Research Article

Yijiang Peng, Qing Guo, Zhaofeng Zhang, and Yanyan Shan

The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China

Correspondence should be addressed to Yijiang Peng; pengyijiang@bjut.edu.cn

Received 24 August 2014; Accepted 5 September 2014

Academic Editor: Song Cen

Copyright © 2015 Yijiang Peng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The four-mid-node plane model of base force element method (BFEM) on complementary energy principle is used to analyze the rock mechanics problems. The method to simulate the crack propagation using the BFEM is proposed. And the calculation method of safety factor for rock mass stability was presented for the BFEM on complementary energy principle. The numerical researches show that the results of the BFEM are consistent with the results of conventional quadrilateral isoparametric element and quadrilateral reduced integration element, and the nonlinear BFEM has some advantages in dealing crack propagation and calculating safety factor of stability.

1. Introduction

The finite element method (FEM) has been playing a very important role in solving various problems in engineering and science. However, the conventional finite element method (FEM) based on the displacement model has some shortcomings, such as large deformation, treatment of incompressible materials, bending of thin plates, and moving boundary problems. In the past decades, numerous efforts techniques have been proposed for developing finite element models which are robust and insensitive to mesh distortion, such as the hybrid stress method [1–4], the equilibrium models [5, 6], the mixed approach [7], the integrated force method [8–11], the incompatible displacement modes [12, 13], the assumed strain method [14–17], the enhanced strain modes [18, 19], the selectively reduced integration scheme [20], the quasiconforming element method [21], the generalized conforming method [22], the Alpha finite element method [23], the new spline finite element method [24, 25], the unsymmetric method [26–29], the new natural coordinate methods [30–33], the smoothed finite element method [34], and the base force element method [35–43].

In recent years, some scholars are studying other types of numerical analysis methods, such as boundary element method [44, 45] and meshless method [46, 47]. And some scholars still adhere to explore the finite element method based on complementary energy principle [48–51]. However, these methods have not been widely applied in engineering.

In this paper, the base force element method (BFEM) on complementary energy principle is used to analyze the engineering problems of rock mechanics. The “base forces” was introduced by Gao [52], who used the concept to replace various stress tensors for the description of the stress state at a point. These base forces can be directly obtained from the strain energy. For large deformation problems, when the base forces were adopted, the derivation of basic formulae was simplified by Gao [53] and Gao et al. [54–56]. Based on the concept of the base forces, precise expressions for stiffness and compliance matrices for the FEM were obtained by Gao [52]. The applications of the stiffness matrix to the plane problems of elasticity using the plane quadrilateral element and the polygonal element were researched by Peng et al. [37]. Using the concept of base forces as state variables, a three-dimensional formulation of base force element method (BFEM) on complementary energy principle was proposed by Peng and Liu [35] for geometrically nonlinear problems. And the new finite element method based on the concept of base forces was called as the Base Force Element Method.
(BFEM) by Peng and Liu [35]. A three-dimensional model of base force element method (BFEM) on complementary energy principle was proposed by Liu and Peng [36] for elasticity problems. A 4-mid-node plane element model of the BFEM on complementary energy principle was proposed by Peng et al. [38] for geometrically nonlinear problem, which is derived by assuming that the stress is uniformly distributed on each edges of a plane element. In the paper [39], an arbitrary convex polygonal element model of the BFEM on complementary energy principle was proposed for geometrically nonlinear problem. In the paper [40], the BFEM on potential energy principle was proposed for the concave polygonal element model of BFEM on complementary energy principle are that the model does not introduce an interpolating function and is not necessary to introduce the Gauss integral for calculating the compliance coefficient at a point.

2. Model of the BFEM

2.1. Compliance Matrix. Consider a 4-mid-node plane element as shown in Figure 1; the compliance matrix of a base force element can be obtained as [43]

$$ C_{ij} = \frac{1 + \gamma}{EA} \left(r_{ij} \mathbf{U} - \frac{\gamma}{1 + \gamma} r_{ij} \otimes r_{ij} \right), \quad (I, J = 1, 2, 3, 4) \quad (1) $$

in which E is Young's modulus, γ is Poisson's ratio, A is the area of an element, \mathbf{U} is the unit tensor, and r_{ij} is the dot product of radius vectors \mathbf{r}_i and \mathbf{r}_j at points I and J.

For a plane rectangular coordinate system, the radius vectors \mathbf{r}_I and \mathbf{r}_J of points I and J can be written as

$$ \mathbf{r}_I = x_I \mathbf{e}_x + y_I \mathbf{e}_y, \quad \mathbf{r}_J = x_J \mathbf{e}_x + y_J \mathbf{e}_y \quad (2) $$

in which \mathbf{e}_x, \mathbf{e}_y are the unit vectors.

