly by the solution set of the lower level problem. This
kind of problem is nonconvex and very hard to solve due to its
structure. In the past few decades, the bilevel programming
problem has been researched from both the theoretical and
computational points of view [1–3] and has been applied
so extensively in resource allocation, finance budget, price
control, transaction network, and so forth [4].

In conventional bilevel programming models, their
parameters are assumed to be well defined and precise.
However, in many real-world applications, particularly in
some areas linked to human resource planning or actual
decision making process, we often need to make a decision
on the basis of uncertain data or information. Therefore,
inexact optimization methods are desired for supporting
environment under uncertainty. The fuzzy set theory pro-
vides powerful tools for dealing with imprecise or vague

information. In recent years, the fuzzy bilevel programming
problem has also become a rapidly progressing research
area and has received much attention of some researchers.
Sakawa et al. [5] first studied the fuzzy bilevel programming
problem and proposed a fuzzy programming method to deal
with it on the basis of the definition of optimal solution for
bilevel programming proposed by Bard [6]. Zhang and Lu
[7] developed an extended Kuhn-Tucher approach to deal
with the fuzzy bilevel linear programming problem based
on the new definition of optimal solution. The fuzzy Kuhn-
Tucker approach, the fuzzy𝐾th-best approach, and the fuzzy
branch-and-bound approach were designed to handle the
fuzzy bilevel programming problem by applying fuzzy set
techniques [8]. Dempe and Starostina [9] formulated the
fuzzy bilevel programming problem and described one pos-
sible approach for formulating a crisp optimization problem
being attached to it. In all of the above-mentioned works,
those cases of the fuzzy bilevel programming problem have
been studied in which all or some coefficients involved in
the objective functions and the constraints are assumed to be
fuzzy but all variables of the problem are deterministic.
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As a matter of fact, the fully fuzzy linear programming
in which all the coefficients as well as the variables are
represented by fuzzy numbers is an attractive topic for
researchers. Buckley and Feuring [10] considered this kind
of problem and employed an evolutionary algorithm to deal
with it. A new method was proposed to solve a fully fuzzy
linear programming problem by applying the concept of
comparison of fuzzy numbers [11]. Hosseinzadeh Lotfi et al.
[12] transformed the fully fuzzy linear programming problem
into two corresponding linear programming problems based
on the concept of the symmetric triangular fuzzy number and
developed a lexicography method to solve such a problem.
Kumar et al. [13] proposed a new method to solve the fuzzy
optimal solutions of the fully fuzzy linear programming
problems with equality constraints. Subsequently, Najafi and
Edalatpanah [14] pointed out that Kumar et al. model [13]
was not correct and provided a revised version. Recently,
Fan et al. [15] investigated the feasibility of fuzzy solutions
of the generalized fuzzy linear programming problem and
developed a stepwise interactive algorithm to solve the prob-
lem. In all these methods, the fully fuzzy linear programming
problem is firstly converted into a crisp linear programming
problem and then the obtained crisp linear programming
problem is solved to find the fuzzy optimal solutions of the
problem. In addition, it should be noted that all these works
are considered in the case of one single level fully fuzzy linear
programming.

In this paper, we address a fully fuzzy bilevel linear
programming problem in which all the coefficients and
variables of both objective functions and the constraints are
expressed as fuzzy numbers. To our knowledge, until now
there are few studies on this type of problem. More recently,
Safaei and Saraj [16] discussed the fully fuzzy bilevel linear
programming problem by decomposing this problem into
three crisp linear programming problems and then dealing
with these three deterministic problems to obtain the fuzzy
optimal solutions of the problem. However, this work on
fuzzy solutions in a fully fuzzy bilevel linear problem is only
suitable for triangular fuzzy numbers, which significantly
restricts the application scope of the models.

The interval mathematical programming method is an
effective approach in tackling uncertainties. This approach
does not require distributional information for input param-
eters and enables a relatively low computational requirement
without complicated intermediate models. Over the past few
decades, the interval mathematical programming has been
heavily studied by many scholars and successfully applied to
a variety of practical problems [17–22].

The purpose of this paper is to develop a new method to
deal with the fully fuzzy bilevel linear programming problem
by applying interval programming method. According to
the decomposition principle, the optimal value of the upper
level objective function of the fully fuzzy bilevel linear
programming problem can be expressed as the families of its
𝛼-level sets. Based on this fact, we first discretizemembership
grade of fuzzy coefficients and fuzzy decision variables of
the problem into a finite number of 𝛼-level sets. The fully
fuzzy bilevel linear programming problem is transformed
into an interval bilevel linear programming problem for any

𝛼-level set. The obtained interval bilevel linear programming
problem is converted into two deterministic subproblems
which correspond to the lower and upper bounds of its upper
level objective function value. Then the two subproblems
can be solved sequentially based on the 𝐾th-best algorithm.
Finally, the linear piecewise trapezoidal fuzzy number is
introduced to approximate the optimal value of the upper
level objective function of the fully fuzzy bilevel linear
programming problem.

This paper is organized as follows. In Section 2 some basic
definitions and results related to interval numbers and fuzzy
numbers are reviewed. In Section 3 a newmethod is proposed
to deal with the fully fuzzy bilevel programming problem
by applying interval programming method. A numerical
example is given to illustrate the proposed method and the
obtained results are discussed in Section 4. Section 5 contains
the concluding remarks.

2. Preliminaries

In this section, some basic notations and preliminary results
of interval numbers and fuzzy numbers are presented.

2.1. Interval Numbers. Let 𝑅 denote the set of all real num-
bers.

An ordered pair in a bracket defines an interval as

𝑐
±
= [𝑐
−
, 𝑐
+
] = {𝑥 ∈ 𝑅 | 𝑐

−
≤ 𝑥 ≤ 𝑐

+
} , (1)

where 𝑐
− and 𝑐

+ are the lower and upper bounds of 𝑐±,
respectively. When 𝑐

−
= 𝑐
+, 𝑐± becomes a deterministic

number.
For 𝑐±
1
= [𝑐
−

1
, 𝑐
+

1
], 𝑐±
2
= [𝑐
−

2
, 𝑐
+

2
], and 𝑐

±
= [𝑐
−
, 𝑐
+
], we have

(i) 𝑐±
1
⊕ 𝑐
±

2
= [𝑐
−

1
+ 𝑐
−

2
, 𝑐
+

1
+ 𝑐
+

2
];

(ii) 𝑐±
1
⊗𝑐
±

2
= [min{𝑐−

1
𝑐
−

2
, 𝑐
−

1
𝑐
+

2
, 𝑐
+

1
𝑐
−

2
, 𝑐
+

1
𝑐
+

2
}, max{𝑐−

1
𝑐
−

2
, 𝑐−
1
𝑐
+

2
,

𝑐
+

1
𝑐
−

2
, 𝑐
+

1
𝑐
+

2
}];

(iii) −𝑐± = [−𝑐
+
, −𝑐
−
].

Thus

𝑐
±

1
⊖ 𝑐
±

2
= [𝑐
−

1
− 𝑐
+

2
, 𝑐
+

1
− 𝑐
−

2
] ,

𝑘𝑐
±
=

{

{

{

[𝑘𝑐
−
, 𝑘𝑐
+
] , 𝑘 ≥ 0,

[𝑘𝑐
+
, 𝑘𝑐
−
] , 𝑘 < 0.

(2)

Definition 1 (see [23]). For 𝑐
±, the following relationships

hold:

(i) 𝑐± ≥ 0, if and only if 𝑐− ≥ 0 and 𝑐
+
≥ 0;

(ii) 𝑐± ≤ 0, if and only if 𝑐− ≤ 0 and 𝑐
+
≤ 0.

Definition 2 (see [23]). For 𝑐
±, Sign(𝑐±) can be defined as

follows:

Sign (𝑐±) =
{

{

{

1, 𝑐
±
≥ 0,

−1, 𝑐
±
< 0.

(3)
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Definition 3 (see [23]). For 𝑐±, its absolute value |𝑐|± can be
given as follows:

|𝑐|
±
=

{

{

{

𝑐
±
, 𝑐
±
≥ 0,

−𝑐
±
, 𝑐
±
< 0.

