Corrigendum

Corrigendum to “Observer-Based Adaptive Iterative Learning Control for a Class of Nonlinear Time Delay Systems with Input Saturation”

Jian-ming Wei, Yun-an Hu, and Mei-mei Sun

Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China

Correspondence should be addressed to Jian-ming Wei; wjm604@163.com

Received 15 October 2015; Accepted 3 November 2015

The purpose of this paper is to correct the errors in the paper titled “Observer-Based Adaptive Iterative Learning Control for a Class of Nonlinear Time Delay Systems with Input Saturation” [1]. In the adaptive learning law of \(\hat{W}_k(t) \) in (44) of [1], the variable \(z_k \) was used. However in fact, \(z_k \) is difficult to be obtained as the states are unmeasurable. The correction and some consequent modifications in the technical derivations are detailed as follows, while the main results are unchanged.

By Young’s inequality, we can have

\[
-2z_k^T P B_\tilde{W}^T_k \phi(\hat{x}_k) \\
= -2z_k^T CC^T (CC^T + \delta I_n)^{-1} P B_\tilde{W}^T_k \phi(\hat{x}_k) \\
- 2z_k^T \delta I_n (CC^T + \delta I_n)^{-1} P B_\tilde{W}^T_k \phi(\hat{x}_k) \\
\leq -2z_{\hat{x}k}^T C (CC^T + \delta I_n)^{-1} P B_\tilde{W}^T_k \phi(\hat{x}_k) \\
\leq \frac{z_{\hat{x}k}^T P P^T z_k}{\|CC^T + \delta I_n\|^2} + \delta^2 \|W_k\|^2,
\]

where \(\delta > 0 \) is a small positive constant.

Then (27) in [1] should be updated to

\[
\dot{V}_{z_k} + V_{U_k} \\
\leq z_k^T \left(A^T P + PA + \frac{n + 3}{\lambda} P P^T + \frac{P P^T}{\|CC^T + \delta I_n\|^2} \right) z_k + 2z_k^T C (CC^T + \delta I_n)^{-1} P B_\tilde{W}^T_k \phi(\hat{x}_k) \\
+ \frac{\lambda}{(1 - \kappa)} \sum_{j=1}^n \rho_j^2 (y_j) + \lambda D_0^2 + 4 \lambda l^2 \varepsilon_{w}^2 + \lambda \varepsilon_0^2 \\
+ \delta^2 \|W_k\|^2 + \sum_{j=1}^n \lambda_j e_j^2 + \sum_{j=1}^n \lambda_j e_{j+1,k}^2 \leq -\lambda_{\text{min}}(Q) \|z_k\|^2 - 2z_{\hat{x}k}^T C (CC^T + \delta I_n)^{-1} P B_\tilde{W}^T_k \phi(\hat{x}_k) \\
+ \frac{\lambda}{(1 - \kappa)} \sum_{j=1}^n \rho_j^2 (y_j) + \lambda D_0^2 + 4 \lambda l^2 \varepsilon_{w}^2 + \lambda \varepsilon_0^2 \\
+ \delta^2 \|W_k\|^2 + \sum_{j=1}^n \lambda_j e_j^2 + \sum_{j=1}^n \lambda_j e_{j+1,k}^2,
\]

where using updated inequality (12) of [1]

\[
A^T P + PA + \frac{n + 3}{\lambda} P P^T + \frac{P P^T}{\|CC^T + \delta I_n\|^2} \leq -Q.
\]

Consequently, the derivative of \(V_k \) should be revised as

\[
\dot{V}_k \leq -\lambda_{\text{min}}(Q) \|z_k\|^2 - 2z_{\hat{x}k}^T C (CC^T + \delta I_n)^{-1} P B_\tilde{W}^T_k \phi(\hat{x}_k) \\
+ \frac{\lambda}{(1 - \kappa)} \sum_{j=1}^n \rho_j^2 (y_j) + \lambda D_0^2 + 4 \lambda l^2 \varepsilon_{w}^2 + \lambda \varepsilon_0^2 \\
+ \delta^2 \|W_k\|^2 + \sum_{j=1}^n \lambda_j e_j^2 + \sum_{j=1}^n \lambda_j e_{j+1,k}^2.
\]
Accordingly, the Lyapunov-like CEF is updated to

$$E_k(t) = \frac{\gamma_1}{2q_1} \int_0^t \hat{W}_k^T \hat{W}_k \, d\sigma + \frac{(1 - \gamma_1)}{2q_1} \hat{W}_k^T \hat{W}_k$$

$$+ \frac{\gamma_2}{2q_2} \int_0^t \tilde{W}_k^T \tilde{W}_k \, d\sigma + \frac{(1 - \gamma_2)}{2q_2} \tilde{W}_k^T \tilde{W}_k.$$