Further, the compliance matrix of an element can be reduced as follows:

$$ C_{ij} = \frac{1 + \gamma}{EA} \left[\begin{array}{c} x_I x_j + y_I y_j \\ \frac{\gamma}{1 + \gamma} x_I x_j + y_I y_j - \frac{\gamma}{1 + \gamma} x_I x_j + y_I y_j \\ \frac{1}{1 + \gamma} y_I y_j \end{array} \right] \mathbf{e}_x \otimes \mathbf{e}_x \quad (3) $$

For a plane strain problem, it is necessary to replace E by $E/(1 - \nu^2)$ and γ by $\gamma/(1 - \nu)$ in (1) and (3).

The characteristics of the BFEM on complementary energy principle are that the model does not introduce an interpolating function and is not necessary to introduce the Gauss integral for calculating the compliance coefficient at a point.

2.2. Governing Equations. The total complementary energy of the elastic system which has n elements can be written as

$$ \Pi_C = \sum_n \left(W_C^n - \mathbf{u}_I \cdot \mathbf{T}^I \right), \quad (4) $$

where W_C^n is the complementary energy of an element and \mathbf{T}^I and \mathbf{u}_I are the resultant force vectors and the given displacement acting on the center node I of the edge I, respectively.

The equilibrium conditions can be released by the Lagrange multiplier method, and a new complementary energy function for an element can be introduced as follows:

$$ \Pi_C^* (\mathbf{T}, \lambda, \lambda_\theta) = \Pi_C (\mathbf{T}) + \lambda \left(\sum_{I=1}^4 \mathbf{T}_I^I \right) + \lambda_\theta (\mathbf{T}_I^I \times \mathbf{r}_I), \quad (5) $$

where $\lambda = \lambda_x \mathbf{e}_x + \lambda_y \mathbf{e}_y$ and λ_θ are the Lagrange multipliers.

For the elastic system, the modified total complementary energy function of the elastic system which contains n elements should meet the following equation by means of the modified complementary energy principle:

$$ \delta \Pi_C^* = \sum_n \left[\delta \Pi_C^* (\mathbf{T}, \lambda, \lambda_\theta) \right] = 0. \quad (6) $$

Further, (6) can be expressed as

$$ \frac{\partial \Pi_C^* (\mathbf{T}, \lambda, \lambda_\theta)}{\partial \mathbf{T}} = 0, \quad \frac{\partial \Pi_C^* (\mathbf{T}, \lambda, \lambda_\theta)}{\partial \lambda} = 0, \quad \frac{\partial \Pi_C^* (\mathbf{T}, \lambda, \lambda_\theta)}{\partial \lambda_\theta} = 0. \quad (7) $$

The first of (7) is the compatibility equations and displacement boundary conditions for the elastic system. According
to this equation, the displacement boundary conditions in this paper can be implemented in the BFEM. The second of (7) is the force equilibrium equation of each element. The third of (7) is the moment equilibrium equation of each element. These are the governing equations of the BFEM. From the equations, we can obtain the resultant forces acting on the center points of the edges of all elements.

2.3. Stress Tensor of an Element. Consider the 4-mid-node plane element as shown in Figure 1; the real stress σ of the element can be replaced by the average stress $\bar{\sigma}$ if the element is small enough. According to the definitions of Cauchy stress tensors, the stress expressions of an element can be obtained as

$$\sigma = \frac{1}{A} T^I \otimes r_I,$$

where \otimes is the dyadic symbol, T^I and r_I are the resultant force vectors acting on the center node I of the edge I and the radius vector of the node I, respectively, and the summation rule is implied.

For a plane rectangular coordinate system, the force vectors T^I of the node I can be written as

$$T^I = T^I_x e_x + T^I_y e_y,$$

where T^I_x and T^I_y are the components of the force vector T^I along coordinates x and y, respectively.

