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After track capacity breakdowns at a railway station, train dispatchers need to generate appropriate track reallocation plans to
recover the impacted train schedule andminimize the expected total train delay time under stochastic scenarios.This paper focuses
on the real-time track reallocation problem when tracks break down at large railway stations. To represent these cases, virtual
trains are introduced and activated to occupy the accident tracks. Amathematical programmingmodel is developed, which aims at
minimizing the total occupation time of station bottleneck sections to avoid train delays. In addition, a hybrid algorithm between
the genetic algorithm and the simulated annealing algorithm is designed. The case study from the Baoji railway station in China
verifies the efficiency of the proposed model and the algorithm. Numerical results indicate that, during a daily and shift transport
plan from 8:00 to 8:30, if five tracks break down simultaneously, this will disturb train schedules (result in train arrival and departure
delays).

1. Introduction

To solve the track allocation problem in a railway station, a
conflict-free route must be found for each arrival/departure
train. This optimization problem, known as the train routing
problem or the train platform problem, is one of the basic
scheduling problems for railway companies. In terms of
complexity, this problem is NP-hard [1]. Nevertheless, it can
be modeled and solved using operation research techniques.
Due to the signal problem, frequent use, or other reasons,
available tracks at a railway station may break down (may be
unavailable). In addition, track incidents are generally uncer-
tain and often disturb train schedules such that trains will be
delayed if station tracks are not effectively reallocated. In this
paper, we consider the problem of real-time reallocation of
trains to available tracks (except accidental tracks) at a large
railway station, given one daily and shift transport timetable
and the structural and operational constraints.

There aremany existing studies that solve the track alloca-
tion problem. Zwaneveld et al. [2] proposed a node packing
formulation, and infrastructure capacity requirements were
developed to evaluate future demand for rail transportation.

To improve the solution method, Zwaneveld et al. [3] con-
ducted an extension of [2]. Zwaneveld et al. assumed that
trains prefer certain paths to others and this problem was
formulated as a weighted node packing problem. A branch-
and-cut solution approach was adopted to solve this NP-hard
problem.

Cardillo and Mione [4], Billionnet [5], and Carey and
Carville [6] studied a version of the problem termed train
platform problem (TPP). Cardillo and Mione [4] proposed
a heuristic algorithm with a backtracking method. The work
of [5] demonstrated how the TPP models could be strength-
ened through the addition of clique inequalities. Carey and
Carville [6] studied the problem at busy complex stations and
developed scheduling heuristics analogous to train operators
using the manual method.

TPP is affected by the structure of stations and yards,
the bottleneck section structure, station operations, train
timetables, train punctuality, and many other factors among
which the train working diagram (TWD) plays an important
role because it determines the start and end times of tracks
utilized at railway stations [7]. Barber et al. [8] presented a set
of heuristics for a constraint-based TWD tool and formulated
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TWD as a constraint optimization problem. According to
TWD and train routing in stations, Kang et al. [7] com-
bined TPP with the station bottleneck carrying capacity. A
case study that focused on bottleneck section optimization
in passenger stations illustrated that TPP affects not only
bottleneck capacity but also station capacity. D’Ariano et al.
[9] introduced a new concept aimed at less planning on the
timetable and solving more intertrain conflicts to improve
punctuality without decreasing line capacity. A detailed
model for conflict resolution was illustrated, and different
algorithms based on the alternative graph formulation were
analyzed in their work. Heydar et al. [10] investigated the
capacity of a single track, bidirectional rail line that adheres
to a cyclic timetable.

When probabilities for unexpected events are estimated,
efficiency is a major concern and can be addressed through
multilevel splitting or staged simulation [11]. After major
service disruption in the railway operational system, dis-
patchers need to generate a series of train meet-pass plans at
different decision times of the rescheduling stage to recover
the impacted train schedule from current and future distur-
bances and minimize the expected additional delay under
different forecasted operational conditions. Thus, railway
controllers play a pivotal role in the service recovery of nor-
mal rail system operations when accidents occur. Cheng and
Tsai [12] adoptedTaiwan’s railway system to diagnose railway-
controller-perceived competence when facing diverse tasks
during incidents and accidents that were derived from a
proposed conceptualmodel. Belmonte et al. [13] presented an
application of functional resonance accidentmodels (FRAM)
for the safety analysis of complex sociotechnological systems,
that is, systems with not only technological components but
also human and organizational components. The examples
illustrated the principal advantages of FRAM in compari-
son to classical safety analysis models, which allowed true
multidisciplinary cooperation between specialists from the
different domains involved.

Operationally robust solutions are usually synonymous
with compact, nonoverlapping routes with little or no
intraroute crossover [14]. Railway companies are also inter-
ested in schedule reliability (assessed by means of cancelling
the number of operating trains) and robustness (the ability to
resist schedule perturbations). Intuitively, amore robust track
allocation schedule is less likely to propagate delays to the
following trains. Clearly, an efficient use of the railway infras-
tructure and the prospects of recovery cause TPP to become
a more complex optimization problem in engineering theory
and practice.

The aforementioned studies mainly focus on the track
allocation optimization problem. After the track capacity
breakdown(s) at a railway station, train dispatchers need to
generate appropriate track reallocation plans to recover the
impacted train schedule and minimize the expected total
train delay time under stochastic scenarios. As a result,
reallocating tracks in railway stations for emergency incidents
to ensure service remains a significant issue. Amodel that can
be exactly solvable by a global optimization method is also
desired.

On the basis of station track incidents, a model consider-
ing the minimum average use time of bottleneck sections is
proposed to reduce technical process time and improve the
antijamming capacity. The bottleneck and station carrying
capacity can be improved simultaneously by tapping the
potential andmore effective occupation of normal tracks and
bottleneck equipment. The contributions of this paper are
listed as follows:

(1) A mathematical programming model is proposed
to describe TPP after track incidents, which fully
considers the tight capacity of station bottlenecks
when some tracks break down.

