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This paper deals with the development of a 2D weakly compressible SPH model to simulate wave pressures acting on vertical and
slotted coastal structures. Attention is devoted to investigate the diffusive term in the continuity equation in order to smooth out the
high-frequency numerical noise in the pressure field. A hybrid formulation based on two literature diffusive models is proposed.
The interaction between regular waves with vertical and perforated breakwaters is analyzed in time, space, and frequency domain.
Numerical results are compared with laboratory experiments and other diffusive SPH formulations, varying the magnitude of the
adopted diffusive term. On the basis of an error analysis, the results show that the hybrid formulation gives a better agreement with
the experimental data for the majority of the investigated cases. Moreover, SPH simulations highlight nonlinear trends of dynamic
pressures in correspondence with geometrical singularities, such as the holes of slotted walls, due to strong pressure drops induced
by the flow motion.

1. Introduction

Smoothed particle hydrodynamics (SPH), introduced in 1977
for simulating astrophysical problems [1, 2], is arguably
the most popular mesh-free method. Along the years, SPH
was used to study a wide range of complex hydrodynamic
phenomena, including flows impacting on structures. SPH
technique was firstly developed to model weakly compress-
ible free-surface flows [3] and successively extended, for
instance, to unsteady flows (see, e.g., [4, 5]), flows impacting
on rectangular and cylindrical bodies [6], advective-diffusion
phenomena induced by pollutants in water [7], free-surface
open-channel flows [8], processes of hard rock breaking
[9], and jet propagating into water domains [10]. In coastal
engineering field, SPH simulations were limited to study the
interaction between waves and vertical or rubble mound
breakwaters (see, e.g., [11–13]). In any case, little attention
has been paid to the evaluation of wave pressures for design
purposes.

In this paper, coastal structures widely adopted in har-
bors, such as vertical and perforated-wall caisson break-
waters, are analyzed in terms of pressure loads. The main
purpose of the perforated ones is to minimize the wave
reflection and guarantee safe navigation during sea storms.
The performances of perforated breakwaters are usually
analyzed by a structural and a hydraulic point of view [14]. In
particular, pressure distributions for vertical and perforated
breakwaters have been mainly assessed in literature using
empirical and approximated formulas (see, e.g., [15, 16]),
while the use of advanced numerical tools has been rarely
adopted to support their design. For the optimization of these
coastal structures, the correct evaluation of the flow impacts
in the fluid-structure interaction is fundamental.

In this context, standard weakly compressible SPHmodel
is employed for the numerical simulations. It is well known
that standard SPH leads to the generation of high-frequency
numerical noise in the pressure field that can compromise
the numerical solution, avoiding correct wave loads analysis.
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Some authors have recently introduced a diffusive term
in the continuity equation to smooth the numerical noise
occurring in the pressure field [17–20]. Even if the formu-
lations of Molteni and Colagrossi [17], Ferrari et al. [19],
and Groenenboom and Cartwright [20] show an appropriate
smoothing level of spurious high-frequency pressures along
solid bodies, they give a decay of potential energy for a
long simulation time [21]. Conversely, the diffusive model of
Antuono et al. [18] is able to preserve the hydrostatic pressure
component, but it has some limitations in evaluating the
dynamic pressures when flow impacts on a solid boundary
occurs. In the case of a breakwater subjected to several wave
trains, the flow field is firstly characterized by a slow motion
induced by nonbreaking waves along the flume (from the
wavemaker to the breakwater) and, successively, by a faster
motion due to the wave impact in which the magnitude of
the pressure peaks is dependent on the type of incomingwave
attack [16]. In order to obtain an improved model for the
interaction between waves and breakwater walls involving
different flow dynamics, a hybrid diffusive formulation based
on the coupling ofmodels byMolteni and Colagrossi [17] and
Antuono et al. [18] through a linear transition between them
is introduced here.

The proposed hybrid approach is firstly applied to sim-
ulate the interaction between regular waves and a vertical
breakwater and, successively, for two types of perforated
breakwaters. SPH simulations of dynamic pressures are com-
pared with experimental data and the diffusive models by
Molteni and Colagrossi [17] and Antuono et al. [18].