Further, the stress tensors of an element can be reduced as follows:

$$\sigma = \frac{1}{A} \sum_{I=1}^{4} \left[T^I_x x_I e_x \otimes e_x + T^I_y y_I e_y \otimes e_y + T^I_y y_I e_y \otimes e_x + T^I_x x_I e_x \otimes e_y \right],$$

$$+ \left[T^I_x x_I e_x \otimes e_x + T^I_y y_I e_y \otimes e_y \right].$$

2.4. Displacement Vector of Nodes. According to the governing equation of an element of the BFEM, the explicit expression of displacement can be obtained as

$$\delta_t = C_{II} \cdot T^I + \lambda + \lambda_0 \varepsilon \cdot r_I,$$

where ε is the alternating tensor, λ and λ_0 are the Lagrange multipliers [43], and ε and λ can be expressed as

$$\varepsilon = e_x \otimes e_y - e_y \otimes e_x,$$

$$\lambda = \lambda_x e_x + \lambda_y e_y.$$

Further, the displacement vectors of an element can be reduced as follows [43]:

$$\delta_t = \left(C_{xx} T^I_x + C_{xy} T^I_y + \lambda_x + \lambda_0 y_I \right) e_x$$

$$+ \left(C_{yx} T^I_x + C_{yy} T^I_y + \lambda_y - \lambda_0 x_I \right) e_y.$$

3. Simulation of Gravity and Material

In engineering problems, regardless of the dam, rock slope, or other structure of rock mass, the gravity of structure should be considered in the numerical calculation. We did not take into account the gravity problem when we previously prepared the program of BFEM on complementary energy principle. In order to consider the gravity of structure, three problems must be solved, including the calculation problem of equivalent node loads in the BFEM on complementary energy principle, the problem of exerting gravity in the software of the BFEM and the calculation problem of stress tensor in an element when the gravity is added.

3.1. Equivalent Node Loads of Gravity. For the BFEM on complementary energy principle, the equivalent node loads of gravity in an element can be calculated according to the principle of virtual work, as shown in Figure 2, and the expression can be given as

$$\{Q\}^e = -\frac{\rho g A t}{4} \left[0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \right]^T$$

or

$$Q^I = -\frac{\rho g A t}{4} e_y, \quad (I = 1, 2, 3, 4),$$

where t is the thickness of an element, ρ is the density of material, and g is acceleration of gravity.

3.2. Stress Calculation of an Element. When the gravity of an element is not taken into account, as shown in Figure 3, we calculate the force acting on the edges of an element first. Then, the stress tensor of the element can be calculated by (8) or (10).

Further, the stress tensors of an element can also be reduced as follows:

$$\bar{\sigma} = \frac{1}{A} \left(T^I \otimes r_I + T^I \otimes r_I + T^I \otimes r_I + T^I \otimes r_I \right),$$

where $T^I = T^I_x e_x + T^I_y e_y$, $r_I = x_I e_x + y_I e_y$, $(I = 1, 2, 3, 4)$, x_I and y_I are the coordinates of node I, respectively.
When the gravity of an element is taken into account and there is a free boundary, as shown in Figure 4, the stress tensor of the element can be calculated as
\[
\bar{\sigma} = \frac{1}{A} \left[\left(T^1 + Q^1 \right) \otimes r_1 + Q^2 \otimes r_2 + T^3 + Q^3 \otimes r_3 + T^4 + Q^4 \otimes r_4 \right].
\] (17)

When the gravity of an element is taken into account and there is a force boundary condition, as shown in Figure 5, the stress tensor of the element can be calculated as
\[
\bar{\sigma} = \frac{1}{A} \left[\left(T^1 + Q^1 \right) \otimes r_1 + \left(F^1 + Q^1 \right) \otimes r_2 + T^3 + Q^3 \otimes r_3 + T^4 + Q^4 \otimes r_4 \right].
\] (18)

in which \(F = F_x e_x + F_y e_y \).

When the gravity of an element is not taken into account and there is a force boundary condition, as shown in Figure 6, the stress tensor of the element can be calculated as
\[
\bar{\sigma} = \frac{1}{A} \left(T^1 \otimes r_1 + F \otimes r_2 + T^3 \otimes r_3 + T^4 \otimes r_4 \right). \] (19)

3.3. Simulation of Different Materials. We adopt two one-dimensional array variables to reflect the change of elastic modulus and Poisson’s ratio of different materials, respectively.
respectively. c and f are the cohesion and the internal friction coefficient of the contact interface, respectively. l is the length of an element. t₀ is the tensile strength of an element, and it is positive in tension.

4.1.2. Condition of Positive Slip at Contact Interface. When \(T_n < 0 \) and \(T_s \geq -f \cdot T_n + c \cdot l \), the contact interface of the two elements began to slip. We need to get rid of the tangential displacement constraint at the contact interface between the two elements that it has been cracked and put the frictional force as load that is used to an initial force condition. The new load acting on the contact interface between the two elements in the second loop of calculation can be written as follows:

\[
T_{s0} = f \cdot T_s, \tag{20}
\]

When \(0 < T_n < t_0 \) and \(T_s \geq c \cdot l \), the contact interface of the two elements begins to slip. We need to get rid of the tangential displacement constraint and the normal displacement constraint at the contact interface of the two elements. And the contact interface will crack after slipping.