(2) Virtual trains are introduced to represent track inci-
dents. The novelty of this formulation is the use of
virtual trains to occupy these unavailable tracks. In
the Baoji passenger station, an incident in which five
tracks break down simultaneously will lead to the
delay of trains’ arrival/departure.

(3) Genetic simulated annealing (GSA) focused on TPP
is adopted. In addition, a genuine case in China is
studied, and the station track allocation plan is given.
The carrying capacity of the left side bottleneck is
approximately 1.29 times more than the right side
bottleneck.

This paper will be organized as follows. First, the model
formulation section draws the TPP model out. In addition,
the GSA of TPP is developed in the solution algorithm
section. Furthermore, a real case from China is illustrated in
Case Study. Finally, the Conclusions summarize this paper
and discuss the future study.

2. Track Reallocation Model

2.1. Notations. Notations in this paper are as follows

Sets

𝐼: set of groups of turnouts (GTs), 𝑖 ∈ 𝐼, 𝐼 =

{𝑖/𝑖 = 1, 2, . . . , 𝑛}, where 𝑛 is the total number of GTs.
Herein, turnout is also called switch in stations.
𝐼
𝐿
: set of GTs in the left station bottleneck, which

consists of the number of GTs.
𝐼
𝑅
: set of GTs in the right station bottleneck.

𝐽: set of trains, 𝑗 ∈ 𝐽, 𝐽 = {𝑗/𝑗 = 1, 2, . . . , 𝑚}, where𝑚
is the total number of trains scheduled within TWD.
𝑅: set of reception-departure tracks, 𝑟 ∈ 𝑅,𝑅 = {𝑟/𝑟 =

1, 2, . . . , 𝑙}, where 𝑙 is the total number of reception-
departure tracks at a passenger station.

Parameters

𝑇
𝑆
: security interval time between two neighboring

trains that occupy the same track.
𝑡
𝑆

𝑟𝑗
: starting time of train 𝑗 occupying track 𝑟.

𝑡
𝐸

𝑟𝑗
: ending time of train 𝑗 occupying track 𝑟.

𝑡
𝑖𝑗
: traversing time of train 𝑗 occupying GT 𝑖.
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Figure 1: A sample station structure.

Variables

𝑥
𝑖𝑗
= {
1, if train 𝑗 occupies GT 𝑖;
0, otherwise.

𝑥
𝑟𝑗
= {
1, if train 𝑗 stays at track 𝑟;
0, otherwise.

𝑇
𝑗
: the total time cost of GTs by train 𝑗.

𝑇
𝐿
: the total time cost of GTs in the left bottleneck

(detailed illustration of the left bottleneck can be
found in Figure 1), 𝑇

𝐿
= ∑
𝑖
∑
𝑗
𝑡
𝑖𝑗
.

𝑇
𝑅
: the total time cost of GTs in the right bottleneck

(detailed illustration of the right bottleneck can be
found in Figure 1), 𝑇

𝑅
= ∑
𝑖
∑
𝑗
𝑡
𝑖𝑗
.

2.2. Basic Assumptions. To solve and optimize TPP, several
assumptions are used throughout this paper to simplify
practical cases:

(1) Train arrival/departure times at/from the station are
collected according to the existing timetable and
cannot be changed. That is, there is no train shifting
from the original timetable. In this case, the track
reallocation plan is ordered by train arrival-departure
times.

(2) Different trains traverse the same GT with equal
time. This assumption eliminates the complexity of
considering train types (e.g., train formation, train
ranks). Thus, the total occupation time of a certain
route composed of GTs can be accumulated.

(3) The security interval time (𝑇
𝑆
) is assumed as a

constant. Generally, there are different ranks of trains
passing through stations, for example, passenger
trains and freight trains. Obviously,𝑇

𝑆
varies between

different ranks of trains for their unique braking
performance. This assumption can help substantially
reduce the complexity of the model.

2.3. Model Formulations. To better explain the model formu-
lations, a sample station is illustrated in Figure 1. There are
four tracks and twelve GTs numbered from 1 to 4 and from 1
to 12, respectively, in the sample station. In Figure 1, the left
bottleneck section contains six GTs, which are marked with
odd numbers. On the contrary, the right bottleneck section
consists of six even numbered GTs.

2.3.1. Constraints of TPP and Track Accidents. Operational
constraints in a passenger station set limits on the track

allocations of trains. To fulfill the service requirements and
enable safety, the following constraints should be satisfied.

One Time, One GT, and One Train. For each GT 𝑖 ∈ 𝐼 and
𝑗 ∈ 𝐽, constraints (1) set the uniqueness occupation of each
GT in a certain period of time punctually, where𝑥

𝑖𝑗
is a binary

variable representing whether train 𝑗 occupies GT 𝑖. A fixed
GT cannot be traversed by other trains until it is released by
the preceding train. Thus, during the periods of [𝑡𝑆

𝑟𝑗
− 𝑇
𝑠
, 𝑡
𝑆

𝑟𝑗
]

and [𝑡𝐸
𝑟𝑗
, 𝑡
𝐸

𝑟𝑗
+ 𝑇
𝑠
], where 𝑡𝑆

𝑟𝑗
and 𝑡𝐸
𝑟𝑗
represent the starting and

ending times of train 𝑗 occupying track 𝑟, constraints (1)
should be satisfied:

[𝑡
𝑆

𝑟𝑗
− 𝑇
𝑠
, 𝑡
𝑆

𝑟𝑗
] :

𝑚

∑

𝑗=1

𝑥
𝑖𝑗
≤ 1,

[𝑡
𝐸

𝑟𝑗
, 𝑡
𝐸

𝑟𝑗
+ 𝑇
𝑠
] :

𝑚

∑

𝑗=1

𝑥
𝑖𝑗
≤ 1.