2. SPH Model

2.1. Governing Equations. In the case of a viscous, weakly
compressible and barotropic flow, the adopted field equations
are the Navier-Stokes equations and a state equation that
relates the evolution of the pressure field with the density
field:

𝜌
𝐷u
𝐷𝑡

= −∇𝑝 + 𝜌g + ∇ ⋅ V ,

𝐷𝜌

𝐷𝑡
= −𝜌∇ ⋅ u,

𝑝 = 𝑐
2

0
(𝜌 − 𝜌

0
) ,

𝐷r
𝐷𝑡

= u,

(1)

where r, u, 𝑝, and 𝜌 are, respectively, the position of a generic
material point, its velocity, pressure, and density; g represents
the mass force acting on the fluid, 𝜌

0
the initial density at the

free surface, 𝑐
0
the initial sound speed, andV the viscous stress

tensor.
The weakly compressible assumption in SPH implies a

very low sound speed with respect to the actual value. In
order to reduce the simulation time, the initial sound speed
is evaluated through the following constrain:

𝑐
0
= max {10max (|u|) , 10√𝑔𝑑} , (2)

where 𝑑 is the water depth. The characteristic velocity u of
(2) is set to be equal to 𝑐

𝑤
in the case of water wave studies,

where 𝑐
𝑤
is the wave celerity. However, this assumption does

not influence the fluid dynamics and it results in density
fluctuations lower than 1% 𝜌

0
[22].

The discretized SPH scheme of the system (1) is charac-
terized in the momentum equation by an artificial pressure
to reproduce the fluid viscosity and furnish a good numerical
stability [22]. A numerical filter called XSPH is added to
correct the updating of particlemotion [3]. As a consequence,
the discrete formulation of the system (1) is
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where the subindexes indicate the quantities associated with
the generic 𝑖th or 𝑗th particles, while the symbol ∇

𝑖
denotes

the gradient taken with respect to the coordinates of particle
𝑖. The vector r represents the spatial coordinate of the 𝑖th and
𝑗th particle. In particular, r

𝑖𝑗
= −r
𝑗𝑖

= r
𝑖
− r
𝑗
, 𝑉
𝑖
(𝑖th particle

volume) = 𝑚
𝑖
/𝜌
𝑖
, where 𝑚

𝑖
is the 𝑖th particle mass (constant

during the flow evolution). The symbol𝑊
𝑗
(r
𝑖
) represents the

smoothing or kernel function depending on the value of 𝑞 =
|r
𝑖𝑗
|
2
/ℎ, where ℎ is the smoothing length. The artificial

viscosity coefficient 𝛼 is linked to the dynamic viscosity and it
allows simulating inviscid flows. For hydraulic processes, its
magnitude assumes values ranging from 0.01 to 0.05 [3]. The
quantity 𝜋

𝑖𝑗
is expressed by
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) ⋅ r
𝑗𝑖


r
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2
. (4)

The influence of the XSPHnumerical filter on the velocity
field is quantified by the parameter 𝜖

𝑋
, ranging from 0 to 1.

The kernel function adopted in the SPH scheme is Gaussian
𝑊
𝐺3

(r
𝑖𝑗
) with a cutoff radius set here at 3ℎ, assuming that

ℎ = 4/3Δ𝑥, where Δ𝑥 is the initial interparticle distance. The
diffusive term𝐷

𝑖
added in the continuity equation to stabilize

the numerical solutionwill be further analyzed in Section 2.3.
The equations expressed by the system (3) preserve the global
mass and both the linear and angular momenta.