4.1.3. Condition of Negative Slip at Contact Interface. When \(T_n < 0 \) and \(T_s \leq f \cdot T_n - c \cdot l \), the contact interface of the two elements began to slip. We need to get rid of the tangential displacement constraint at the contact interface between the two elements that it has been cracked, and put the frictional force as load that is an initial force condition. The new load acting on the contact interface between the two elements in the second loop of calculation is

\[
T_{s0} = -f \cdot T_s, \tag{21}
\]

When \(0 < T_n < t_0 \) and \(T_s \leq -c \cdot l \), the contact interface of the two elements begins to slip. We need to get rid of the tangential displacement constraint and the normal displacement constraint at the contact interfaces of elements. And the contact interface will crack after slipping.

4.1.4. Condition of Pull Cracking at Contact Interface. When \(T_n \geq t_0 \), the contact interface of the two elements begins to crack. We need to get rid of the tangential displacement constraint and the normal displacement constraint at the contact interfaces of elements.

After the above checks, the computer program of BFEM uses the new loads and constraint conditions to solve the governing equations of BFEM on complementary energy principle and obtains the new forces acting on the contact interfaces of elements. The program repeats the above checks until there are no new cracking at the contact interfaces or the solutions of nonlinear equations cannot be convergence since the interface cracks are too long.

4.2. Flow Chart of the Nonlinear BEFM for Crack Propagation Problems. The flow chart of the nonlinear BEFM of crack propagation problems can be shown in Figure 7.

5. Calculation Method on Safety Factor of Stability in the BFEM

There are many methods to calculate the safety factor in engineering. The traditional finite element method usually used the rock joint elements to calculate factor of safety along the joint path. When the base force element method
6. Numerical Examples

6.1. Example 1: A Rock Pillar under the Action of Gravity.
Consider a thick pillar of rock under the action of gravity shown in Figure 8. And its width is 5 m, its height is 10 m, modulus of elasticity \(E = 1 \times 10^8 \) Pa, Poisson ratio \(\nu = 0.3 \), density of rock \(\rho = 2.45 \text{ t/m}^3 \), and acceleration of gravity \(g = 9.8 \text{ m/s}^2 \). The calculation is considered into the plane stress problem.

The calculation is done using three different element meshes with the center nodes of edges of elements as shown in Figure 9.

The values of stress components and displacement components of the rock pillar are listed in Tables 1–4, respectively. Comparisons of the results from the conventional quadrilateral isoparametric element (Q4 model) and quadrilateral reduced integration element (Q4R model) are also given in Tables 1–4, respectively. The numerical results of the present model are consistent with those of the Q4 model and Q4R model and have shown good computational stability.

\[
K = \frac{\sum_{i=1}^{n} (-T_{ni} f_i + c_i l_i)}{\sum_{i=1}^{n} T_{si}}, \quad (22)
\]

where \(T_{ni} \) and \(T_{si} \) are the normal interface force and tangential interface force at contact interface between two elements along the sliding path, respectively. \(c_i \) and \(f_i \) are the cohesion and the internal friction coefficient of the contact interface between two elements along the sliding path, respectively. \(l_i \) is the length of the interface in the element along the sliding path.

Table 1: Displacement \(u_y \) at the top of the pillar.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM model ((\times 10^{-2} \text{ m}))</th>
<th>Q4 model ((\times 10^{-2} \text{ m}))</th>
<th>Q4R model ((\times 10^{-2} \text{ m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 × 10</td>
<td>−1.1939</td>
<td>−1.1917</td>
<td>−1.2048</td>
</tr>
<tr>
<td>10 × 20</td>
<td>−1.1940</td>
<td>−1.1931</td>
<td>−1.1964</td>
</tr>
<tr>
<td>10 × 30</td>
<td>−1.1940</td>
<td>−1.1934</td>
<td>−1.1940</td>
</tr>
</tbody>
</table>

Table 2: Displacement \(u_y \) at \(h = 5 \text{ m} \) of the pillar.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM ((\times 10^{-3} \text{ m}))</th>
<th>Q4 model ((\times 10^{-3} \text{ m}))</th>
<th>Q4R model ((\times 10^{-3} \text{ m}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 × 10</td>
<td>−8.7592</td>
<td>−8.6975</td>
<td>−8.8045</td>
</tr>
<tr>
<td>10 × 20</td>
<td>−8.7630</td>
<td>−8.7118</td>
<td>−8.6726</td>
</tr>
<tr>
<td>10 × 30</td>
<td>−8.7637</td>
<td>−8.7149</td>
<td>−8.7363</td>
</tr>
</tbody>
</table>