(1)

Obviously, if a train pulls in from the left bottleneck and
stays on track 1 in Figure 1, it will traverse GTs [2, 3, 5, 8–10].
At the same time, if another train also pulls in from the left
bottleneck, it cannot stay on track 2 becauseGTs [2, 3, 5, 8–10]
have been occupied. However, this train can sit on track 3 or
track 4 because GTs [1, 4, 6, 7, 11, 12] are free at that moment.

One Time, One Track, and One Train. 𝑥
𝑟
is a binary variable.

𝑥
𝑟
= 1 means track 𝑟 breaks down, and 𝑥

𝑟
= 0 means track

𝑟 can receive trains. Constraint (2) indicates that, during the
period of [𝑡𝑆

𝑟𝑗
, 𝑡
𝐸

𝑟𝑗
], track 𝑟 is reserved for train 𝑗. Apart from

this period, track 𝑟 is released. Thus, constraint (2) examines
the track state and limits the unique utilization of station
tracks as well:

[𝑡
𝑆

𝑟𝑗
, 𝑡
𝐸

𝑟𝑗
] :

𝑚

∑

𝑗=1

𝑥
𝑟𝑗
≤ (1 − 𝑥

𝑟
) . (2)

When 𝑥
𝑟
is equal to one, we have∑𝑚

𝑗=1
𝑥
𝑟𝑗
≤ (1 − 𝑥

𝑟
) = 0.

This track breaks down and is occupied by one virtual train.
On the contrary, when 𝑥

𝑟
is equal to zero, the right hand side

∑
𝑚

𝑗=1
𝑥
𝑟𝑗
≤ (1 − 𝑥

𝑟
) = 1 and track 𝑟 is ready for allocation.

With the binary variable 𝑥
𝑟
so defined, track incidents are

described accurately.
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Figure 2: Complete conflict. Train 𝑗 occupies track 𝑟 from time 𝑡𝑆
𝑟𝑗

to time 𝑡𝐸
𝑟𝑗
, and train 𝑗 occupies track 𝑟 from time 𝑡𝑆

𝑟𝑗
 to time 𝑡𝐸

𝑟𝑗
 ,

where 𝑡𝑆
𝑟𝑗
≤ 𝑡
𝑆

𝑟𝑗
 ≤ 𝑡
𝐸

𝑟𝑗
 ≤ 𝑡
𝐸

𝑟𝑗
.

One Time, One Train, and One Track. Clearly, each coming
train should be allocated with only one track. In the period of
[𝑡
𝑆

𝑟𝑗
, 𝑡
𝐸

𝑟𝑗
], train 𝑗 will stay on track 𝑟. Hence,

[𝑡
𝑆

𝑟𝑗
, 𝑡
𝐸

𝑟𝑗
] :

𝑙

∑

𝑟=1

𝑥
𝑟𝑗
= 1. (3)

One Track, Two Trains, and Two Conflicts. A two-train
conflict or greater can be decomposed by two trains. There
are two types of conflicts on a track that must be avoided:
complete conflict and partial conflict as referred to in Figures
2 and 3, respectively. To fulfill the requirements, there is a
minimum security interval time, denoted by𝑇

𝑆
, for two trains

pulling on the same track. Figure 4 shows how two trains can
stay on one identical track successively.

According to Figure 4, a conflict avoidance constraint can
be built as (4); that is, one train cannot pull on to track 𝑟 until
the preceding train has departed from track 𝑟 for at least 𝑇

𝑆

min. Hence, ∀𝑗 ∈ 𝐽, 𝑗 ∈ 𝐽, and 𝑟 ∈ 𝑅,

𝑥
𝑟𝑗
 ⋅ 𝑇
𝑆

𝑟𝑗
 − 𝑥𝑟𝑗 ⋅ 𝑇

𝐸

𝑟𝑗
≥ 𝑇
𝑆
. (4)

2.3.2. Objective Function of TPP. Many other urgent prob-
lems may be induced under sudden incidents on station
reception-departure tracks, such as a delay in the train’s
arrival and departure and decreasing the carrying capacity
of station bottleneck sections. These problems are brought
about directly fromone phenomenon: decreasing the number
of available station tracks. In this case, station operators
must repair tracks as quickly as possible and reallocate tracks
effectively with a limited number of available tracks.

Figure 5 illustrates the flow of track reallocation after
station track incidents. First, if the tracks have incidents, then
the station capacity will definitely decrease. In this situation,
the station bottleneck capacity also decreases because some
tracks and GTs are frozen. Then, the predetermined routes
(consisting of GTs) are changed and a new track reallocation
plan is formulated.

The occupation time of each route to each track can be
accumulated by GTs. For any train 𝑗, the traversing time of
GTs is calculated in (5). In addition, different routes consist
of different GTs. The average occupation time of each GT is
used to express the cost of the route. Clearly, the less average
occupation time a GT has, the better the route we choose.

Partial 
conflict
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rj

tS
rj

Figure 3: Partial conflict. Train 𝑗 occupies track 𝑟 from 𝑡
𝑆

𝑟𝑗
to 𝑡𝐸
𝑟𝑗
, and

train 𝑗 occupies track 𝑟 from 𝑡
𝑆

𝑟𝑗
 to 𝑡𝐸
𝑟𝑗
 , where 𝑡𝑆𝑟𝑗 ≤ 𝑡

𝑆

𝑟𝑗
 ≤ 𝑡
𝐸

𝑟𝑗
≤ 𝑡
𝐸

𝑟𝑗
 .
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Figure 4: Conflict avoidance. Train 𝑗 occupies track 𝑟 from 𝑡
𝑆

𝑟𝑗
to

𝑡
𝐸

𝑟𝑗
, and train 𝑗 occupies track 𝑟 from 𝑡

𝑆

𝑟𝑗
 to 𝑡𝐸
𝑟𝑗
 , where 𝑡𝑆𝑟𝑗 ≤ 𝑡

𝐸

𝑟𝑗
≤

𝑡
𝑆

𝑟𝑗
 − 𝑇𝑠 ≤ 𝑡

𝐸

𝑟𝑗
 − 𝑇𝑠.