2.2. Computational Strategies. A stable integration scheme
can be adopted for the solution of system (3). In this context,
the evaluation of somediffusive terms can be computationally
demanding; consequently, the choice of an appropriate inte-
gration scheme can reduce the run time of the simulation.
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Considering the differential relationships of the governing
system in the following form:

𝐷w
𝐷𝑡

= F (w) , (5)

the generic quantity can be split as F = M + D, in
which D contains only the diffusive term. Operating this
manipulation, the system is solved with a 4th order Runge-
Kutta integration scheme through a frozen diffusive approach
[23]:

w(0) = w(𝑛),

w(1) = w(0) +
M (w(0)) Δ𝑡

2
+
D (w(0)) Δ𝑡

2
,
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M (w(1)) Δ𝑡

2
+
D (w(0)) Δ𝑡

2
,

w(3) = w(0) +M (w(2)) Δ𝑡 +D (w(0)) Δ𝑡,

w(4) = w(0) + [M (w(0)) + 2M (w(1)) + 2M (w(2))

+ M (w(3))] Δ𝑡 ⋅ 6
−1

+D (w(0)) Δ𝑡,

w(𝑛+1) = w(4).

(6)

The scheme (6) differs from the original one by taking the
diffusive term to be evaluated once within each time step and
the numerical errors are assumed to be small [21].

Coupled with the use of a ramp function for the first
wave period, the wavemaker is updated at each subtime step
of system (6) to give a gradual movement and avoid shock
phenomena during the generation phase. The time evolution
of the wavemaker displacement, x

𝑝
, reads as
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(7)

where k
𝑝
is the velocity of the wavemaker.

To model the solid boundaries, fixed ghost particles [6]
are implemented. In the fixed ghost particles framework, the
ghost particles are fixed in the frame of reference of the solid
and are created only once at the beginning of the simulation
with a regular distribution. The fixed ghost particles cover a
body region with size equal to the width of the kernel support

radius. To compute the quantities attributed to each ghost
particle an interpolation point is associated with it, obtained
by mirroring the position of the fixed ghost particle into the
fluid domain. The main advantage of using the fixed ghost
particles instead of the standard ghost ones (see, e.g., [24]) is
that their distribution is always uniform and does not depend
on the fluid particle positions, allowing for a simplemodeling
of the solid profiles.

At each time step, the physical quantities of the interpo-
lation point are evaluated through aMLS interpolation of the
fluid particle values [25]. For example, the pressure of ghost
particles, 𝑝

𝐺
, simulating a solid boundary is calculated as

𝑝
𝐺
= ∑

𝑗 𝜖 fluid
𝑝
𝑗
�̃�
𝑗
𝑉
𝑗
+

2𝑑
𝑠
𝜕𝑝

𝜕𝑛
, (8)

where 𝑑
𝑠
is the distance between the ghost particle (or the

interpolation point inside the fluid) and the body profile and
it proves to be dependent on Δ𝑥. The kernel �̃�

𝑗
is referring

to the one with MLS correction. In the simulations, the solid
body is approximated by regular equispaced grid of boundary
particles with a prescribed distance equal to Δ𝑥.

2.3. Diffusive Formulations. Standard weakly compressible
SPH formulations have the drawback of generating spurious
numerical oscillations in the pressure field. In recent years,
different authors have proposed several diffusive corrections
to stabilize the solution and attain more reliable results [17–
20]. As noticeable in (3), these formulations are obtained
through the introduction of a diffusive term in the conti-
nuity equation. Groenenboom and Cartwright [20] derived
a diffusive formulation by inspecting the time-discretized
version of the momentum equations for an inviscid fluid
without external forces and analyzing the backward Euler
finite difference formulation:

𝐷GR𝑖 = 2𝛿GR∑
𝑗

(𝑝
𝑖
− 𝑝
𝑗
) r
𝑗𝑖
⋅ ∇
𝑖
𝑊
𝑗
(r
𝑗
)𝑉
𝑗
Δ𝑡


r
𝑖𝑗



2
, (9)

where 𝛿 gives the magnitude of the diffusive term in the
continuity equation. As already noticed by the authors, this
formulation is similar to that proposed by Molteni and
Colagrossi [17], if the linearized state equation 𝑝

𝑖
= 𝑐
2

0
(𝜌
𝑖
−

𝜌
0
) is assumed. Specifically, a direct connection between the

two formulations can be found when the acoustic time step
restriction referring to the weak compressibility assumption
is adopted:

Δ𝑡 = CFL ℎ

𝑐
0
+ 𝜆

(10)

in which 𝜆 = max{‖u
𝑖
‖+𝜋
𝑖𝑗
}, where ‖u

𝑖
‖ is the velocity of the

particles of the system.
For the considered fluid problems characterized by a

wave-structure interaction, the above constraint represents
the most restrictive condition ensuring the temporal stabil-
ity with respect to other conditions linked to the particle
acceleration, the artificial viscosity, and the diffusive term.
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In this way, it is possible to write a relationship between the
parameter 𝛿GR of Groenenboom and Cartwright model [20]
and the parameter 𝛿MO ofMolteni and Colagrossi model [17]:

𝛿GR =
1

CFL
𝑐
0
+ 𝜆

𝑐
0

𝛿MO. (11)

The parameter 𝛿GR is thus a function of the integration
scheme since the CFL number is involved in its evaluation.
Moreover, in this formulation it is not necessary to impose
any other constraints on the time step length related to the
diffusive term, since it is intrinsically satisfied by the time
step being explicitly present in this diffusive scheme. Another
formulation was proposed by Ferrari et al. [19] that presents
a slightly different form of the Molteni and Colagrossi [17]
formulation but has the same mathematical structure.

In the mentioned formulations, the diffusive term is
approximated by the Morris formula that represents the
Laplacian in SPH schemes:

Λ
𝑖
= 2∑

𝑗

(𝑓
𝑗
− 𝑓
𝑖
)
r
𝑗𝑖
⋅ ∇
𝑖
𝑊
𝑗
(r
𝑖
)

r2
𝑗𝑖

𝑉
𝑗
, (12)

where 𝑓 is a scalar quantity. To investigate the behavior of
this operator, Antuono et al. [18] studied the convergence of
the Laplacian in SPH context and they noticed that this last
formula is singular near the free surface. In particular, they
found that, for kernels in the form 𝑊 = 𝑊(−|r

𝑗𝑖
|
2
/ℎ
2
), the

following expression holds:

∇
2
⟨𝑓⟩

 𝑖 = Λ
𝑖
− 2∇𝑓

 𝑖 ⋅ ∇𝑆 | 𝑖 + 𝑂 ((1 − 𝑆 | 𝑖)) + 𝑂 (ℎ
2
)

(13)

in which 𝑆|
𝑖
= ∑
𝑗
𝑊
𝑗
(r
𝑖
)𝑉
𝑗
. From (13) theMorris formula (12)

converges to the Laplacian of 𝑓 only if ∇𝑆 = 0 and 𝑆 = 1. This
condition is verified inside the fluid domain but not near the
free surface [26], and∇𝑆 diverges as ℎ−1 introducing errors in
the numerical solution.

To find an expression that always converges in the fluid
domain, Antuono et al. [18] proposed a modified diffusive
term to better approximate (13). The improvement of the
model comes from the introduction of renormalized density
gradients, inside the diffusive term, in order to assure the con-
vergence over the fluid domain and preserve the conservation
of mass. This formulation, called 𝛿-SPH, reads as

𝐷AN𝑖 = 𝛿ANℎ𝑐0∑
𝑗

𝜓
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2
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𝐿

𝑖
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𝐿

𝑗
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The quantity ⟨∇𝜌⟩
𝐿

𝑖
represents the renormalized density

gradient defined as
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L
𝑖
= [

[

∑
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r
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𝑖
𝑊
𝑗
(r
𝑖
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𝑗
]

]

−1

.

(16)

The range of variation of 𝛿AN parameter has been succes-
sively found by Antuono et al. [21] through a linear stability
analysis and, in case of a Gaussian kernel, it results in

𝛼
3

27
< 𝛿AN <

9

2𝜋2
(
𝛼

2
+

3

2𝜋
) . (17)

In the typical range of𝛼 adopted in hydraulic applications,
𝛿AN is smaller than about 0.22.