Table 3: Stress \(\sigma_x \) at center of the elements at top of the pillar.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM ((\text{ kPa}))</th>
<th>Q4 model ((\text{ kPa}))</th>
<th>Q4R model ((\text{ kPa}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 × 10</td>
<td>−12.016</td>
<td>−12.244</td>
<td>−12.062</td>
</tr>
<tr>
<td>10 × 20</td>
<td>−6.005</td>
<td>−6.0773</td>
<td>−6.013</td>
</tr>
<tr>
<td>10 × 30</td>
<td>−4.003</td>
<td>−4.0382</td>
<td>−4.002</td>
</tr>
</tbody>
</table>

Table 4: Stress \(\sigma_y \) at center of the elements at bottom of the pillar.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM ((\text{ kPa}))</th>
<th>Q4 model ((\text{ kPa}))</th>
<th>Q4R model ((\text{ kPa}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 × 10</td>
<td>−244.194</td>
<td>−242.945</td>
<td>−244.349</td>
</tr>
<tr>
<td>10 × 20</td>
<td>−262.976</td>
<td>−260.116</td>
<td>−263.387</td>
</tr>
<tr>
<td>10 × 30</td>
<td>−272.102</td>
<td>−268.002</td>
<td>−272.552</td>
</tr>
</tbody>
</table>
6.2. Example 2: Analysis for a Rock Pillar with Four Materials under Pure Shear Effect. Consider a rock pillar with four materials under pure shear effect shown in Figure 10. And its modulus of elasticity $E_1 = 10^8$, $E_2 = 10^8$, $E_3 = 10^7$, and $E_4 = 10^6$, respectively. And Poisson ratio $\nu = 0.3$, the shear stress on surface of the structure $\tau = 1$. The calculation is considered into the plane stress problem and the dimensionless values.

The calculation is done using the mesh with the center nodes of edges of elements as shown in Figure 11.

The values of stress components of the rock pillar are listed in Table 5, respectively. Comparisons of the results from the theoretical analysis are also given in Table 5, respectively.

![Figure 10: A rock pillar with four kinds of materials.](image)

![Figure 11: Mesh with 200 elements, 430 nodes.](image)

Table 5: Stress solution of the pillar with four kinds of materials under uniform shearing forces.

<table>
<thead>
<tr>
<th></th>
<th>σ_x</th>
<th>τ_{xy}</th>
<th>σ_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>BFEM</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
<tr>
<td>Exact</td>
<td>0.000</td>
<td>1.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

6.3. Example 3: A Rock Pillar under Water Pressure and Gravity. Consider a rock pillar under water pressure and gravity shown in Figure 12. And its modulus of elasticity $E = 10^8$ Pa, Poisson's ratio $\nu = 0.3$, density of rock $\rho_1 = 2.4$ t/m3, density of water $\rho_2 = 1.0$ t/m3, and acceleration of gravity $g = 9.8$ m/s2. The calculation is considered into the plane strain problem.

The calculation is done using four different element meshes with the center nodes of edges of elements as shown in Figure 13.

The values of stress components and displacement components of the rock pillar are listed in Tables 6–12, respectively. Comparisons of the results from the conventional quadrilateral isoparametric element (Q4 model) and quadrilateral reduced integration element (Q4R model) are also given in Tables 6–12, respectively. The numerical results of the present model are consistent with those of the theoretical analysis.

![Figure 12: A rock pillar subjected to water pressure and gravity.](image)

Table 6: Displacement u_x at $x = 2.5$ m of the pillar top.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM (×10$^{-2}$ m)</th>
<th>Q4 model (×10$^{-2}$ m)</th>
<th>Q4R model (×10$^{-2}$ m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 × 40</td>
<td>4.0219</td>
<td>4.0056</td>
<td>4.0190</td>
</tr>
<tr>
<td>10 × 40</td>
<td>4.0415</td>
<td>4.0094</td>
<td>4.0398</td>
</tr>
<tr>
<td>8 × 40</td>
<td>4.0563</td>
<td>4.0135</td>
<td>4.0532</td>
</tr>
<tr>
<td>6 × 40</td>
<td>4.0891</td>
<td>4.0239</td>
<td>4.0863</td>
</tr>
</tbody>
</table>