Therefore, (6) evaluates the average occupation time of GTs
in a route. Therefore,

𝑇
𝑗
=

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

𝑥
𝑖𝑗
⋅ 𝑡
𝑖𝑗
, (5)

𝑓 =

∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑥
𝑖𝑗
⋅ 𝑡
𝑖𝑗

∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑥
𝑖𝑗

. (6)

As we know, if some tracks are in incidents, the carrying
capacity of the tracks will decrease immediately. In addition,
the capacity of the bottleneck sections is also reduced.There-
fore, the objective function of our model should pursue the
minimum average use time of GTs in bottleneck sections that
constitute different routes and lead to normal and abnormal
station tracks. For all 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑗 ∈ 𝐽, and 𝑟 ∈ 𝑅,

𝑓 =min
∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑥
𝑖𝑗
⋅ 𝑡
𝑖𝑗

∑
𝑛

𝑖=1
∑
𝑚

𝑗=1
𝑥
𝑖𝑗

s.t. [𝑡
𝑆

𝑟𝑗
− 𝑇
𝑠
, 𝑡
𝑆

𝑟𝑗
] :

𝑚

∑

𝑗=1

𝑥
𝑖𝑗
≤ 1

[𝑡
𝐸

𝑟𝑗
, 𝑡
𝐸

𝑟𝑗
+ 𝑇
𝑠
] :

𝑚

∑

𝑗=1

𝑥
𝑖𝑗
≤ 1

[𝑡
𝑆

𝑟𝑗
, 𝑡
𝐸

𝑟𝑗
] :

𝑚

∑

𝑗=1

𝑥
𝑟𝑗
≤ (1 − 𝑥

𝑟
)

[𝑡
𝑆

𝑟𝑗
, 𝑡
𝐸

𝑟𝑗
] :

𝑙

∑

𝑟=1

𝑥
𝑟𝑗
= 1

𝑥
𝑟𝑗
 ⋅ 𝑇
𝑆

𝑟𝑗
 − 𝑥𝑟𝑗 ⋅ 𝑇

𝐸

𝑟𝑗
≥ 𝑇
𝑆
.

(7)
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3. Solution Algorithm and Sample Test

Artificial intelligence algorithms have been widely adopted to
solve NP-hard problems. Gandibleux et al. [15] proposed Ant
Colony Optimization heuristics to solve the track allocation
problem. As evolution of [15], the algorithm described in [16]
improved the local search heuristic and stopping criterion.
The node packing formulation used in [17] found robust
routing for the train routing problem. In addition, [17]
adopted the fixed-point iteration heuristic to exploit the
clique structure. The improved research by [18] used the
same fixed-point heuristic to consider both deterministic
and probabilistic robust problem. Similarly, [7, 19] studied
the track allocation problem at railway stations using the
simulated annealing (SA) algorithm.

Studies [20, 21] designed a stochastic search scheme based
on SA and the genetic algorithm (GA). For a nonconvex
optimization system, GA may suffer from premature con-
vergence on a local optimum. Escaping from local optima
is accomplished with an SA search scheme, which is a
stochastic process. Intervention in the SA is accomplished
with a GA search scheme that provides promising search
locations or directions when an SA search slows down or
“freezes.” Considering the nice compatibility of both GA
and SA algorithms, a genetic simulated annealing (GSA)
algorithm approach is created. Herein, the GSA algorithm
will be briefly reviewed.

3.1. Genetic Simulated Annealing. SA starts from an initial
solution at a high temperature and makes a series of changes
according to an annealing schedule. For each change, an
objective value 𝑓new (𝑓new becomes 𝑓old after an iteration) is
obtained. The difference between the objective values (Δ𝑓 =

𝑓new−𝑓old) is calculated after each iteration. IfΔ𝑓 ≤ 0, the new
solution is accepted with probability 𝜌 = 1. On the contrary,
it is accepted with a small probability 𝜌, which can be tracked
as 𝜌 = exp(−Δ𝑓/𝑇), where 𝑇 is the current temperature
parameter.Thus, SA avoids being trapped in a local optimum
[22]. Moreover, at each temperature, the above process will
repeat 𝐿 times, where 𝐿 represents the Markov length. The
temperature𝑇 is gradually decreased by cooling coefficient𝜔,
where 𝑇 is defined as 𝑇 = 𝑇 × 𝜔 (0 < 𝜔 < 1). SA terminates
either when the optimum solution is obtained or when the
initial temperature decreases to the given value [7].

Amatrix [𝑥
11
,𝑥
21
, . . . , 𝑥

𝑟1
, . . . ,𝑥

𝑙1
;𝑥
12
, 𝑥
22
, . . . , 𝑥

𝑟2
, . . . , 𝑥

𝑙2
;

. . . ;𝑥
1𝑗
,𝑥
2𝑗
, . . . ,𝑥

𝑟𝑗
, . . . ,𝑥

𝑙𝑗
; . . .; 𝑥

1𝑚
,𝑥
2𝑚
, . . . ,𝑥

𝑟𝑚
, . . . ,𝑥

𝑙𝑚
] forms

the genes of a chromosome in the algorithm. Here, from
𝑗 = 1 :𝑚, 𝑟 = 1 : 𝑙, each gene 𝑥

𝑟𝑗
= 1 represents the notion

that train 𝑗 stays on track 𝑟. The matrix above is a unit
matrix and ensures that each coming train has a track. A
common operator used in GA is crossover, which generates
chromosomes [23]. A replacing method is adopted in the
crossover operation. Taking the sample station as an example
(four tracks), the track for a certain train is replaced by
the track for the same train in another chromosome (see
Figure 6), where the 𝑥-axis represents trains and the 𝑦-axis
represents the timeline. The mutation operation changes the
track for one train randomly. If the generated chromosome
is unavailable, then it will be deleted.