(4)

Hence,

|𝑐|
−
=

{

{

{

𝑐
−
, 𝑐
±
≥ 0,

−𝑐
+
, 𝑐
±
< 0,

|𝑐|
+
=

{

{

{

𝑐
+
, 𝑐
±
≥ 0,

−𝑐
−
, 𝑐
±
< 0.

(5)

2.2. Fuzzy Numbers. Fuzzy numbers are one way to describe
the vagueness and lack of precision of data. We give some
basic concepts of fuzzy numbers as follows.

Definition 4 (see [24]). A fuzzy number 𝑐 is defined as a fuzzy
set on 𝑅, whose membership function 𝜇

𝑐
: 𝑅 → [0, 1]

satisfies the following conditions:

(i) there exists 𝑥 ∈ 𝑅 such that 𝜇
𝑐
(𝑥) = 1;

(ii) 𝜇
𝑐
is upper semicontinuous;

(iii) 𝜇
𝑐
is convex;

(iv) the support of 𝑐, Supp(𝑐) = {𝑥 ∈ 𝑅, 𝜇
𝑐
(𝑥) > 0}, and its

closure is compact.

The 𝛼-level set of a fuzzy number 𝑐 is defined by an
ordinary set 𝑐

𝛼
= {𝑥 | 𝜇

𝑐
(𝑥) ≥ 𝛼} for 𝛼 ∈ [0, 1]. It is obvious

that the 𝛼-level set of a fuzzy number 𝑐 is a closed interval,
denoted as 𝑐±

𝛼
= [𝑐
−

𝛼
, 𝑐
+

𝛼
], for any 𝛼 ∈ [0, 1], 𝑐−

𝛼
≤ 𝑐
+

𝛼
.

Definition 5 (see [25]). A fuzzy number 𝑐 is nonnegative if
and only if its membership function 𝜇

𝑐
(𝑥) satisfies 𝜇

𝑐
(𝑥) = 0

for ∀𝑥 < 0.

3. Fully Fuzzy Bilevel Linear
Programming Problem

Consider the following fully fuzzy bilevel linear program-
ming problem in which all the coefficients as well as the
variables are represented by fuzzy numbers:

max
𝑥
1

𝐹 = 𝑐
11
⊗ 𝑥
1
⊕ 𝑐
12
⊗ 𝑥
2

max
𝑥
2

̃
𝑓 = 𝑐
22
⊗ 𝑥
2

s.t. 𝐴
1
⊗ 𝑥
1
⊕ 𝐴
2
⊗ 𝑥
2
≤
̃
𝑏,

𝑥
1
≥ 0, 𝑥

2
≥ 0,

(6)

where 𝑥
1
= (𝑥
11
, 𝑥
12
, . . . , 𝑥

1𝑛
1

) is an 𝑛
1
-dimensional fuzzy

decision vector of the upper level and 𝑥
2
= (𝑥
21
, 𝑥
22
, . . . , 𝑥

2𝑛
2

)

is an 𝑛
2
-dimensional fuzzy decision vector of the lower level,

respectively; 𝑐
1𝑗

= (𝑐
1𝑗1

, 𝑐
1𝑗2

, . . . , 𝑐
1𝑗𝑛
𝑗

), 𝑗 = 1, 2, are 𝑛
𝑗
-

dimensional fuzzy vectors and 𝑐
22

= (𝑐
221

, 𝑐
222

, . . . , 𝑐
22𝑛
2

) is

an 𝑛
2
-dimensional fuzzy vector; ̃𝑏 = (

̃
𝑏
1
,
̃
𝑏
2
, . . . ,

̃
𝑏
𝑚
) is an 𝑚-

dimensional fuzzy vector and 𝐴
𝑗
= (𝑎
𝑗𝑠𝑡
𝑗

)
𝑚×𝑛
𝑗

are 𝑚 × 𝑛
𝑗

fuzzy matrices in which 𝑎
𝑗𝑠𝑡
𝑗

, for all 𝑠 ∈ 𝑚, 𝑡
𝑗
∈ 𝑛
𝑗
, are fuzzy

numbers.
Because of the existence of fuzzy coefficients and fuzzy

decision variables in the objective functions and the con-
straints, problem (6) is not well defined and has no clear
mathematical meaning. Thus deterministic bilevel optimiza-
tion techniques cannot be directly applied to solve this
kind of problem. Even for one single level, it has been
pointed out by Buckley and Feuring [10] that searching for
the optimal solutions of a fully fuzzy linear programming
problem is a very difficult task. In this section, a potential
method is developed to handle the fully fuzzy bilevel linear
programming problem.

3.1. Modeling Formulation. Observing that all the coefficients
and decision variables of the upper level objective function
of problem (6) are fuzzy numbers, the upper level objective
function is also a fuzzy number. It is well known that fuzzy
numbers can be defined by the families of their 𝛼-level sets
according to the decomposition principle [26]. Then the
optimal value of the upper level objective function of problem
(6) can be expressed as the families of its 𝛼-level sets.

Based on this fact, we first discretize membership grade
of fuzzy coefficients and fuzzy decision variables of problem
(6) into a finite number of 𝛼-level sets. For any 𝛼 ∈ [0, 1],
the 𝛼-level sets of 𝑥

𝑗𝑘
𝑗

, 𝑐
1𝑗𝑘
𝑗

, 𝑗 = 1, 2, 𝑘
𝑗
= 1, 2, . . . , 𝑛

𝑗
, 𝑐
22𝑘
2

,
𝑎
𝑗𝑠𝑡
𝑗

, and ̃𝑏
𝑠
, 𝑠 = 1, 2, . . . , 𝑚, 𝑡

𝑗
= 1, 2, . . . , 𝑛

𝑗
, can be denoted

as (𝑥
𝑗𝑘
𝑗

)
𝛼

= [(𝑥
𝑗𝑘
𝑗

)
−

𝛼
, (𝑥
𝑗𝑘
𝑗

)
+

𝛼
], (𝑐
1𝑗𝑘
𝑗

)
𝛼

= [(𝑐
1𝑗𝑘
𝑗

)
−

𝛼
, (𝑐
1𝑗𝑘
𝑗

)
+

𝛼
],

(𝑐
22𝑘
2

)
𝛼
= [(𝑐
22𝑘
2

)
−

𝛼
, (𝑐
22𝑘
2

)
+

𝛼
], (𝑎
𝑗𝑠𝑡
𝑗

)
𝛼
= [(𝑎
𝑗𝑠𝑡
𝑗

)
−

𝛼
, (𝑎
𝑗𝑠𝑡
𝑗

)
+

𝛼
], and

(
̃
𝑏
𝑠
)
𝛼
= [(𝑏
𝑠
)
−

𝛼
, (𝑏
𝑠
)
+

𝛼
].

Considering that the 𝛼-level sets of fuzzy numbers are
actually closed intervals, the operations on fuzzy numbers are
indeed performed by the interval arithmetic operations for
𝛼-level sets. Then the fully fuzzy bilevel linear programming
problem (6) can be transformed into the following interval
bilevel linear programming problem for any 𝛼-level set:

max 𝐹
±

𝛼
=

𝑛
1

∑

𝑘
1
=1

(𝑐
11𝑘
1

)

±

𝛼
⊗ (𝑥
1𝑘
1

)

±

𝛼

⊕

𝑛
2

∑

𝑘
2
=1

(𝑐
12𝑘
2

)

±

𝛼
⊗ (𝑥
2𝑘
2

)

±

𝛼

max 𝑓
±

𝛼
=

𝑛
2

∑

𝑘
2
=1

(𝑐
22𝑘
2

)

±

𝛼
⊗ (𝑥
2𝑘
2

)

±

𝛼

s.t.
𝑛
1

∑

𝑘
1
=1

(𝑎
1𝑠𝑘
1

)

±

𝛼
⊗ (𝑥
1𝑘
1

)

±

𝛼

⊕

𝑛
1

∑

𝑘
2
=1

(𝑎
2𝑠𝑘
2

)

±

𝛼
⊗ (𝑥
2𝑘
2

)

±

𝛼
≤ (𝑏
𝑠
)
±

𝛼
,

𝑠 = 1, 2, . . . , 𝑚,
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(𝑥
1𝑘
1

)

±

𝛼
≥ 0, 𝑘

1
= 1, 2, . . . , 𝑛

1
,

(𝑥
2𝑘
2

)

±

𝛼
≥ 0, 𝑘

2
= 1, 2, . . . , 𝑛

2
.