2.4. Hybrid Formulation. Antuono et al. [21] presented a
detailed analysis of the diffusive terms, putting particular
attention to Morris-like models (12) and to 𝛿-SPH formula-
tion (14). In particular, because of the inaccuracy near the free
surface, the Morris-like models show an unphysical upwards
displacement of the fluid particles near the free surface. This
inaccuracy is no longer encountered in the 𝛿-SPH scheme, as
a result of the presence of the renormalized density gradients.
Another issue related to the former models is the loss of
potential energy, also noticed for purely hydrostatic simula-
tions. Conversely, the latter model preserves the hydrostatic
solution. A different situation is encountered when high
velocities and rapid changes in the fluid domain occur. In
these cases, the Antuono et al. [18] model shows the presence
of unphysical traveling sound waves after the impact with a
solid boundary.

Here, a small modification to the diffusive term proposed
by Antuono et al. [18] is introduced by considering a tuning
parameter 𝛽(r) that activates or deactivates the renormalized
density gradients as a function of the position of the particles
inside the fluid domain. Considering (15), the expression for
𝜓
𝑖𝑗
becomes

𝜓
𝑖𝑗
= 2 (𝜌

𝑗
− 𝜌
𝑖
)

r
𝑖𝑗


r
𝑖𝑗



2
− [𝛽 (r

𝑖
) ⟨∇𝜌⟩

𝐿

𝑖
+ 𝛽 (r

𝑗
) ⟨∇𝜌⟩

𝐿

𝑗
]

(18)

in which 𝛽(r) ∈ [0, 1]. In the case that 𝛽(r) = 0, the
Molteni and Colagrossi [17] formulation is recovered, while
the Antuono et al. [18] formulation is recovered when 𝛽(r) =

1. For values in the range 0 < 𝛽(r) < 1, a transition
(or hybrid zone) between the two formulations is obtained.
This last condition is introduced in order to give a gradual
transition between the twomodels, instead of a step function.
A variation law for the 𝛽-parameter is defined for the
transition zone, which in this case is considered as simple
linear variation, though smoother function can be taken into
account. Referring to (13), the introduction of this parameter
acts on the second term of the right hand side of the equation;
hence, the transition from the involved two models can be
regarded as a gradual introduction of a higher approximation
of the diffusive term. The use of the hybrid diffusive term
implies that in the fluid domain away from the walls of the
breakwater the 𝛿-SPH formulation is applied, while in the
area close to the structure the Molteni and Colagrossi term
is enforced. In this way, the 4th order diffusive formulation
conserves the fluid properties in the majority of the fluid
domain and, in presence of fluid impacts, the 2nd order
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𝛽

Antuono et al. (2010)

Transition zone

Molteni and Colagrossi (2009) 

Figure 1: Domain subdivision of the hybrid model in the case of a
perforated breakwater, with the corresponding spatial variation of
the parameter 𝛽 (coloured areas of the fluid domain are associated
with the involved diffusive formulations).

diffusive term smooths out the spurious oscillations, avoiding
the generation of spurious shock waves.

The diffusive terms of Molteni and Colagrossi [17],
Antuono et al. [18], and the hybrid formulation act in an
area fixed heuristically to the length of the adopted support
kernel (3ℎ). The same size is considered for the case of the
vertical wall and for the case of the perforated breakwaters.
In the latter case, the transition between the two models
is introduced also inside the chamber of the caisson where
three vertical walls are considered in the analysis of the wave
pressures, as displayed in Figure 1.

3. SPH Numerical Simulations

In this section, the capabilities of the proposed hybrid
formulation are compared to the diffusive models proposed
byMolteni andColagrossi [17] andAntuono et al. [18], against
laboratory experimental data [27, 28]. SPH simulations of
wave pressures are performed for the cases of a vertical
breakwater and two types of perforated breakwaters subjected
to regular waves propagating along a plane channel in inter-
mediate water conditions. In order to optimize the numerical
results, the SPH parameters 𝛼 and 𝜖

𝑋
have been set equal to

0.01 and 0.25, respectively. For the vertical breakwater and the

perforated ones, the spatial resolutions are𝑑/Δ𝑥 = 75 and 115,
respectively.