(9)

The difference of $E_k(t)$ should be changed to

$$\Delta E_k(t) = E_k(t) - E_{k-1}(t)$$

$$= \frac{\gamma_1}{2q_1} \int_0^t \hat{W}_k^T \hat{W}_k - \hat{W}_{k-1}^T \hat{W}_{k-1} \, d\sigma$$

$$+ \frac{(1 - \gamma_1)}{2q_1} \left[\hat{W}_k^T \hat{W}_k - \hat{W}_{k-1}^T \hat{W}_{k-1} \right]$$

$$+ \frac{\gamma_2}{2q_2} \int_0^t \tilde{W}_k^T \tilde{W}_k - \tilde{W}_{k-1}^T \tilde{W}_{k-1} \, d\sigma$$

$$+ \frac{(1 - \gamma_2)}{2q_2} \left[\tilde{W}_k^T \tilde{W}_k - \tilde{W}_{k-1}^T \tilde{W}_{k-1} \right].$$

(10)

By using adaptive learning law (5) and inequality $2\tilde{W}_k^T \tilde{W}_k \geq \hat{W}_k^T \hat{W}_k - W^T W^*$, we may have

$$\frac{\gamma_1}{2q_1} \int_0^t \left[\hat{W}_k^T \hat{W}_k - \hat{W}_{k-1}^T \hat{W}_{k-1} \right] \, d\sigma$$

$$+ \frac{(1 - \gamma_1)}{2q_1} \left[\hat{W}_k^T \hat{W}_k - \hat{W}_{k-1}^T \hat{W}_{k-1} \right]$$

$$+ \frac{\gamma_2}{2q_2} \int_0^t \tilde{W}_k^T \tilde{W}_k \, d\sigma$$

$$+ \frac{(1 - \gamma_2)}{2q_2} \left[\tilde{W}_k^T \tilde{W}_k - \tilde{W}_{k-1}^T \tilde{W}_{k-1} \right].$$

(11)

where $0 < \gamma_1, \gamma_2 < 1$, and $\alpha_i > 0$ are design parameters.
Choose suitable design parameters such that $\alpha_1\gamma_1/2q_1 - L_0^2 > 0$. Then it follows from (12) that

$$\Delta E_k(t)$$

$$\leq -V_k(t) + V_k(0) - K \int_0^t s_k^2 \, d\sigma$$

$$- \lambda_{\text{min}}(Q) \int_0^t \|z_k\|^2 \, d\sigma$$

$$- \int_0^t \left(\frac{\alpha_1\gamma_1}{2q_1} - L_0^2 \right) W_k^T \dot{W}_k \, d\sigma$$

$$+ \frac{\alpha_1\gamma_1}{2q_1} \int_0^t \|W^* (\sigma)\| \, d\sigma$$

Consequently, (B.9) of [1] is updated to

$$\Delta E_k(T) \leq -V_k(T) - K \int_0^T s_k^2 \, d\sigma$$

$$- \lambda_{\text{min}}(Q) \int_0^T \|z_k\|^2 \, d\sigma$$

$$+ \frac{\alpha_1\gamma_1}{2q_1} \int_0^T \|W^* (\sigma)\| \, d\sigma$$

By using adaptive learning law $(1 - \gamma_1)\dot{\hat{W}}_1 = -\gamma_1\hat{W}_1 - \gamma_1\alpha_1\hat{W}_1 + 2q_1 z_1 C^T (C^T + \delta_l)^{-1} PB\psi(\hat{x}_i)$, it is clear that

$$\frac{\gamma_1}{2q_1} \hat{W}_1 - \frac{\gamma_1}{q_1} \hat{W}_1^T \hat{W}_1 - \frac{\alpha_1\gamma_1}{2q_1} \hat{W}_1^T \hat{W}_1$$

$$+ 2z_1 C^T (C^T + \delta_l)^{-1} P\hat{B}\hat{W}_1 \phi(\hat{x}_i)$$

$$\leq \frac{\gamma_1}{2q_1} [\hat{W}_1 - \bar{W}_1]_T [\hat{W}_1 - \bar{W}_1] - \frac{\alpha_1\gamma_1}{2q_1} \hat{W}_1^T \hat{W}_1$$