(7)

Remark 6. For problem (6), the upper level objective function
𝐹 can be rewritten as ∑𝑛1

𝑘
1
=1
𝑐
11𝑘
1

⊗ 𝑥
1𝑘
1

⊕ ∑
𝑛
2

𝑘
2
=1
𝑐
12𝑘
2

⊗ 𝑥
2𝑘
2

.
Then we have (𝐹)

𝛼
= 𝐹
±

𝛼
= (∑
𝑛
1

𝑘
1
=1
𝑐
11𝑘
1

⊗ 𝑥
1𝑘
1

⊕ ∑
𝑛
2

𝑘
2
=1
𝑐
12𝑘
2

⊗

𝑥
2𝑘
2

)
𝛼
= ∑
𝑛
1

𝑘
1
=1
(𝑐
11𝑘
1

)
±

𝛼
⊗ (𝑥
1𝑘
1

)
±

𝛼
⊕ ∑
𝑛
2

𝑘
2
=1
(𝑐
12𝑘
2

)
±

𝛼
⊗ (𝑥
2𝑘
2

)
±

𝛼
for

any 𝛼-level set. Obviously, the lower level objective function
and the constraints of problem (7) can be obtained by similar
algebraic operation.

Under different 𝛼-level sets, a series of interval bilevel
linear programming problems are generated. Here we are
interested in computing the lower and upper bounds of the
upper level objective functions of these interval bilevel linear
programming problems. Based on these results, the optimal
value of the upper level objective function of problem (6) can
be decomposed as

𝐹
∗
= ⋃

𝛼∈[0,1]

𝛼 [𝐹
−

𝛼∗
, 𝐹
+

𝛼∗
] . (8)

Hence, we will discuss how to determine the lower and
upper bounds of the upper level objective function of the
interval bilevel programming problem (7) in the following
section.

Since all the coefficients and the decision variables of
problem (7) are interval numbers, the optimal upper level
objective function values and the feasible regions of the
problem are directly affected by different specific values of
the coefficients and the decision variables chosen from their
ranges. To deal with problem (7), we analyze model char-
acteristics and the interrelationships among the coefficients
and the decision variables in both objective functions and the
constraints.

Clearly, the lower level problem of problem (7) is a
conventional interval linear programming. Huang et al. [17]
proposed the two-step method to solve this kind of problem.
The basic idea of this method is to first transform the
interval linear programming problem into two deterministic
subproblems which correspond to the lower and upper
bounds of the objective function value and then solve the
two subproblems sequentially to obtain the solutions of
the problem. However, this method may result in con-
straint violation in its solution space [22]. To avoid this,
Fan and Huang [22] developed a robust two-step method
for solving the interval linear programming problem. In
this way, we discuss the lower and upper bounds of the
objective function of the lower level problem and then
give the optimal bounds of the upper level objective func-
tion of the interval bilevel linear programming problem
(7).

For simplicity, problem (7) can be rewritten as

max 𝐹
±

𝛼
= (𝑐
11
)
±

𝛼
× (𝑥
1
)
±

𝛼
+ (𝑐
12
)
±

𝛼
× (𝑥
2
)
±

𝛼

max 𝑓
±

𝛼
= (𝑐
22
)
±

𝛼
× (𝑥
2
)
±

𝛼

s.t. (𝐴
1
)
±

𝛼
× (𝑥
1
)
±

𝛼
+ (𝐴
2
)
±

𝛼
× (𝑥
2
)
±

𝛼
≤ 𝑏
±

𝛼
,

(𝑥
1
)
±

𝛼
≥ 0, (𝑥

2
)
±

𝛼
≥ 0,

(9)

where (𝑐
1𝑗
)
±

𝛼
= ((𝑐
1𝑗1

)
±

𝛼
, (𝑐
1𝑗2

)
±

𝛼
, . . . , (𝑐

1𝑗𝑛
𝑗

)
±

𝛼
), 𝑗 = 1, 2, (𝑥

𝑗
)
±

𝛼
=

((𝑥
𝑗1
)
±

𝛼
, (𝑥
𝑗2
)
±

𝛼
, . . . , (𝑥

𝑗𝑛
𝑗

)
±

𝛼
), (𝑐
22
)
±

𝛼
= ((𝑐

221
)
±

𝛼
, (𝑐
222

)
±

𝛼
, . . . ,

(𝑐
22𝑛
2

)
±

𝛼
), (𝐴
𝑗
)
±

𝛼
= ((𝑎
𝑗𝑠𝑡
𝑗

)
±

𝛼
), and 𝑏±

𝛼
= ((𝑏
1
)
±

𝛼
, (𝑏
2
)
±

𝛼
, . . . , (𝑏

𝑚
)
±

𝛼
).

We call the following problem a characteristic version of
problem (7):

max 𝐹
𝛼
= (𝑐
11
)
𝛼
× (𝑥
1
)
𝛼
+ (𝑐
12
)
𝛼
× (𝑥
2
)
𝛼

max 𝑓
𝛼
= (𝑐
22
)
𝛼
× (𝑥
2
)
𝛼

s.t. (𝐴
1
)
𝛼
× (𝑥
1
)
𝛼
+ (𝐴
2
)
𝛼
× (𝑥
2
)
𝛼
≤ 𝑏
𝛼
,

(𝑥
1
)
𝛼
≥ 0, (𝑥

2
)
𝛼
≥ 0,

(10)

where (𝑐
1𝑗
)
𝛼
∈ [(𝑐
1𝑗
)
−

𝛼
, (𝑐
1𝑗
)
+

𝛼
], 𝑗 = 1, 2, (𝑥

𝑗
)
𝛼
∈ [(𝑥
𝑗
)
−

𝛼
, (𝑥
𝑗
)
+

𝛼
],

(𝐴
𝑗
)
𝛼
∈ [(𝐴

𝑗
)
−

𝛼
, (𝐴
𝑗
)
+

𝛼
], and 𝑏

𝛼
∈ [𝑏
−

𝛼
, 𝑏
+

𝛼
].

For any 𝛼 ∈ [0, 1], (𝐴
1
)
𝛼

∈ [(𝐴
1
)
−

𝛼
, (𝐴
1
)
+

𝛼
], (𝐴
2
)
𝛼

∈

[(𝐴
2
)
−

𝛼
, (𝐴
2
)
+

𝛼
], and 𝑏

𝛼
∈ [𝑏
−

𝛼
, 𝑏
+

𝛼
], the following sets are set

up by

𝑆
−
= {((𝑥

1
)
𝛼
, (𝑥
2
)
𝛼
) : (𝐴

1
)
+

𝛼
× (𝑥
1
)
𝛼

+ (𝐴
2
)
+

𝛼
× (𝑥
2
)
𝛼
≤ 𝑏
−

𝛼
,

(𝑥
1
)
𝛼
≥ 0, (𝑥

2
)
𝛼
≥ 0} ,

𝑆
+
= {((𝑥

1
)
𝛼
, (𝑥
2
)
𝛼
) : (𝐴

1
)
−

𝛼
× (𝑥
1
)
𝛼

+ (𝐴
2
)
−

𝛼
× (𝑥
2
)
𝛼
≤ 𝑏
+

𝛼
,

(𝑥
1
)
𝛼
≥ 0, (𝑥

2
)
𝛼
≥ 0} .

(11)

Then we have 𝑆− ⊆ 𝑆
+.

Here we assume that 𝑆− and 𝑆
+ are nonempty polyhe-

drons.