The evaluation of the dynamic pressures acting on the
body profiles of the breakwaters is performed considering
an interpolation through a kernel function, 𝑊MLS, corrected
with a first order moving least square interpolator, over the
fluid particles on a support area with radius equal to 3ℎ.
The adopted numerical pressure gauges are located along the
vertical walls, adopting the initial spatial discretization Δ𝑥.

3.1. Vertical Breakwater. The first test case deals with the
interaction between a regular wave train and a simple vertical
breakwater. The incident waves are 3rd order Stokes waves,
described by a wave height 𝐻 = 0.1m and a wave period
𝑇 = 0.8 s. The value of 𝑑 is fixed to 0.54m. Numerical results
deduced from the adopted three diffusive SPH schemes are
compared with the experimental data obtained by Kirca and
Kabdasli [27] in terms of dynamic pressures, Δ𝑝, acting on
the vertical body profile and, particularly, for some specific
points located below and above the SWL. In the following
simulations, the same order of magnitude of the diffusive
term (𝛿 = 0.1) is imposed. Figure 2 shows the time variations
of dynamic pressures, respectively, at 𝑧/𝑑 = 0.79, 0.93,
and 1.07, where 𝑧/𝑑 = 1 corresponds to the SWL. Since
nonbreakingwaves are taken into account, the resulting shape
is characterized by the occurrence of standing wave pressures
[16] with temporal scale equal to the wave period. They are
defined by a double positive peak and a greater negative
peak. For the considered points of the body profile, a good
agreement between all diffusivemodels and the experimental
data can be observed in terms of amplitude and wave shifts
of Δ𝑝. Since the reference points are located close to the
SWL, the diffusive model of Molteni and Colagrossi [17]
shows a slight progressive decreasing trend of Δ𝑝 due to
decay of potential energy and a progressive underestimation
of positive peaks and overestimation of negative ones, as
noticeable in Figure 2(a). It is worth noting that the reference
experimental data of dynamic pressures exhibit spiky values
of positive peaks and nonphysical negative values acting
above the SWL (see Figure 2(c)).

In any case, an evident difference in the application
of diffusive SPH models refers to the magnitude of high-
frequency spurious oscillations.This feature is here exploited
through a spectral analysis, allowing the dynamic pressure
signals in frequency domain to be analyzed. For the same
three locations mentioned above, the dynamic pressure
power spectra, 𝑆

Δ𝑝
, are highlighted in Figure 3, where the

vertical black lines are inserted to separate the real energy
contents linked to the real wave pressure and the spurious
oscillations occurring at a frequency greater than the different
wave harmonics. It can be observed that the occurrence of
significant high-frequency noise appear in a range greater
than the real wave harmonics (in the considered waves, 𝑓/𝑓

𝑝

range between 3 and 4,where𝑓 is here the frequency and𝑓
𝑝
is

the peak frequency). The greater spurious energetic contents
are associated with the model of Molteni and Colagrossi
[17]. For the spectrum of 𝑆

Δ𝑝
referring to the point above

the SWL (Figure 3(c)), high-frequency energetic levels are
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Figure 2: Time variation of wave pressures acting on the vertical
breakwater at 𝑧/𝑑 = 0.79, 0.93, and 1.07 using the adopted diffusive
SPH schemes.
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Figure 3: Dynamic pressure power spectra at 𝑧/𝑑 = 0.79, 0.93, and
1.07 using the adopted diffusive SPH schemes.
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Figure 4: Level of high-frequency noise occurring in the zero-
ordermoment of the power spectrum of dynamic pressure using the
adopted diffusive SPH schemes.

distributed almost uniformly for values greater that the real
wave harmonics.