The following GSA searches solutions for the track reallo-
cation problem in railway stations. The detailed algorithmic
steps are described as follows.

Step 1 (initialization). (1.1) Set initial parameters: population
size 𝑝 (𝑝 = 1000), iteration mark 𝑘 := 0, initial temperature
𝑡
𝑘

:= 100, lowest temperature 𝜏 = 0.01, and cooling
coefficient 𝜔 = 0.95.

(1.2) Read the timetables for the arrival-departure trains.

Step 2 (creating and selecting new chromosome). (2.1)
Update 𝑘 = 𝑘 + 1.

(2.2) If 𝑡
𝑘
:= 𝜏, stop; otherwise, turn to 2.2.

(2.3) Obtain a new chromosome 𝑗 from each old chro-
mosome 𝑖 ∈ POP(𝑘) from the crossover operation to
chromosome 𝑖.

(2.4) Calculate 𝜎(𝑗) − 𝜎(𝑖), where 𝜎(𝑗) and 𝜎(𝑖) are
objective values of chromosomes 𝑗 and 𝑖, respectively.

(2.5) If 𝜎(𝑗) − 𝜎(𝑖) ≤ 0, chromosome 𝑗 replaces chromo-
some 𝑖; otherwise, chromosome 𝑗 replaces chromosome 𝑖 by
probability 𝜌 = exp((𝑓(𝑖) − 𝑓(𝑗))/𝑡

𝑘
).

(2.6) Repeat steps 2.2 through 2.5 until a new population
POP1(𝑘) is generated.

(2.7) Use the mutation operation to population POP1(𝑘).
Check the generated solutions with constraints in (7) and
accept them if they are available. Otherwise, delete them.

(2.8) Find the best solution in POP1(𝑘) by comparing
objective values.
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Crossover

Train 1 Train 2 Train n Train 1 Train 2 Train n
[1 0 0 0] [0 0 0 0] [0 0 1 0]

[1 0 0 0] [0 0 0 0] [0 0 1 0]

[0 0 0 0] [0 1 0 0] [0 0 1 0]

[0 0 0 0] [0 1 0 0] [0 0 1 0]

[0 1 0 0] [0 0 0 0] [0 0 1 0]

[0 1 0 0] [0 0 0 0] [0 0 1 0]

[0 0 0 0] [0 1 0 0] [0 0 1 0]

[0 0 0 0] [0 1 0 0] [0 0 1 0]

[0 1 0 0] [0 0 0 0] [0 0 1 0]

[0 1 0 0] [0 0 0 0] [0 0 1 0]

[0 0 0 0] [1 0 0 0] [0 0 1 0]

[0 0 0 0] [1 0 0 0] [0 0 1 0]

[1 0 0 0] [0 0 0 0] [0 0 1 0]

[1 0 0 0] [0 0 0 0] [0 0 1 0]

[0 0 0 0] [1 0 0 0] [0 0 1 0]

[0 0 0 0] [1 0 0 0] [0 0 1 0]

Ti
m

e

Chromosome A

Chromosome B
Mutation

[0 0 0 1] [0 0 0 0] [0 0 1 0]

[0 0 0 1] [0 0 0 0] [0 0 1 0]

[0 0 0 0] [1 0 0 0] [0 0 1 0]

[0 0 0 0] [1 0 0 0] [0 0 1 0]

Crossover: two different chromosomes generate two new chromosomes 
Mutation: one chromosome generates a new chromosome 

Chromosome A

Chromosome B

Chromosome B

Figure 6: Samples of crossover and mutation operations.

Step 3 (stop or do not stop). 3.1 If temperature 𝑡
𝑘
≤ 𝜏, stop;

otherwise, 𝑡
𝑘
= 𝑡
𝑘
⋅ 𝜔. Return to Step 2.

3.2. Sample Test. A sample station in Figure 1 is used to
verify the feasibility of the proposedmodel. Table 1 shows the
different components for the routes and the corresponding
occupation time of the GTs. For example, GTs (3, 5, 9/10,
8, 2) consist of the path to reception-departure track 1. The
corresponding occupation times of the above GTs are (2, 2,
2/2, 2, 2) seconds.

Table 2 gives the arrival and departure times of trains
that should be dispatched in this station. There are six trains
from 8:00 to 8:25 among which three trains pull in from
the right bottleneck section and three pull in from the left
bottleneck section. Figure 7 depicts the timetable intuitively.
As observed, T2, T4, T5, and T6 arrive/depart at/from the
station simultaneously. In other words, these four trains will
occupy the station bottlenecks at 8:15, which means this
station stays in the thick of the bottleneck capacity at this
time.

Experiments are tested on a personal computer with
an Intel Pentium 4 2.80GHz CPU and 2GB RAM. The
track allocation optimizing results are given in Table 3, when
∑
𝑖∈𝐼
𝑡
𝑖𝑗
/∑
𝑖∈𝐼
𝑥
𝑖𝑟
of tracks 1 and 2 are smaller than those of

tracks 3 and 4.Thus, tracks 1 and 2 have been occupied twice,
while tracks 3 and 4 are only used once.

We also simulate the track accidental experiment (track
1 is randomly selected by the programming). Computing
results are shown in Table 4. When we simulate two track
incidents simultaneously, a feasible reallocation plan could
not be returned because the bottleneck capacity is not
large enough to receive all trains. The computer simulation

Table 1: Component GTs of each track in Figure 1.