Theorem 7. For any 𝛼 ∈ [0, 1], if ((𝑥
1
)
𝛼∗
, (𝑥
2
)
𝛼∗
) is an

optimal solution and 𝐹
𝛼∗

is corresponding objective function
value of problem (10), then one has 𝐹−

𝛼∗
≤ 𝐹
𝛼∗

≤ 𝐹
+

𝛼∗
, where

𝐹
−

𝛼∗
and 𝐹+

𝛼∗
are the lower and upper bounds of the upper level

objective function of problem (7).
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Proof. For fixed (𝑥
1
)
𝛼
≥ 0, denote the largest and smallest

possible feasible regions of the lower level problem by

𝑆
−
((𝑥
1
)
𝛼
) = {(𝑥

2
)
𝛼
| (𝐴
2
)
+

𝛼
× (𝑥
2
)
𝛼

≤ 𝑏
−

𝛼
− (𝐴
1
)
+

𝛼
× (𝑥
1
)
𝛼
,

(𝑥
2
)
𝛼
≥ 0} ,

𝑆
+
((𝑥
1
)
𝛼
) = {(𝑥

2
)
𝛼
| (𝐴
2
)
−

𝛼
× (𝑥
2
)
𝛼

≤ 𝑏
+

𝛼
− (𝐴
1
)
−

𝛼
× (𝑥
1
)
𝛼
,

(𝑥
2
)
𝛼
≥ 0} .

(12)

It is true that 𝑆−((𝑥
1
)
𝛼
) ⊂ 𝑆
+
((𝑥
1
)
𝛼
).

Denote the two solution sets of the lower level problem
by

Ψ
−
((𝑥
1
)
𝛼
)

= argmax {𝑓 ((𝑥
1
)
𝛼
, (𝑥
2
)
𝛼
) : (𝑥
2
)
𝛼
∈ 𝑆
−
((𝑥
1
)
𝛼
)} ,

Ψ
+
((𝑥
1
)
𝛼
)

= argmax {𝑓 ((𝑥
1
)
𝛼
, (𝑥
2
)
𝛼
) : (𝑥
2
)
𝛼
∈ 𝑆
+
((𝑥
1
)
𝛼
)} ,

(13)

where 𝑓((𝑥
1
)
𝛼
, (𝑥
2
)
𝛼
) = (𝑐
22
)
±

𝛼
⊗ (𝑥
2
)
𝛼
.

The inducible regions corresponding to the smallest and
largest possible feasible regions are

𝐼𝑅
−
= {((𝑥

1
)
𝛼
, (𝑥
2
)
𝛼
) ∈ 𝑆
−
, (𝑥
2
)
𝛼
∈ Ψ
−
((𝑥
1
)
𝛼
)} ,

𝐼𝑅
+
= {((𝑥

1
)
𝛼
, (𝑥
2
)
𝛼
) ∈ 𝑆
+
, (𝑥
2
)
𝛼
∈ Ψ
+
((𝑥
1
)
𝛼
)} .

(14)

Therefore, the lower and upper bounds of the upper level
objective function of problem (7) are

𝐹
−

𝛼∗
= max {𝐹− ((𝑥

1
)
𝛼
, (𝑥
2
)
𝛼
) | ((𝑥

1
)
𝛼
, (𝑥
2
)
𝛼
) ∈ 𝐼𝑅

−
} ,

𝐹
+

𝛼∗
= max {𝐹+ ((𝑥

1
)
𝛼
, (𝑥
2
)
𝛼
) | ((𝑥

1
)
𝛼
, (𝑥
2
)
𝛼
) ∈ 𝐼𝑅

+
}

(15)

such that 𝐹−
𝛼∗

≤ 𝐹
+

𝛼∗
, and the proof is completed.

Theorem 7 gives the optimal bounds of the interval bilevel
programming problem (7).

Definition 8. A general interval linear programming model
can be expressed as follows:

max 𝑓
±
= 𝑐
±
𝑥
±

s.t. 𝐴
±
𝑥
±
≤ 𝑏
±
,

𝑥
±
≥ 0,

(16)

where 𝐴
±

∈ {𝑅
±
}
𝑚×𝑛, 𝑏± ∈ {𝑅

±
}
𝑚×1, 𝑐± ∈ {𝑅

±
}
1×𝑛, 𝑥± ∈

{𝑅
±
}
𝑛×1, and 𝑅± denotes a set of interval numbers. According

to Theorems (1) and (2) in [22], the model has the optimal
objective function value and the optimal solutions as follows:
𝑓
±

opt = [𝑓
−

opt, 𝑓
+

opt], 𝑥
±

𝑗opt = [𝑥
−

𝑗opt, 𝑥
+

𝑗opt], 𝑥
+

𝑗opt ≥ 𝑥
−

𝑗opt, for all 𝑗.

Next we discuss how to obtain solutions for the upper and
lower bounds of the upper level objective function values of
problem (7).

For given (𝑥
1
)
±

𝛼
, the lower level problem of problem (7)

can be written as

max 𝑓
±

𝛼
=

𝑛
2

∑

𝑘
2
=1

(𝑐
22𝑘
2

)

±

𝛼
⊗ (𝑥
2𝑘
2

)

±

𝛼

s.t.
𝑛
1

∑

𝑘
2
=1

(𝑎
2𝑠𝑘
2

)

±

𝛼
⊗ (𝑥
2𝑘
2

)

±

𝛼

≤ (𝑏
𝑠
)
±

𝛼
⊖

𝑛
1

∑

𝑘
1
=1

(𝑎
1𝑠𝑘
1

)

±

𝛼
⊗ (𝑥
1𝑘
1

)

±

𝛼
,

𝑠 = 1, 2, . . . , 𝑚,

(𝑥
2𝑘
2

)

±

𝛼
≥ 0, 𝑘

2
= 1, 2, . . . , 𝑛

2
.

(17)

For the coefficient 𝑐
22

of problem (6), let the former 𝑞
elements be positive and the latter (𝑛

2
−𝑞) elements negative.

According to Lemma 2 [15], for any 𝛼 ∈ [0, 1], the lower and
upper bounds of the objective function of problem (17) can
be expressed as

𝑓
−

𝛼
=

𝑞

∑

𝑘
2
=1

(𝑐
22𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

−

𝛼
+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
22𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

+

𝛼
,

𝑓
+

𝛼
=

𝑞

∑

𝑘
2
=1

(𝑐
22𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

+

𝛼
+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
22𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

−

𝛼
.

(18)

For simplicity, denote the term (𝑏
𝑠
)
±

𝛼
⊖ ∑
𝑛
1

𝑘
1
=1
(𝑎
1𝑠𝑘
1

)
±

𝛼
⊗

(𝑥
1𝑘
1

)
±

𝛼
in the constraints of problem (17) by (𝐵

𝑠
)
±

𝛼
.

According to the robust two-step method [22], a sub-
model corresponding to 𝑓

−

𝛼
is firstly formulated and solved,

and then the second submodel corresponding to 𝑓
+

𝛼
can be

formulated based on the solution of the first one. In detail,
the submodel corresponding to 𝑓

−

𝛼
, which provides the first

step of the solution process, can be formulated as

max 𝑓
−

𝛼
=

𝑞

∑

𝑘
2
=1

(𝑐
22𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

−

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
22𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

+

𝛼

s.t.
𝑞

∑

𝑘
2
=1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
2𝑠𝑘
2

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

+

Sign ((𝑎
2𝑠𝑘
2

)

±

𝛼
) (𝑥
2𝑘
2

)

−

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
2𝑠𝑘
2

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

−

Sign ((𝑎
2𝑠𝑘
2

)

±

𝛼
) (𝑥
2𝑘
2

)

+

𝛼

≤ (𝐵
𝑠
)
−

𝛼
, 𝑠 = 1, 2, . . . , 𝑚,

(𝑥
2𝑘
2

)

−

𝛼
≥ 0, 𝑘

2
= 1, 2, . . . , 𝑞,

(𝑥
2𝑘
2

)

+

𝛼
≥ 0, 𝑘

2
= 𝑞 + 1, 𝑘

2
+ 2, . . . , 𝑛

2
.

(19)
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From submodel (19), solutions of (𝑥
2𝑘
2
∗
)
−

𝛼
, 𝑘
2
= 1, 2, . . . ,

𝑞, and (𝑥
2𝑘
2
∗
)
+

𝛼
, 𝑘
2
= 𝑞 + 1, 𝑘

2
+ 2, . . . , 𝑛

2
, can be obtained.