Table 7: Displacement u_x at $h = 5$ m on the right of the pillar.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM (×10$^{-2}$ m)</th>
<th>Q4 model (×10$^{-2}$ m)</th>
<th>Q4R model (×10$^{-2}$ m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 × 40</td>
<td>2.0837</td>
<td>2.0758</td>
<td>2.0830</td>
</tr>
<tr>
<td>10 × 40</td>
<td>2.0816</td>
<td>2.0667</td>
<td>2.0815</td>
</tr>
<tr>
<td>8 × 40</td>
<td>2.0820</td>
<td>2.0626</td>
<td>2.0823</td>
</tr>
<tr>
<td>6 × 40</td>
<td>2.0849</td>
<td>2.0566</td>
<td>2.0862</td>
</tr>
</tbody>
</table>
Figure 13: Four kinds of meshes for a rock pillar.

Table 8: Displacement u_y at $x = 2.5$ m of the pillar top.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM $(\times 10^{-3}$ m)</th>
<th>Q4 model $(\times 10^{-3}$ m)</th>
<th>Q4R model $(\times 10^{-3}$ m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 x 40</td>
<td>-9.8888</td>
<td>-9.8856</td>
<td>-9.8898</td>
</tr>
<tr>
<td>8 x 40</td>
<td>-9.8889</td>
<td>-9.8850</td>
<td>-9.8943</td>
</tr>
</tbody>
</table>

Table 9: Displacement u_y at $h = 5$ m on the right of the pillar.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM model $(\times 10^{-2}$ m)</th>
<th>Q4 model $(\times 10^{-2}$ m)</th>
<th>Q4R model $(\times 10^{-2}$ m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 x 40</td>
<td>-1.5918</td>
<td>-1.5878</td>
<td>-1.5913</td>
</tr>
<tr>
<td>10 x 40</td>
<td>-1.5488</td>
<td>-1.5412</td>
<td>-1.5483</td>
</tr>
<tr>
<td>8 x 40</td>
<td>-1.5290</td>
<td>-1.51894</td>
<td>-1.5284</td>
</tr>
<tr>
<td>6 x 40</td>
<td>-1.4983</td>
<td>-1.4832</td>
<td>-1.4975</td>
</tr>
</tbody>
</table>

Table 10: Stress σ_x at center of the element at lower right of pillar.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM (kPa)</th>
<th>Q4 model (kPa)</th>
<th>Q4R model (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 x 40</td>
<td>-128.963</td>
<td>-179.706</td>
<td>-132.974</td>
</tr>
<tr>
<td>10 x 40</td>
<td>-142.729</td>
<td>-191.962</td>
<td>-150.839</td>
</tr>
<tr>
<td>8 x 40</td>
<td>-141.996</td>
<td>-193.919</td>
<td>-152.815</td>
</tr>
<tr>
<td>6 x 40</td>
<td>-134.954</td>
<td>-194.249</td>
<td>-150.941</td>
</tr>
</tbody>
</table>

and the 4-mid-node element of BFEM has given good performance compared with Q4 model for the large aspect ratio of elements. Due to the different method calculating the equivalent node loads of water pressure between the base force elements and the element of traditional FEM, there is a slight error about the calculation results of the horizontal stresses σ_x of the element in lower right corner of rock pillar between the BFEM and the Q4R model, as shown in Table 10.

Figure 14: Concrete gravity dam.

Table 11: Stress τ_{xy} at center of the element at lower right of pillar.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM (kPa)</th>
<th>Q4 model (kPa)</th>
<th>Q4R model (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 x 40</td>
<td>-802.328</td>
<td>-796.173</td>
<td>-802.741</td>
</tr>
<tr>
<td>10 x 40</td>
<td>-707.932</td>
<td>-700.016</td>
<td>-708.582</td>
</tr>
<tr>
<td>8 x 40</td>
<td>-675.867</td>
<td>-666.975</td>
<td>-676.616</td>
</tr>
<tr>
<td>6 x 40</td>
<td>-634.179</td>
<td>-623.753</td>
<td>-635.039</td>
</tr>
</tbody>
</table>

Table 12: Stress σ_y at center of the element at lower right of pillar.