Track Groups of
turnouts ∑

𝑖∈𝐼
𝑥
𝑖𝑟

𝑡
𝑖𝑗
(sec) ∑

𝑖∈𝐼
𝑡
𝑖𝑗
/∑
𝑖∈𝐼
𝑥
𝑖𝑟
(sec)

1 3, 5, 9/10, 8, 2 3/3 2, 2, 2/2, 2, 2 2
2 3, 5, 9/10, 8, 2 3/3 2, 2, 2/2, 2, 2 2
3 1, 7, 11/12, 6, 4 3/3 3, 3, 3/3, 3, 3 3
4 1, 7, 11/12, 6, 4 3/3 3, 3, 3/3, 3, 3 3

indicates that if there are two or more tracks that are not
ready for service, trains cannot stay on the tracks according to
the existing timetable.The track capacity decreases and some
trains are delayed for arrival.

4. Case Study

This section illustrates the quality of the proposed model
for a real case in China. Figure 8 shows the structure of
the Baoji railway station in China. There are two bottleneck
sections in this station: the left bottleneck section and the
right bottleneck section. The left bottleneck is made up of
13 GTs that are marked with odd Arabic numbers, and the
right bottleneck is made of 14 even GTs. Eleven reception-
departure tracks, numbered from 1 to 11, are in the middle of
the station. Here, the data sources for the computation come
from the Xi’an Railway Administration, and the detailed
TWD is given in Table 5.

As seen from Table 5, there are 30 trains that are sched-
uled in this daily and shift transport plan (fromapproximately
8:00 to 10:00). For example, train T22 arrives at 8:09 and
departs at 8:22.TheDirection column indicates that train T22
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Table 2: TWD of trains.

Train Direction Reception Departure Train Direction Reception Departure
T1 Right 8:00:00 8:10:00 T2 Left 8:00:00 8:15:00
T3 Right 8:00:00 8:05:00 T4 Left 8:10:00 8:15:00
T5 Right 8:10:00 8:15:00 T6 Left 8:15:00 8:25:00

Table 3: Track allocation results of sample station.

Train Track Reception Departure Train Track Reception Departure
T1 3 8:00:00 8:10:00 T2 1 8:00:00 8:15:00
T3 2 8:00:00 8:05:00 T4 2 8:10:00 8:15:00
T5 4 8:10:00 8:15:00 T6 1 8:15:00 8:25:00

Table 4: Track reallocation results.

Train Track Arrival Departure Train Track Arrival Departure
T1 4 8:00:00 8:10:00 T2 3 8:00:00 8:15:00
T3 2 8:00:00 8:05:00 T4 2 8:10:00 8:15:00
T5 4 8:10:00 8:15:00 T6 2 8:15:00 8:25:00

T1

T2

T3

T4

T5

T6

8:00 8:15 8:25
Time

Tr
ai

n

Figure 7: Train arrival-departure time axes.

pulls in from the right bottleneck section and pulls out from
the opposite bottleneck.

In Table 6, each row gives the component GTs of a station
route from track 1 to track 11. The occupation time of each
route is calculated according to Table 7, which shows the
occupation time of each GT. Here, safety interval times have
been taken into consideration [24].

4.1. Unavailable Tracks Simulation. Some virtual trains are
introduced to solve the simulation work. It is undoubted
that if a certain track is unavailable because of incidents,
this track cannot be occupied until it recovers. According
to different accident degrees, different repairing times are
required. Therefore, the track repairing time is represented
by the track occupation time of a virtual train. Actually, each
track has a hidden virtual train, which will be activated as
long as the track remains unavailable. Figure 9 illustrates

how virtual trains simulate the unavailable tracks. TWD is
transformed into a track occupation timeline. The dotted
lines represent virtual trains, and the solid lines are real trains
with train running directions. Train numbers are marked
above the lines with the tracks in brackets. One virtual train
will occupy a track when this track breaks down. The virtual
train will evacuate when the track recovers.

4.2. Optimization Results. Four accidental tracks are ran-
domly selected by the computer, that is, tracks 2, 3, 8, and
10. Track 3 and track 8 are unavailable from 8:00 to 9:00,
while track 1 and track 10 are unavailable from 9:00 to 10:00.
In this case, the optimization results are shown in Table 8.
Clearly, no train should stay on tracks 3 and 8 between
8:00 and 9:00. Additionally, tracks 1 and 10 are not occupied
between 9:00 and 10:00. Figure 10 shows the track occupation
frequency and route occupation time (cost) in a line chart,
where “cost” means the necessary occupation time (min)
of GTs with respect to a certain track. Compared with the
original allocation results, the total cost of the optimal results
is reduced from 64.3 to 62.2 in 30min (Table 9).

It is easy to find that the higher the route costs, the smaller
the occupation frequency of the corresponding track is. For
example, tracks 10, 5, 9, and 7 have been occupied four times,
while tracks 8 and 11 are occupied only once because track
8 is unavailable from 8:00 to 9:00 and because its time cost
reaches up to 2.3. For instance, track 10 has been occupied
four times in one hour. This is mainly because its time cost is
only 1.833, which is the least among all station tracks.

4.3. Limited Carrying Capacity. According to the train arrival
times in Table 8, different track allocation plans are given
by discrete algorithm parameters. Table 10 lists the specific
values of the left and right bottlenecks after analyzing two
bottleneck capacities under each given plan. As seen, the
program has been run by separate iterations (from 60 to
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Table 5: TWD of trains.