Denote the solution sets of model (19) by Ψ−((𝑥
1
)
𝛼
).

Based on the solutions of submodel (19), the submodel
corresponding to 𝑓

+

𝛼
, which provides the second step of the

solution process, can be formulated as follows:

max 𝑓
+

𝛼
=

𝑞

∑

𝑘
2
=1

(𝑐
22𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

+

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
22𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

−

𝛼

s.t.
𝑞

∑

𝑘
2
=1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
2𝑠𝑘
2

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

−

Sign ((𝑎
2𝑠𝑘
2

)

±

𝛼
) (𝑥
2𝑘
2

)

+

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
2𝑠𝑘
2

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

+

Sign ((𝑎
2𝑠𝑘
2

)

±

𝛼
) (𝑥
2𝑘
2

)

−

𝛼
≤ (𝐵
𝑠
)
+

𝛼
,

𝑠 = 1, 2, . . . , 𝑚,

𝑙
1

∑

𝑘
2
=1

(𝑎
2𝑠𝑘
2

)

−

𝛼
(𝑥
2𝑘
2

)

+

𝛼
+

𝑞

∑

𝑘
2
=𝑙
1
+1

(𝑎
2𝑠𝑘
2

)

−

𝛼
(𝑥
2𝑘
2
∗
)

−

𝛼

+

𝑙
2

∑

𝑘
2
=𝑞+1

(𝑎
2𝑠𝑘
2

)

−

𝛼
(𝑥
2𝑘
2

)

−

𝛼

+

𝑛
2

∑

𝑘
2
=𝑙
2
+1

(𝑎
2𝑠𝑘
2

)

−

𝛼
(𝑥
2𝑘
2
∗
)

−

𝛼
≤ (𝐵
𝑠
)
+

𝛼
,

(𝑥
2𝑘
2

)

+

𝛼
≥ (𝑥
2𝑘
2
∗
)

−

𝛼
, (𝑥

2𝑘
2

)

+

𝛼
≥ 0,

𝑘
2
= 1, 2, . . . , 𝑞,

(𝑥
2𝑘
2

)

−

𝛼
≤ (𝑥
2𝑘
2
∗
)

+

𝛼
, (𝑥

2𝑘
2

)

−

𝛼
≥ 0,

𝑘
2
= 𝑞 + 1, 𝑘

2
+ 2, . . . , 𝑛

2
,

(20)

where (𝑎
2𝑠𝑘
2

)
±

𝛼
≥ 0 (𝑘

2
= 1, 2, . . . , 𝑙

1
; 𝑘
2
= 𝑙
2
+ 1, 𝑙
2
+ 2, . . . , 𝑛

2
)

and (𝑎
2𝑠𝑘
2

)
±

𝛼
≤ 0 (𝑘

2
= 𝑙
1
+ 1, 𝑙
1
+ 2, . . . , 𝑙

2
), where 𝑙

1
≤ 𝑞 and

𝑙
2
≥ 𝑞.
Solutions of (𝑥

2𝑘
2
∗
)
+

𝛼
≥ 0, 𝑘

2
= 1, 2, . . . , 𝑞, and (𝑥

2𝑘
2
∗
)
−

𝛼
≥

0, 𝑘
2

= 𝑞 + 1, 𝑘
2
+ 2, . . . , 𝑛

2
, can be obtained by solving

submodel (20). Denote the solution sets of model (20) by
Ψ
+
((𝑥
1
)
𝛼
).

For the coefficient 𝑐
11

of problem (6), the former 𝑝

elements are assumed to be positive and the latter (𝑛
1
− 𝑝)

elements are negative. For the coefficient 𝑐
12
, let the former 𝑞

elements be positive and the latter (𝑛
2
−𝑞) elements negative.

Thus, for any 𝛼 ∈ [0, 1], the lower and upper bounds of

the upper level objective function of problem (7) can be
expressed as

𝐹
−

𝛼
=

𝑝

∑

𝑘
1
=1

(𝑐
11𝑘
1

)

−

𝛼
× (𝑥
1𝑘
1

)

−

𝛼
+

𝑛
1

∑

𝑘
1
=𝑝+1

(𝑐
11𝑘
1

)

−

𝛼
× (𝑥
1𝑘
1

)

+

𝛼

+

𝑞

∑

𝑘
2
=1

(𝑐
12𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

−

𝛼
+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
12𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

+

𝛼
,

𝐹
+

𝛼
=

𝑝

∑

𝑘
1
=1

(𝑐
11𝑘
1

)

+

𝛼
× (𝑥
1𝑘
1

)

+

𝛼
+

𝑛
1

∑

𝑘
1
=𝑝+1

(𝑐
11𝑘
1

)

+

𝛼
× (𝑥
1𝑘
1

)

−

𝛼

+

𝑞

∑

𝑘
2
=1

(𝑐
12𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

+

𝛼
+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
12𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

−

𝛼
.

(21)

Thus the first subproblem of problem (7) that would
correspond to 𝐹−

𝛼
can be written as

max 𝐹
−

𝛼
=

𝑝

∑

𝑘
1
=1

(𝑐
11𝑘
1

)

−

𝛼
× (𝑥
1𝑘
1

)

−

𝛼

+

𝑛
1

∑

𝑘
1
=𝑝+1

(𝑐
11𝑘
1

)

−

𝛼
× (𝑥
1𝑘
1

)

+

𝛼

+

𝑞

∑

𝑘
2
=1

(𝑐
12𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

−

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
12𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

+

𝛼

s.t. ((𝑥
1
)
𝛼
, (𝑥
2
)
𝛼
) ∈ 𝑆
−
, (𝑥

2
)
𝛼
∈ Ψ
−
((𝑥
1
)
𝛼
) ,

(22)

and the second subproblem of problem (7) that would
correspond to 𝐹+

𝛼
can be written as

max 𝐹
+

𝛼
=

𝑝

∑

𝑘
1
=1

(𝑐
11𝑘
1

)

+

𝛼
× (𝑥
1𝑘
1

)

+

𝛼

+

𝑛
1

∑

𝑘
1
=𝑝+1

(𝑐
11𝑘
1

)

+

𝛼
× (𝑥
1𝑘
1

)

−

𝛼

+

𝑞

∑

𝑘
2
=1

(𝑐
12𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

+

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
12𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

−

𝛼

s.t. ((𝑥
1
)
𝛼
, (𝑥
2
)
𝛼
) ∈ 𝑆
+
, (𝑥

2
)
𝛼
∈ Ψ
+
((𝑥
1
)
𝛼
) .

(23)

Based on the above analysis, problem (7) can be trans-
formed into two deterministic subproblems (22) and (23) that
correspond to the lower and upper bounds of the upper level
objective function. Then, the solutions of problem (7) can be
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obtained through solving the two subproblems sequentially.
Problem (22) will be solved firstly; then problem (23) will be
derived and solved based on the solutions of submodel (22).

If Ψ−((𝑥
1
)
𝛼
) and Ψ

+
((𝑥
1
)
𝛼
) are not a singleton for each

(𝑥
1
)
𝛼
, wewill consider here optimistic formulation of a bilevel

programming problem. For details on the optimistic solution
approach see [4].