<table>
<thead>
<tr>
<th>Meshes</th>
<th>BFEM (kPa)</th>
<th>Q4 model (kPa)</th>
<th>Q4R model (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 x 40</td>
<td>-802.328</td>
<td>-796.173</td>
<td>-802.741</td>
</tr>
<tr>
<td>10 x 40</td>
<td>-707.932</td>
<td>-700.016</td>
<td>-708.582</td>
</tr>
<tr>
<td>8 x 40</td>
<td>-675.867</td>
<td>-666.975</td>
<td>-676.616</td>
</tr>
<tr>
<td>6 x 40</td>
<td>-634.179</td>
<td>-623.753</td>
<td>-635.039</td>
</tr>
</tbody>
</table>

6.4. Example 4: Stress Analysis of Concrete Gravity Dam. Consider a concrete gravity dam shown in Figure 14. And height of the dam is 65 m, bottom width is 49 m, the water level is 60 m, the elastic modulus of concrete $E_1 = 15$ GPa, Poisson ratio of concrete $\nu_1 = 0.2$, the elastic modulus of rock $E_2 = 30$ GPa, Poisson ratio of rock $\nu_2 = 0.3$, density of concrete is 2.45 t/m3, density of water is 1 t/m3, and acceleration of gravity $g = 9.8$ m/s2. The calculation is considered into the plane strain problem and considered the effect of rock foundation of the dam.

The calculation is done using the mesh with the center nodes of edges of elements as shown in Figure 15. In this calculation, we do not consider the initial geostress field. The boundaries of the foundation are used the fixed constraint. The origin of coordinates is located at the bottom of the dam, and is 25 meters away from the dam heel.
6.5. Example 5: Simulation and Analysis on the Horizontal Crack Propagation of Rock Block.

Consider a rock block subjected by the horizontal thrust and vertical pressure shown in Figure 26. For the convenience of study, we do not consider the weight. And we use the dimensionless numerical analysis.

The values of stress components and displacement components of the dam are plotted in Figures 16–25, respectively. Comparisons of the results from the conventional quadrilateral isoparametric element (Q4 model) and quadrilateral reduced integration element (Q4R model) are also given in Figures 16–25, respectively. The numerical results of the present model are consistent with those of the Q4 model and Q4R model and have shown good computational stability.
Assuming elastic modulus $E = 1$, Poisson ratio $\nu = 0.3$, tensile strength of a large number, and the uniform load $p_1 = 1$ and $p_2 = 1$. The calculation is considered into the plane stress problem and the dimensionless values.

The calculation is done using the mesh with the center nodes of edges of elements as shown in Figure 27.

In order to check whether the interface between the rock block and the ground will crack, we assume the friction coefficient of interface $f = 0.5$ and change the value of interface cohesion c. The results of calculation using the computer program of the nonlinear BFEM shown in Section 4 and the failure criteria in Section 4.1 are as follows.

1. When $c = 10$, there is no cracks.
2. When $c = 2.8$, there is one element interface crack.
3. When $c = 2$, there are three elements’ interfaces cracks.
4. When $c = 1.5$, there are five elements’ interfaces cracks.
5. When $c = 1.1$, there are seven elements’ interfaces cracks.
6. When $c = 1.0$, the cracks are too long, and too little structural constraints have been insufficient to solve the equations.

When the interface cohesion c is 1.5, the case of crack propagation of rock block is shown in Figure 28, and the safety factor of stability is $K = 2$ which is consistent with
6.6. Example 6: Analysis on the Crack Propagation of Concrete Gravity Dam. Consider a concrete gravity dam shown in Figure 14. And height of the dam is 65m, bottom width is 49m, the water level is 60m, The elastic modulus of concrete $E = 15$ GPa, Poisson ratio of concrete $\nu = 0.2$, density of concrete is $2.45\, \text{t/m}^3$, density of water is $1\, \text{t/m}^3$, and acceleration of gravity $g = 9.8\, \text{m/s}^2$. The calculation is considered into the plane strain problem and is not considered the effect of rock foundation of the dam.

The calculation is done using the mesh with the center nodes of edges of elements as shown in Figure 29.

6.6.1. No Initial Crack in Dam Foundation. We assume that the foundation surface of dam is weak structural interface and analyze the crack propagation and the safety factor by adjusting the value of the friction coefficient and the cohesion. The results of calculation using the computer program of the nonlinear BFEM shown in Section 4 and the failure criteria in Section 4.1 are as follows.

1. When $c = 10^6\, \text{Pa}$ and $f = 0.95$, there is no cracks.
2. When $c = 0.5 \times 10^6\, \text{Pa}$ and $f = 0.5$, there are two elements’ interface cracks.
3. When $c = 0.1 \times 10^6\, \text{Pa}$ and $f = 0.4$, there are eight elements’ interfaces cracks.

The case of crack propagation of dam is shown in Figure 30. When $c = 10^6\, \text{Pa}$ and $f = 0.5$, the safety factor of stability $K = 4.0$ which is consistent with the result of the theoretical analysis. When $c = 0.5 \times 10^6\, \text{Pa}$ and $f = 0.5,$
Figure 27: Meshes of the rock block.