$$+ \frac{\gamma_1}{2q_1} \hat{W}_1^T \hat{W}_1 - \frac{\gamma_1}{q_1} \hat{W}_1^T \hat{W}_1 - \frac{\alpha_1\gamma_1}{2q_1} \hat{W}_1^T \hat{W}_1$$

$$+ 2z_1 C^T (C^T + \delta_l)^{-1} P\hat{B}\hat{W}_1 \phi(\hat{x}_i)$$
\[
\begin{align*}
\leq & \left(1 + \alpha_i\right) \frac{y_i}{2q_1} W^* T W^* \\
& + 2\tilde{z}_{1,1} C^T \left(CC^T + \delta I_n\right)^{-1} P \bar{W}_1^T \phi \left(\tilde{x}_1\right) \\
& - \frac{\alpha_i y_i}{2q_1} \bar{W}_1^T \bar{W}_1.
\end{align*}
\]

Thus \(\dot{E}_1(t) \) is changed to
\[
\dot{E}_1(t) \leq \left(1 + \alpha_i\right) \frac{y_i}{2q_1} W^* T W^* + \frac{y_i}{2q_2} W^* T W^* \\
+ 2\tilde{z}_{1,1} C^T \left(CC^T + \delta I_n\right)^{-1} P \bar{W}_1^T \phi \left(\tilde{x}_1\right) \\
+ b \tanh^2 \left(\frac{z_1}{\eta(t)}\right) \bar{W}_1^T \bar{W}_1 - \alpha_i y_i \bar{W}_1^T \bar{W}_1
\]
\[
\leq -\dot{V}_1 - \lambda_{\text{min}}(Q) \|z_1\|^2 - K \dot{s}_1^2 \\
+ \left(1 + \alpha_i\right) \frac{y_i}{2q_1} W^* T W^* + \frac{y_i}{2q_2} W^* T W^* \\
- \left(\frac{\alpha_i y_i}{2q_1} - b \delta^2\right) \bar{W}_1^T \bar{W}_1
\]
\[
\leq -\dot{V}_1 - \lambda_{\text{min}}(Q) \|z_1\|^2 - K \dot{s}_1^2 \\
+ \left(1 + \alpha_i\right) \frac{y_i}{2q_1} W^* T W^* + \frac{y_i}{2q_2} W^* T W^*.
\]

Denote \(c_{\text{max}} = \max_{t \in [0,T]} \left(1 + \alpha_i\right) \left(\frac{y_i}{2q_1}|W^* T W| + \frac{y_i}{2q_2}|W^* T W| \right) \). The integral of \(\dot{E}_1(t) \) over \([0,t] \) is updated as follows:
\[
E_1(t) - E_1(0) \leq -V_1(t) + V_1(0)
\]
\[
- \lambda_{\text{min}}(Q) \int_0^t \|z\|^2 \, d\sigma
\]
\[
- \int_0^t K \dot{s}_1^2(\sigma) \, d\sigma + t \cdot c_{\text{max}}.
\]

According to the new definition of CEF (9), \(E_1(0) \) should be computed as follows:
\[
E_1(0) = \frac{1 - y_i}{2q_1} \bar{W}_1^T(0) \bar{W}_1(0)
\]
\[
+ \frac{1 - y_i}{2q_2} \bar{W}_2^T(0) \bar{W}_2(0)
\]
\[
= \frac{1 - y_i}{2q_1} \|W^*\|^2 + \frac{1 - y_i}{2q_2} \|W^*\|^2.
\]

Hence \(E_1(T) \) is bounded by
\[
E_1(T) \leq T \cdot c_{\text{max}} + \frac{1 - y_i}{2q_1} \|W^*\|^2 + \frac{1 - y_i}{2q_2} \|W^*\|^2
\]
\[
< \infty.
\]

We choose \(\alpha_i = \Delta_k \), with \(\{\Delta_k\} \) being a convergent series, which is defined by \(\Delta_k = \frac{q}{l^k} \), where \(l \) and \(q \) are design parameters, \(q(\in R) > 0, l(\in Z_+) \geq 2 \). \(\Delta_k \) has the following property.

Property 1 (see S. Zhu, M. X. Sun, and X. X. He, “Iterative learning control of strict-feedback nonlinear time-varying systems,” Acta Automatica Sinica, vol. 36, no. 3, pp. 454–458, 2010). \(\lim_{k \to \infty} \sum_{j=1}^k \Delta_j \leq 2q \).