Furthermore, problems (22) and (23) can be rewritten as

max 𝐹
−

𝛼
=

𝑝

∑

𝑘
1
=1

(𝑐
11𝑘
1

)

−

𝛼
× (𝑥
1𝑘
1

)

−

𝛼

+

𝑛
1

∑

𝑘
1
=𝑝+1

(𝑐
11𝑘
1

)

−

𝛼
× (𝑥
1𝑘
1

)

+

𝛼

+

𝑞

∑

𝑘
2
=1

(𝑐
12𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

−

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
12𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

+

𝛼

max 𝑓
−

𝛼
=

𝑞

∑

𝑘
2
=1

(𝑐
22𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

−

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
22𝑘
2

)

−

𝛼
× (𝑥
2𝑘
2

)

+

𝛼

s.t.
𝑝

∑

𝑘
1
=1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
1𝑠𝑘
1

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

+

Sign ((𝑎
1𝑠𝑘
1

)

±

𝛼
) (𝑥
1𝑘
1

)

−

𝛼

+

𝑛
1

∑

𝑘
1
=𝑝+1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
1𝑠𝑘
1

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

−

Sign ((𝑎
𝑠1𝑘
1

)

±

𝛼
) (𝑥
1𝑘
1

)

+

𝛼

+

𝑞

∑

𝑘
2
=1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
2𝑠𝑘
2

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

+

Sign ((𝑎
2𝑠𝑘
2

)

±

𝛼
) (𝑥
2𝑘
2

)

−

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
2𝑠𝑘
2

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

−

Sign ((𝑎
2𝑠𝑘
2

)

±

𝛼
) (𝑥
2𝑘
2

)

+

𝛼

≤ (𝑏
𝑠
)
−

𝛼
, 𝑠 = 1, 2, . . . , 𝑚,

(𝑥
1𝑘
1

)

−

𝛼
≥ 0, 𝑘

1
= 1, 2, . . . , 𝑝,

(𝑥
1𝑘
1

)

+

𝛼
≥ 0, 𝑘

1
= 𝑝 + 1, 𝑝 + 2, . . . , 𝑛

1
,

(𝑥
2𝑘
2

)

−

𝛼
≥ 0, 𝑘

2
= 1, 2, . . . , 𝑞,

(𝑥
2𝑘
2

)

+

𝛼
≥ 0, 𝑘

2
= 𝑞 + 1, 𝑞 + 2, . . . , 𝑛

2
,

(24)

max 𝐹
+

𝛼
=

𝑝

∑

𝑘
1
=1

(𝑐
11𝑘
1

)

+

𝛼
× (𝑥
1𝑘
1

)

+

𝛼

+

𝑛
1

∑

𝑘
1
=𝑝+1

(𝑐
11𝑘
1

)

+

𝛼
× (𝑥
1𝑘
1

)

−

𝛼

+

𝑞

∑

𝑘
2
=1

(𝑐
12𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

+

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
12𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

−

𝛼

max 𝑓
+

𝛼
=

𝑞

∑

𝑘
2
=1

(𝑐
22𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

+

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

(𝑐
22𝑘
2

)

+

𝛼
× (𝑥
2𝑘
2

)

−

𝛼

s.t.
𝑝

∑

𝑘
1
=1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
𝑠1𝑘
1

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

−

Sign ((𝑎
1𝑠𝑘
1

)

±

𝛼
) (𝑥
1𝑘
1

)

+

𝛼

+

𝑛
1

∑

𝑘
1
=𝑝+1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
1𝑠𝑘
1

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

+

Sign ((𝑎
1𝑠𝑘
1

)

±

𝛼
) (𝑥
1𝑘
1

)

−

𝛼

+

𝑞

∑

𝑘
2
=1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
2𝑠𝑘
2

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

−

Sign ((𝑎
2𝑠𝑘
2

)

±

𝛼
) (𝑥
2𝑘
2

)

+

𝛼

+

𝑛
2

∑

𝑘
2
=𝑞+1

󵄨
󵄨
󵄨
󵄨
󵄨
(𝑎
2𝑠𝑘
2

)
𝛼

󵄨
󵄨
󵄨
󵄨
󵄨

+

Sign ((𝑎
2𝑠𝑘
2

)

±

𝛼
) (𝑥
2𝑘
2

)

−

𝛼

≤ (𝑏
𝑠
)
+

𝛼
, 𝑠 = 1, 2, . . . , 𝑚,

𝑖
1

∑

𝑘
1
=1

(𝑎
𝑠1𝑘
1

)

−

𝛼
(𝑥
1𝑘
1

)

+

𝛼
+

𝑝

∑

𝑘
1
=𝑖
1
+1

(𝑎
𝑠1𝑘
1

)

−

𝛼
(𝑥
1𝑘
1
∗
)

−

𝛼

+

𝑖
2

∑

𝑘
1
=𝑝+1

(𝑎
1𝑠𝑘
1

)

−

𝛼
(𝑥
1𝑘
1

)

−

𝛼

+

𝑛
2

∑

𝑘
1
=𝑖
2
+1

(𝑎
1𝑠𝑘
1

)

−

𝛼
(𝑥
1𝑘
1
∗
)

−

𝛼
+

𝑙
1

∑

𝑘
2
=1

(𝑎
2𝑠𝑘
2

)

−

𝛼
(𝑥
2𝑘
2

)

+

𝛼

+

𝑞

∑

𝑘
2
=𝑙
1
+1

(𝑎
2𝑠𝑘
2

)

−

𝛼
(𝑥
2𝑘
2
∗
)

−

𝛼

+

𝑙
2

∑

𝑘
2
=𝑞+1

(𝑎
2𝑠𝑘
2

)

−

(𝑥
2𝑘
2

)

−

𝛼

+

𝑛
2

∑

𝑘
2
=𝑙
2
+1

(𝑎
2𝑠𝑘
2

)

−

(𝑥
2𝑘
2
∗
)

−

𝛼

≤ (𝑏
𝑠
)
+

𝛼
, 𝑠 = 1, 2, . . . , 𝑚,

(𝑥
1𝑘
1

)

+

𝛼
≥ (𝑥
1𝑘
1
∗
)

−

𝛼
, (𝑥

1𝑘
1

)

+

𝛼
≥ 0, 𝑘

1
= 1, 2, . . . , 𝑝,

(𝑥
1𝑘
1

)

−

𝛼
≤ (𝑥
1𝑘
1
∗
)

+

𝛼
, (𝑥

1𝑘
1

)

−

𝛼
≥ 0,

𝑘
1
= 𝑝 + 1, 𝑘

1
+ 2, . . . , 𝑛

1
,
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(𝑥
2𝑘
2

)

+

𝛼
≥ (𝑥
2𝑘
2
∗
)

−

𝛼
, (𝑥

2𝑘
2

)

+

𝛼
≥ 0, 𝑘

2
= 1, 2, . . . , 𝑞,

(𝑥
2𝑘
2

)

−

𝛼
≤ (𝑥
2𝑘
2
∗
)

+

𝛼
, (𝑥

2𝑘
2

)

−

𝛼
≥ 0,

𝑘
2
= 𝑞 + 1, 𝑘

2
+ 2, . . . , 𝑛

2
,

(25)

where (𝑎
1𝑠𝑘
1

)
±

𝛼
≥ 0 (𝑘

1
= 1, 2, . . . , 𝑖

1
; 𝑘
1
= 𝑖
2
+ 1, 𝑖
2
+ 2, . . . , 𝑛

1
)

and (𝑎
1𝑠𝑘
1

)
±

𝛼
≤ 0 (𝑘

1
= 𝑖
1
+ 1, 𝑖
1
+ 2, . . . , 𝑖

2
), where 𝑖

1
≤ 𝑝 and

𝑖
2
≥ 𝑝; (𝑎

2𝑠𝑘
2

)
±

𝛼
≥ 0 (𝑘

2
= 1, 2, . . . , 𝑙

1
; 𝑘
2
= 𝑙
2
+1, 𝑙
2
+2, . . . , 𝑛

2
)

and (𝑎
2𝑠𝑘
2

)
±

𝛼
≤ 0 (𝑘

2
= 𝑙
1
+ 1, 𝑙
1
+ 2, . . . , 𝑙

2
), where 𝑙

1
≤ 𝑞 and

𝑙
2
≥ 𝑞.
Thus solutions of (𝑥

1𝑘
1
∗
)
−

𝛼
, 𝑘
1

= 1, 2, . . . , 𝑝, (𝑥
1𝑘
1
∗
)
+

𝛼
,

𝑘
1

= 𝑝 + 1, 𝑝 + 2, . . . , 𝑛
1
, (𝑥
2𝑘
2
∗
)
−

𝛼
, 𝑘
2

= 1, 2, . . . , 𝑞,
and (𝑥

2𝑘
2
∗
)
+

𝛼
, 𝑘
2

= 𝑞 + 1, 𝑞 + 2, . . . , 𝑛
2
, can be obtained

from problem (24), whereas (𝑥
1𝑘
1
∗
)
+

𝛼
, 𝑘
1

= 1, 2, . . . , 𝑝,
(𝑥
1𝑘
1
∗
)
−

𝛼
, 𝑘
1
= 𝑝 + 1, 𝑝 + 2, . . . , 𝑛

1
, (𝑥
2𝑘
2
∗
)
+

𝛼
, 𝑘
2
= 1, 2, . . . , 𝑞,

and (𝑥
2𝑘
2
∗
)
−

𝛼
, 𝑘
2
= 𝑞 + 1, 𝑞 + 2, . . . , 𝑛

2
, can be obtained by

solving problem (25).
It is noted here that problems (24) and (25) are classic

bilevel linear programming problems. There already have
been some methods for solving this class of problems, like
methods based on vertex enumeration and metaheuristics.
In this study, the 𝐾th-best algorithm which is proposed by
Bialas and Karwan [27] is applied to solve the above two
deterministic bilevel linear programming problems.The𝐾th-
best algorithm for bilevel linear programming aims to find
a global optimum solution by searching extreme points on
the constraint region. The main idea of the algorithm is the
extreme-point ranking according to the objective function of
the upper level. To be more specific, the present best extreme
point with respect to the upper level objective function is
chosen to test if it is a point of the inducible region. If it is so,
the current extreme point is the optimal solution. Otherwise,
the next one will be selected and checked.