Figure 28: Crack propagation path of the rock block.

Figure 29: Mesh of gravity dam (800 elements, 1660 nodes).
the safety factor of stability $K = 2.55$ which is consistent with the results of the theoretical analysis using the rigid limit equilibrium method.

6.6.2. Existing an Initial Crack in Dam Foundation. There is an initial crack in the dam heel as shown in Figure 31. We assume that the dam foundation surface is weak structural interface and analyze the crack propagation and the safety factor by adjusting the value of the friction coefficient and the cohesion. The results of calculation using the computer program of the nonlinear BFEM shown in Section 4 and the failure criteria in Section 4.1 are as follows.

1. When $c = 10^6$ Pa and $f = 0.95$, there is no cracks.
2. When $c = 0.5 \times 10^6$ Pa and $f = 0.5$, there is one element interface cracks.
3. When $c = 0.1 \times 10^6$ Pa and $f = 0.5$, there are three element interface cracks.
4. When $c = 0.1 \times 10^6$ Pa and $f = 0.4$, there are seven elements’ interfaces cracks.
7. Conclusions

In this paper, the base force element method (BFEM) on complementary energy principle is used to analyze the rock mechanics problems. The methods to simulate the gravity of an element, the crack propagation and the safety factor of stability are proposed for the BFEM on complementary energy principle. The following conclusions can be drawn.

1. The calculation results of the BFEM on complementary energy principle show that the numerical results of the present method coincide with the theoretical solution, the results of conventional quadrilateral isoparametric element (Q4 model) and quadrilateral reduced integration element (Q4R model). The correctness of the present method and its computer program is verified.

2. The research results show that the BFEM on complementary energy principle has a good computational precision and stability is not sensitive to the effects on the aspect ratio of element and can be used for large-scale scientific and engineering computing.

3. The results of the BFEM for crack propagation problems show that the nonlinear BFEM can solve the cracking problem and simulate the crack propagation of the interface in rock mechanics engineering.

4. The BFEM on complementary energy principle was applied to analyze the stability of rock mass and dam, and the results of safety factor are consistent with the results of the theoretical solutions using the rigid limit equilibrium method. The research results show the present method can be easily used to calculate the safety factor in rock engineering.

5. This paper researched only the cracking problems with horizontal crack in rock mass and calculated only the safety factor of a single slip channel in rock mass.

6. The cracking problems of inclined cracks and the safety factor of multiple sliding channels in rock mass are studying, and the further research results will be published in the future.

Conflict of Interests

The authors declare that there is no conflict of interests.

Acknowledgments

This work is supported by the National Natural Science Foundation of China, nos. 10972015 and 11172015 and the preexploration project of the Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, no. USDE201404.

References

natural neighbour interpolation method for analysis of two-
dimensional piezoelectric structures," *Engineering Analysis with

[47] S. Chen, Y. Liu, J. Li, and Z. Cen, "Performance of the MLPG
method for static shakedown analysis for bounded kinematic

stress-function elements immune to severely distorted mesh
containing elements with concave shapes," *Computer Methods
2321–2336, 2011.

plane element unsymmetric analytical trial function method;" *International Journal for Numerical Methods in Engineering*,

[50] H. A. F. A. Santos, "Complementary-energy methods for geo-
metrically non-linear structural models: an overview and recent
developments in the analysis of frames," *Archives of Compu-
tational Methods in Engineering*, vol. 18, no. 4, pp. 405–440,
2011.

[51] H. A. F. A. Santos and C. I. Almeida Paulo, "On a pure com-
plementary energy principle and a force-based finite element
formulation for non-linear elastic cables," *International Journal

[52] Y. C. Gao, "A new description of the stress state at a point with
applications," *Archive of Applied Mechanics*, vol. 73, no. 3-4, pp.

[53] Y. C. Gao, "Asymptotic analysis of the nonlinear Boussinesq
problem for a kind of incompressible rubber material (compress-

[54] Y. C. Gao and T. J. Gao, "Large deformation contact of a rubber
notch with a rigid wedge," *International Journal of Solids and

by a concentrated force," *Mechanics Research Communications*,

[56] Y.-C. Gao, M. Jin, and G.-S. Dui, "Stresses, singularities, and
a complementary energy principle for large strain elasticity;" *Applied Mechanics Reviews*, vol. 61, no. 3, Article ID 030801, 16
Submit your manuscripts at http://www.hindawi.com