Train Direction Arrival Departure Train Direction Arrival Departure
T22 Right 8:09:00 8:22:00 K375 Left 8:24:00 8:31:00
T75 Left 9:12:00 9:22:00 D5082 Right 8:41:00 9:11:00
T117 Left 9:42:00 9:52:00 T23 Left 8:09:00 8:22:00
T193 Left 8:29:00 8:33:00 T116 Right 9:42:00 9:52:00
T223 Left 8:12:00 8:22:00 T192 Right 8:29:00 8:33:00
K621 Left 9:04:00 9:12:00 T222 Right 8:12:00 8:22:00
10176 Right 9:24:00 9:29:00 K624 Right 9:04:00 9:12:00
10452 Right 9:14:00 9:22:00 10175 Left 9:24:00 9:29:00
10454 Right 9:16:00 9:46:00 10420 Right 8:08:00 8:19:00
10448 Right 8:08:00 8:38:00 10450 Right 8:30:00 9:00:00
1486 Right 9:27:00 9:40:00 10456 Right 9:32:00 10:02:00
T7 Left 9:35:00 9:45:00 D5081 Left 8:51:00 9:21:00
1150 Right 9:35:00 10:00:00 1147 Left 9:35:00 10:00:00
2669 Left 9:20:00 9:50:00 K245 Left 8:39:00 8:49:00
K248 Right 8:39:00 8:49:00 K378 Right 8:24:00 8:31:00

Table 6: Component GTs of each train track.

Track Groups of turnouts ∑
𝑖∈𝐼
𝑥
𝑖𝑟

∑
𝑖∈𝐼
𝑡
𝑖𝑗

∑
𝑖∈𝐼
𝑡
𝑖𝑗
/∑
𝑖∈𝐼
𝑥
𝑖𝑟

1 11, 13, 21/16, 18, 26, 28 3/4 8/8 2.286
2 11, 13, 21/16, 18, 26, 28 3/4 8/8 2.286
3 11, 13, 21/6, 8, 10, 20, 24, 28 3/6 8/13 2.333
4 11, 13, 23/16, 18, 20, 24 3/4 7/8 2.143
5 11, 13, 15, 23, 25/6, 8, 10, 12, 22 5/5 9/10 1.900
6 1, 7, 9, 17/6, 8, 10, 12, 14 4/5 9/10 2.111
7 1, 3, 9/6, 8, 10, 12, 14 3/5 6/10 2.000
8 3, 5, 7, 9/6, 8, 10, 12, 14, 4 4/6 10/13 2.300
9 1, 3, 5/6, 8, 10, 12, 14, 4 3/6 5/13 2.000
10 1, 3, 5/2, 4 3/2 5/6 1.833
11 3, 5, 7, 9/6, 8, 10, 12, 14, 4 4/6 10/13 2.300
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Figure 8: Map of station bottleneck structure (Baoji, China).

2800). 𝑇
𝐿
and 𝑇

𝑅
are calculated each time. It is found that

the carrying capacity of the left bottleneck is approximately
1.29 times more than the right bottleneck. Thus, the limited
carrying capacity is the right bottleneck section in this railway
station.

4.4. Track Unavailable Analysis. From 8:00 to 8:30, the
capacity of the station tracks is excessive if there is no track
accident. What if the station tracks have a larger area of
failures? If the number of unavailable tracks exceeds a certain
figure, this will lead to a delay in a train’s arrival/departure.
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Table 7: Occupation time of each GT (min).

GT 1 3 5 7 9 11 13 15 17 19 21 23 25
𝑡
𝑖𝑗

1 2 2 3 3 2 3 1 2 2 3 2 1
GT 2 4 6 8 10 12 14 16 18 20 22 24 26 28
𝑡
𝑖𝑗

3 3 2 2 2 2 2 2 2 3 2 1 1 3

Table 8: Track allocation results.

Train Track Arrival Departure Train Track Arrival Departure
10420 9 8:08:00 8:19:00 K624 9 9:04:00 9:12:00
10448 6 8:08:00 8:38:00 K621 7 9:04:00 9:12:00
T23 7 8:09:00 8:22:00 T75 5 9:12:00 9:22:00
T22 5 8:09:00 8:22:00 10452 3 9:14:00 9:22:00
T222 1 8:12:00 8:22:00 10454 9 9:16:00 9:46:00
T223 10 8:12:00 8:22:00 2669 2 9:20:00 9:50:00
K378 10 8:24:00 8:31:00 10175 5 9:24:00 9:29:00
K375 9 8:24:00 8:31:00 10176 4 9:24:00 9:29:00
T192 1 8:29:00 8:33:00 1486 8 9:27:00 9:40:00
T193 7 8:29:00 8:33:00 1147 11 9:35:00 10:00:00
10450 2 8:30:00 9:00:00 1150 5 9:35:00 10:00:00
K248 10 8:39:00 8:49:00 10456 4 9:32:00 10:02:00
K245 1 8:39:00 8:49:00 T7 6 9:35:00 9:45:00
D5082 6 8:41:00 9:11:00 T117 7 9:42:00 9:52:00
D5081 10 8:51:00 9:21:00 T116 3 9:42:00 9:52:00

Thus, the maximum antijamming capacity in this station is
tested. We performed a track unavailable experiment. The
results indicate that the maximum number of unavailable
tracks at the Baoji station is five from 8:00 to 8:30. Table 11
shows the experimental results.

Table 10 shows that the Baoji station tolerates five unavail-
able tracks at most. Therefore, we observe the relationships
for the number of unavailable tracks, lasting time, and station
capacity in Figure 11. There are two parameters related to the
size of dispatching trains that have been tested here. It is clear
that, with a smaller number of unavailable tracks and shorter
lasting time, a larger number of trains tend to be received. As
shown in Figure 11, the number of unavailable tracks changes
from 6 to 11, the lasting time changes from 5 to 30min, and
the different number of trains that can stay in the station is
obtained.

4.5. Convergence Test. To further illustrate the efficiency of
the GSA algorithm, a convergence test is given in this case
study as shown in Figure 12.The program stops after approxi-
mately 30minwith 1000 generations.The result indicates that
the algorithm can converge to a steady state. For the real-time
usage, operators can set a smaller value of generation or a
limited running time. In addition, as the convergence curve
indicates, solutions are acceptable when iterations reach one-
fourth of the total iterations.