By setting different 𝛼-level sets, different lower and upper
bounds of the upper level objective function of problem (7)
can be generated by solving the above pair of problems (24)
and (25).

3.2. Solution Algorithm. Due to the existence of fuzzy coeffi-
cients and fuzzy decision variables, it is natural to consider the
optimal value of the fully fuzzy bilevel optimization problem
(6) as a fuzzy number. In order to solve problem (6), we
first discretize the range of membership grade [0, 1] into a
finite number of 𝛼-level sets. Let 𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
be different

level sets satisfying 𝛼
1

≤ 𝛼
2

≤ ⋅ ⋅ ⋅ ≤ 𝛼
𝑛
. Based on

models (24) and (25), a series of lower and upper bounds
of the upper level objective function of problem (7) can be
obtained under each 𝛼-level set. In practice, fuzzy numbers
with simple membership functions are often preferred. By
using𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑛
-level sets, the linear piecewise trapezoidal

fuzzy number is introduced to approximate the optimal value
of the upper level objective function of problem (6). To be
more specific, the optimal value of the upper level objective

function of problem (6) is characterized by the following
piecewise trapezoidal membership function:

𝜇
𝐹
∗

(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

0 𝑡 < 𝐹
−

𝛼
1
∗
,

𝛼
2
− 𝛼
1

𝐹
−

𝛼
2
∗
− 𝐹
−

𝛼
1
∗

(𝑡 − 𝐹
−

𝛼
1
∗
) + 𝛼
1

𝐹
−

𝛼
1
∗
≤ 𝑡 < 𝐹

−

𝛼
2
∗
,

𝛼
3
− 𝛼
2

𝐹
−

𝛼
3
∗
− 𝐹
−

𝛼
2
∗

(𝑡 − 𝐹
−

𝛼
2
∗
) + 𝛼
2

𝐹
−

𝛼
2
∗
≤ 𝑡 < 𝐹

−

𝛼
3
∗
,

.

.

.

.

.

.

𝛼
𝑛

𝐹
−

𝛼
𝑛
∗
≤ 𝑡 < 𝐹

+

𝛼
𝑛
∗
,

.

.

.

.

.

.

𝛼
2
− 𝛼
1

𝐹
+

𝛼
2
∗
− 𝐹
+

𝛼
1
∗

(𝑡 − 𝐹
+

𝛼
1
∗
) + 𝛼
1

𝐹
+

𝛼
2
∗
≤ 𝑡 < 𝐹

−

𝛼
1
∗
,

0 𝑡 ≥ 𝐹
+

𝛼
1
∗
.

(26)

On the other hand, a series of optimal solutions of
problem (7) corresponding to the lower and upper bounds
of its objective function can be also generated by depending
on different level sets. Based on statistical regression method,
we can approximately obtain the membership function for
every decision variable of problem (6). Specifically, each 𝛼-
level set is input data, and the corresponding lower and upper
bounds of decision variables are output data. In this way, the
membership function for decision variables can be obtained.

The detailed solution process for problem (6) can be
summarized as follows.

Step 1. Discretize the range of membership grade [0, 1] into a
set of 𝛼-level sets (i.e., 𝛼

1
, 𝛼
2
, . . . , 𝛼

𝑡
) such that 0 ≤ 𝛼

1
< 𝛼
2
<

⋅ ⋅ ⋅ < 𝛼
𝑡
≤ 1.

Step 2. Transform problem (6) into an interval bilevel linear
programming problem under each 𝛼-level set. Based on
models (24) and (25), the interval bilevel linear programming
problem can be converted into two deterministic subprob-
lems.

Step 3. Based on the 𝐾th-best algorithm, the submodel
corresponding to 𝐹

−

𝛼
is to be solved firstly, and then the

submodel corresponding to 𝐹
+

𝛼
is solved based on solutions

from the first submodel.

Step 4. The optimal values of the upper level objective
function of problem (6) can be approximated by the linear
piecewise trapezoidal fuzzy number. By statistical regression,
the membership function for every decision variable can be
obtained.

4. Numerical Example and Analysis

4.1. Numerical Example. In this section, a numerical example
is given to illustrate the proposed approach. Consider the
following bilevel linear programming problem with fuzzy
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coefficients and variables in both objective functions and the
constraints:

max
𝑥

−1̃ ⊗ 𝑥 ⊕ 4̃ ⊗ 𝑦

max
𝑦

1̃ ⊗ 𝑦

s.t. −2̃ ⊗ 𝑥 ⊕ 1̃ ⊗ 𝑦 ≤ 0̃,

2̃ ⊗ 𝑥 ⊕ 1̃ ⊗ 𝑦 ≤ 1̃2,

−3̃ ⊗ 𝑥 ⊕ 2̃ ⊗ 𝑦 ≤ −4̃,

𝑥 ≥ 0, 𝑦 ≥ 0,

(27)

where the membership functions of fuzzy coefficients of
problem (27) can be expressed as

𝜇
1̃
(𝑥) =

{
{
{
{

{
{
{
{

{

0 𝑥 < 0, 𝑥 ≥ 2

𝑥 0 ≤ 𝑥 < 1

2 − 𝑥 1 ≤ 𝑥 < 2,

𝜇
2̃
(𝑥) =

{
{
{
{

{
{
{
{

{

0 𝑥 < 1, 𝑥 ≥ 3

𝑥 − 1 1 ≤ 𝑥 < 2

3 − 𝑥 2 ≤ 𝑥 < 3,

𝜇
3̃
(𝑥) =

{
{
{
{

{
{
{
{

{

0 𝑥 < 2, 𝑥 ≥ 4

𝑥 − 2 2 ≤ 𝑥 < 3

4 − 𝑥 3 ≤ 𝑥 < 4,

𝜇
4̃
(𝑥) =

{
{
{
{

{
{
{
{

{

0 𝑥 < 3, 𝑥 ≥ 5

𝑥 − 3 3 ≤ 𝑥 < 4

5 − 𝑥 4 ≤ 𝑥 < 5,

𝜇
1̃2
(𝑥) =

{
{
{
{

{
{
{
{

{

0 𝑥 < 11, 𝑥 ≥ 13

𝑥 − 11 11 ≤ 𝑥 < 12

13 − 𝑥 12 ≤ 𝑥 < 13,

𝜇
0̃
(𝑥) =

{
{
{
{

{
{
{
{

{

0 𝑥 < −1, 𝑥 ≥ 1

𝑥 + 1 −1 ≤ 𝑥 < 0

1 − 𝑥 0 ≤ 𝑥 < 1.

(28)

Now we deal with problem (29) by using the proposed
approach in the previous section.

Step 5. Nine 𝛼-level sets are selected for computation, that is,
𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9, respectively.