Using (14), it is followed by
\[
E_k(T) = E_1(T) + \sum_{j=2}^k \Delta E_j(T)
\]
\[
\leq E_1(T) - K \sum_{j=2}^k \int_0^T s_j^2 \, d\sigma
\]
\[
- \lambda_{\text{min}}(Q) \sum_{j=2}^k \int_0^T \|z_j\|^2 \, d\sigma
\]
\[
+ \frac{y_i}{2q_1} \int_0^T \|W^*(\sigma)\|^2 \, d\sigma \sum_{j=2}^k \Delta_k.
\]

According to Property 1, we know \(\sum_{j=1}^k \Delta_j \leq \lim_{k \to \infty} \sum_{j=1}^k \Delta_k \leq 2q \), which implies the boundedness of \(E_k(T) \).

In the derivation of finiteness of \(E_k(t) \), the changes are specified as follows.

Separate \(E_k(t) \) into two parts:
\[
E_k^1(t) = \frac{y_i}{2q_1} \int_0^t \bar{W}_k^T \bar{W}_k \, d\sigma + \frac{y_i}{2q_2} \int_0^t \bar{W}_{2k}^T \bar{W}_{2k} \, d\sigma,
\]
\[
E_k^2(t) = \left(1 - \frac{y_i}{2q_1}\right) \bar{W}_k^T \bar{W}_k + \left(1 - \frac{y_i}{2q_2}\right) \bar{W}_{2k}^T \bar{W}_{2k}.
\]

The boundedness of \(E_k^1(T) \) and \(E_k^2(T) \) is guaranteed \(\forall k \in N \). Thus, there exist two positive constants \(M_1 \) and \(M_2 \) satisfying
\[
E_k^1(T) \leq E_k^2(T) \leq M_1 < \infty,
\]
\[
E_k^2(T) \leq M_2.
\]

Consequently,
\[
E_k(t) = E_k^1(t) + E_k^2(t) \leq M_1 + E_k^2(t).
\]

On the other hand, it follows from (13) that
\[
\Delta E_{k+1}(t)
\]
\[
\leq \frac{\Delta_k y_i}{2q_1} \int_0^t \|W^*(\sigma)\|^2 \, d\sigma
\]
\[
+ \frac{1 - y_i}{2q_1} \left[\bar{W}_k^T(0) \bar{W}_k(0) - \bar{W}_{k-1}^T \bar{W}_{k-1}\right].
\]
\[
+ \frac{(1 - y_2)}{2q_2} \left[\overline{W}^\top_{2,k}(0) \overline{W}_{2,k}(0) - \overline{W}_{2,k-1}^\top \overline{W}_{2,k-1} \right]
\leq \frac{\Delta_k y_1}{2q_1} \int_0^t \|W^*(\sigma)\| \, d\sigma + M_2 - E_k^2(t).
\]

(24)

Combining (23) and (24) results in

\[
E_{k+1}(t) = E_k(t) + \Delta E_{k+1}(t)
\leq M_1 + M_2 + \frac{\Delta_k y_1}{2q_1} \int_0^t \|W^*(\sigma)\| \, d\sigma.
\]

(25)

Since we have proved the boundedness of \(E_1(t)\), the finiteness of \(E_k(t)\) can be deduced by induction method.

Finally, we give the necessary revisions for the proof of convergence of tracking errors.

We can obtain from (20) that

\[
\sum_{j=2}^k \int_0^T s_j^2 \, d\sigma
\leq \frac{\left(E_1(T) - E_k(T) + (y_1/2q_1) \int_0^T \|W^*(\sigma)\| \, d\sigma \sum_{j=2}^k \Delta_k \right)}{K}.
\]

(26)

\[
\sum_{j=2}^k \int_0^T \|z_j\|^2 \, d\sigma
\leq \frac{\left(E_1(T) - E_k(T) + (y_1/2q_1) \int_0^T \|W^*(\sigma)\| \, d\sigma \sum_{j=2}^k \Delta_k \right)}{\lambda_{\min}(Q)}.
\]

Considering Property 1 and taking the limitation of the above two inequalities yield

\[
\lim_{k \to \infty} \sum_{j=2}^k \int_0^T s_j^2(\sigma) \, d\sigma
\leq \frac{\left(E_1(T) + (y_1q/q_1) \int_0^T \|W^*(\sigma)\| \, d\sigma \right)}{K},
\]

(27)

\[
\lim_{k \to \infty} \sum_{j=2}^k \int_0^T \|z_j\|^2 \, d\sigma
\leq \frac{\left(E_1(T) + (y_1q/q_1) \int_0^T \|W^*(\sigma)\| \, d\sigma \right)}{\lambda_{\min}(Q)}.
\]

Similarly, according to the convergence of the sum of series, we can obtain the convergence of errors. The other parts are not changed.

References