Virtual trains

Time

T22(1) T75(1) T117(2)

8:00 8:30 9:00 9:30 10:00

T193(9)T223(2) K621(4) 10176(11)10452(6)
10448(3) 1486(8) T7(3)

1150(10)

2669(9)K248(2)K375(4)
D5082(3)T23(5) T116(4)T192(10)

T222(6) K624(5) 10175(6)10420(7) 10450(11) 10456(7)
D5081(5)

K245(1)

10454(7)

1147(8)
K378(8)
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Figure 9: Track occupations timeline.
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Figure 11: Relationships for the number of unavailable tracks,
lasting time, and station capacity.

5. Conclusions

This paper is motivated by the need to formulate and solve a
track reallocation problem in large railway stations. We first
explain the key features of using virtual trains to formulate
track incidents. A mathematical programming model is
developed, which aims at minimizing the total occupation
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Table 9: Comparison of optimization results.

Track Cost of GTs (min) Optimal results Original results
Frequency Cost (min) Frequency Cost (min)

1 2.286 3 6.858 3 6.858
2 2.286 2 4.572 3 6.858
3 2.333 2 4.666 3 6.999
4 2.143 2 4.286 3 6.429
5 1.9 4 7.6 3 5.7
6 2.111 3 6.333 3 6.333
7 2 4 8 3 6
8 2.3 1 2.3 3 6.9
9 2 4 8 2 4
10 1.833 4 7.332 2 3.666
11 2.3 1 2.3 2 4.6

Table 10: Bottleneck capacity analysis.

Algorithm parameters Track allocations 𝑇
𝐿

𝑇
𝑅

𝑇
𝑅
/𝑇
𝐿

𝑇
𝐿
+ 𝑇
𝑅

𝑇
0

𝜏 𝜔 𝐿 Run

50 0.1 0.8 100 2800 7, 5, 8, 10, 4, 1, 7, 4, 2, 10, 1, 10, 2, 4, 9, 7,
10, 2, 10, 7, 1, 11, 4, 10, 11, 4, 3, 9, 6, 10 208 268 1.29 476

30 0.1 0.8 100 2600 9, 6, 10, 1, 5, 4, 10, 2, 5, 11, 7, 10, 2, 1, 10,
2, 4, 4, 2, 11, 9, 10, 4, 5, 1, 2, 3, 4, 10, 6 219 270 1.23 489

10 0.1 0.8 100 2100 10, 8, 7, 1, 9, 2, 10, 1, 9, 11, 2, 4, 10, 9, 1,
4, 5, 10, 4, 2, 7, 10, 4, 8, 11, 1, 10, 4, 9, 6 211 280 1.33 491

50 0.5 0.8 100 2100 10, 7, 5, 2, 8, 4, 4, 10, 8, 2, 6, 11, 7, 1, 4, 9,
10, 6, 11, 1, 7, 10, 4, 5, 2, 4, 8, 6, 10, 9 223 281 1.26 504

50 1 0.8 100 1800 6, 4, 10, 11, 1, 5, 10, 5, 9, 11, 1, 10, 9, 2, 7,
5, 10, 6, 8, 5, 3, 10, 7, 11, 2, 1, 4, 7, 10, 6 223 283 1.27 506

50 0.1 0.5 100 900 10, 11, 4, 5, 7, 1, 8, 5, 7, 10, 6, 10, 7, 8, 7,
5, 4, 10, 8, 1, 4, 10, 6, 2, 6, 11, 10, 9, 2, 8 226 283 1.25 509

50 0.1 0.2 100 400 9, 7, 10, 5, 11, 1, 3, 1, 9, 10, 5, 11, 7, 3, 1, 8,
10, 4, 10, 7, 8, 5, 6, 10, 2, 5, 1, 6, 10, 3 223 290 1.30 513

50 0.1 0.8 50 1400 5, 4, 10, 3, 7, 2, 10, 11, 5, 1, 6, 10, 3, 7, 10,
9, 11, 4, 5, 11, 8, 10, 5, 2, 7, 10, 3, 1, 4, 2 223 284 1.27 507

50 0.1 0.8 30 840 9, 6, 7, 5, 1, 10, 10, 9, 1, 7, 2, 10, 1, 6, 10,
9, 7, 5, 3, 9, 2, 5, 4, 8, 11, 5, 4, 6, 7, 3 217 294 1.35 511

10 1 0.2 30 60 7, 1, 8, 9, 11, 5, 3, 7, 5, 2, 9, 4, 6, 1, 7, 5, 2,
9, 1, 6, 4, 10, 8, 9, 5, 10, 1, 11, 8, 3 230 306 1.33 536

Average 1500 — 220 284 1.29 504

Table 11: Test of the number of unavailable tracks.

Track unavailable Track allocation Occupation
time of GTs

1 10, 5, 9, 7, 6, 4, 10, 5, 9, 7, 6 21.831
1, 2 10, 5, 9, 7, 6, 4, 10, 5, 9, 7, 6 21.831
1, 2, 3 10, 5, 9, 7, 6, 4, 10, 5, 9, 7, 6 21.831
1, 2, 3, 4 10, 5, 9, 7, 6, 8, 10, 5, 9, 7, 6 21.988
1, 2, 3, 4, 5 10, 9, 7, 6, 8, 11, 10, 9, 7, 6, 8 22.788
1, 2, 3, 4, 5, 6 Reallocation failure Train delay

time of station bottleneck sections to avoid train delays. In
addition, a hybrid algorithm between the genetic algorithm

and the simulated annealing algorithm is designed. The case
study for the Baoji railway station in China verifies the
efficiency of the proposed model and the algorithm.

Our future study will focus on (1) developing different
optimization or reformulation methods that can reduce the
CPU time, improving the solution efficiency, and (2) mod-
eling different scenarios for station incidents, for example,
signal problems and switching problems, to address problems
in railway station operations.
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Figure 12: Convergence test.
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