Step 6. For any 𝛼 ∈ [0, 1], problem (27) can be formulated as
the following interval bilevel linear programming problem by
using 𝛼-level sets of fuzzy numbers:

max − [𝛼, 2 − 𝛼] ⊗ 𝑥
±

𝛼
⊕ [3 + 𝛼, 5 − 𝛼] ⊗ 𝑦

±

𝛼

max [𝛼, 2 − 𝛼] ⊗ 𝑦
±

𝛼

s.t. − [1 + 𝛼, 3 − 𝛼] ⊗ 𝑥
±

𝛼
⊕ [𝛼, 2 − 𝛼] ⊗ 𝑦

±

𝛼

≤ [𝛼 − 1, 1 − 𝛼] ,

[1 + 𝛼, 3 − 𝛼] ⊗ 𝑥
±

𝛼
⊕ [𝛼, 2 − 𝛼] ⊗ 𝑦

±

𝛼

≤ [11 + 𝛼, 13 − 𝛼] ,

− [2 + 𝛼, 4 − 𝛼] ⊗ 𝑥
±

𝛼
⊕ [1 + 𝛼, 3 − 𝛼] ⊗ 𝑦

±

𝛼

≤ − [3 + 𝛼, 5 − 𝛼] ,

𝑥
±

𝛼
≥ 0, 𝑦

±

𝛼
≥ 0.

(29)

Step 7. When 𝛼 = 0.9, problem (29) can be transformed
into two deterministic subproblems that correspond to the
lower and upper bounds of the upper level objective function
according to models (24) and (25), respectively. The first
subproblem can be presented as follows:

max −1.1𝑥
+

0.9
+ 3.9𝑦

−

0.9

max 0.9𝑦
−

0.9

s.t. 1.9𝑥
+

0.9
+ 1.1𝑦

−

0.9
≤ 11.9,

−1.9𝑥
+

0.9
+ 1.1𝑦

−

0.9
≤ −0.1,

−2.9𝑥
+

0.9
+ 2.1𝑦

−

0.9
≤ −4.1,

𝑥
+

0.9
≥ 0, 𝑦

−

0.9
≥ 0.

(30)

Based on the 𝐾th-best algorithm, the solutions are 𝑥+
0.9∗

=

4.1086, 𝑦−
0.9∗

= 3.7214, 𝐹−
0.9∗

= 9.9940, and 𝑓
−

0.9∗
= 3.3493.

Thus, the second subproblem can be expressed as

max 𝐹
+

0.9∗
= −0.9𝑥

−

0.9
+ 4.1𝑦

+

0.9

max 𝑓
+

0.9∗
= 1.1𝑦

−

0.9

s.t. −2.1𝑥
−

0.9
+ 0.9𝑦

+

0.9
≤ 0.1,

2.1𝑥
−

0.9
+ 0.9𝑦

+

0.9
≤ 12.1,

0.9𝑦
+

0.9
≤ 4.2937,

−3.1𝑥
−

0.9
+ 1.9𝑦

+

0.9
≤ −3.9,

−𝑦
+

0.9
≤ −3.7214,

𝑥
−

0.9
≥ 0, 𝑦

+

0.9
≥ 0.

(31)

The solutions of problem (31) are 𝑥
−

0.9∗
= 3.9086, 𝑦+

0.9∗
=

4.3245, 𝐹+
0.9∗

= 14.2127, and 𝑓
+

0.9∗
= 4.5769. Consequently,

when 𝛼 = 0.9, the lower and upper bounds of the upper level
objective function are 9.9940 and 14.2127; and the lower and
upper bounds of the lower level objective function are 3.3493
and 4.5769.
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Table 1: Results of the upper and lower bounds of objective values
under different levels.

𝛼 𝐹
−

𝛼∗
𝐹
+

𝛼∗
𝑓
−

𝛼∗
𝑓
+

𝛼∗

0.1 −3.2448 56.1503 0.2496 21.9296
0.2 −1.5827 45.4526 0.5158 17.3360
0.3 0.0206 37.6029 0.8038 14.0121
0.4 1.5947 31.5733 1.1187 11.5024
0.5 3.1666 26.7721 1.4667 9.5480
0.6 4.7635 22.8382 1.8545 7.9810
0.7 6.4130 19.5326 2.2905 6.7047
0.8 8.1450 16.6956 2.7846 5.6466
0.9 9.9940 14.2127 3.3493 4.5769

Afterwards, the two subproblems under other 𝛼-level sets
(i.e., 𝛼 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8) would be formu-
lated in sequence and generate corresponding solutions, as
presented in Table 1.

Step 8. According to (26), the optimal value of the upper level
objective function of this example can be approximated by the
linear piecewise trapezoidal fuzzy number:

𝜇
𝐹
∗ (𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

0 𝑡 < −3.2448,

0.0602𝑡 + 0.2952 −3.2448 ≤ 𝑡 < −1.5827,

0.0624𝑡 + 0.2987 −1.5827 ≤ 𝑡 < 0.0206,

0.0635𝑡 + 0.2987 0.0206 ≤ 𝑡 < 1.5947,

0.0636𝑡 + 0.2985 1.5947 ≤ 𝑡 < 3.1666,

0.0626𝑡 + 0.3017 3.1666 ≤ 𝑡 < 4.7635,

0.0606𝑡 + 0.3112 4.7635 ≤ 𝑡 < 6.4130,

0.0577𝑡 + 0.3297 6.4130 ≤ 𝑡 < 8.1450,

0.0541𝑡 + 0.3595 8.1450 ≤ 𝑡 < 9.9940,

0.9 9.9940 ≤ 𝑡 < 14.2127,

−0.0403𝑡 + 1.4724 14.2127 ≤ 𝑡 < 16.6956,

−0.0352𝑡 + 1.3885 16.6956 ≤ 𝑡 < 19.5326,

−0.0303𝑡 + 1.2909 19.5326 ≤ 𝑡 < 22.8382,

−0.0254𝑡 + 1.1805 22.8382 ≤ 𝑡 < 26.7721,

−0.0208𝑡 + 1.0576 26.7721 ≤ 𝑡 < 31.5733,

−0.0166𝑡 + 0.9236 31.5733 ≤ 𝑡 < 37.6029,

−0.0127𝑡 + 0.7790 37.6029 ≤ 𝑡 < 45.4526,

−0.0093𝑡 + 0.6249 45.4526 ≤ 𝑡 < 56.1503,

0 𝑡 ≥ 56.1503.

(32)

Based on statistical regression, the membership function for
decision variable can be generated. Figures 1 and 2 present the
membership functions of 𝑥 and 𝑦.
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Figure 1: The membership function of 𝑥.
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Figure 2: The membership function of 𝑦.

4.2. Analysis. In this section, we discuss variation in the range
of the objective function values with the change of 𝛼. It can be
seen fromTable 1 that different 𝛼-level sets would correspond
to different upper and lower bounds of objective functions.
With the increase of 𝛼, there is an increasing trend for the
lower bounds of the upper and lower level objective functions
while there is a decreasing trend for the upper bounds of
the upper and lower level objective functions of the objective
function. In addition, these results indicate that a smaller
𝛼-level set corresponds to a wider range of the objective
function; conversely, the range of the objective function is
narrower under a larger 𝛼-level set.

From the point of view of the transformed models, the
final obtained two submodels are bilevel linear programming
problems which are the simplest models in bilevel program-
ming. Therefore, the proposed method also has relatively
low computational requirement due to the simplicity of its
deterministic submodels.

5. Conclusion

In this paper, we deal with a class of bilevel linear program-
ming problems in which all the coefficients and decision
variables are fuzzy numbers. To solve these problems, we
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first discretize membership grade of fuzzy coefficients and
fuzzy decision variables of the problem into a finite number
of 𝛼-level sets. For each 𝛼-level set, the original problem
can be converted into an interval bilevel linear programming
problem by using 𝛼-level sets of fuzzy numbers. Then we
construct a pair of bilevel mathematical programming mod-
els which correspond to the lower and upper bounds of the
upper level objective function of the obtained interval bilevel
programming problem. Through the 𝐾th-best algorithm,
the two models can be solved sequentially. Based on a
series of 𝛼-level sets, a linear piecewise trapezoidal fuzzy
number is introduced to approximate the optimal value of
the upper level objective function of the fully fuzzy bilevel
linear programming problem. In the future, we will apply
the proposed models and approach to solve some real world
problems.
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