The level of nonphysical high-frequency noise appearing
in the oscillatory feature of 𝑆

Δ𝑝
is analyzed by evaluating

the ratio between the zero-order moment of spurious high-
frequency noise in the power spectrum of dynamic pressure,
𝑚
0ℎ𝑓

, and the zero-order moment of the power spectrum of
dynamic pressure, 𝑚

0
, as follows:

𝑚
0ℎ𝑓

𝑚
0

=

∫
𝑓max

𝑚𝑓𝑝

𝑆
Δ𝑝

(𝑓) 𝑑𝑓

∫
𝑓max

𝑓min
𝑆
Δ𝑝

(𝑓) 𝑑𝑓

, (19)

where 𝑚 is the number of wave harmonics occurring in the
dynamic pressure wave spectrum and 𝑓min and 𝑓max are the
minimum and the maximum wave frequencies.

Figure 4 describes the variation of the ratio 𝑚
0ℎ𝑓

/𝑚
0

along the vertical wall (from the bottom to the maximum
wave run-up, 𝜂max). The magnitude of high-frequency wave
pressures furnishes the capabilities of the considered diffusive
terms to smooth out the numerical noise and recover a well
filtered oscillatory signal. For points located far from the
SWL (0 < 𝑧/𝑑 < 0.85) the diffusive model by Molteni and
Colagrossi [17] induces lowest values of 𝑚

0ℎ𝑓
/𝑚
0
resulting

in a smoothest effect of the dynamic pressure, while the
model by Antuono et al. [18] shows highest values of spurious
numerical noise.The vertical range corresponds tomeasuring
points located in the underwater part of the breakwater, that
is, below themaximum run-down, 𝜂min.The hybrid approach
furnishes values of 𝑚

0ℎ𝑓
/𝑚
0
in between the other formula-

tions. Across the SWL (𝑧/𝑑 > 0.85) limited by the maximum
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Figure 5: Spatial distribution of wave pressures at perforated breakwater number 1 using the adopted diffusive SPH schemes.

run-up and run-down, the hybrid formulation and themodel
by Antuono et al. [18] furnish lower values of high-frequency
wave pressures than the model by Molteni and Colagrossi
[17].This last model shows highest energy associated with the
numerical noise due to the lack of the renormalized density
gradients which conversely act to regularize the free surface
and, consequently, the spatial distribution of fluid particles
near the gauge point. However, we remark that the above
spectral analysis gives an assessment of the diffusive models
only in terms of the oscillatory pressure component.

3.2. Perforated Breakwaters. Concerning the modelling of
perforated breakwaters, two different geometries are consid-
ered [28]. Both caissons present a top cover plate over the free
surface and one internal chamber. The front wall of the first
breakwater is perforated by two rectangular holes, while the
back wall is solid. It is characterized by a porosity 𝜇 = 20%, a
width of chamber 𝐵 = 0.2m, a vertical base 𝑑

 = 0.2m, and a
height of top cover above SWL, 𝑠 = 0.08m.The second one is
perforated by three holes, adopting 𝜇 = 20%, 𝐵 = 0.15m, 𝑑 =
0.2m, and 𝑠 = 0.16m. In a plane channel 0.4m deep, second-
order incident waves are characterized by 𝐻 = 0.08m and 𝑇

= 1.2 s for the breakwater number 1 and by𝐻 = 0.1m and 𝑇 =
1 s for the breakwater number 2.

In Figures 5 and 6 are shown the spatial distributions of
dynamic pressures at the front wall and the internal walls
of the chamber, occurring when the maximum pressure
induced by the wave crest within a regular wave train
appears in correspondence with the SWL. The geometrical
characteristics of the breakwaters (𝐵, 𝑑

, and 𝑠) and the
water depth, 𝑑, are illustrated in Figures 5 and 6. Positive

dynamic pressures are directed in the external side of the
walls and negative ones in their internal side. We note that
the pressure peaks at the three reference walls appear at
different time instants. Their phase shift is dependent on the
wave celerity and the width of chamber. SPH results obtained
with the hybrid formulation and the models by Molteni and
Colagrossi [17] and Antuono et al. [18] using 𝛿 = 0.1 are
compared with the experimental data by Chen et al. [28],
showing an overall agreement on the front wall and the right
internal wall. The magnitude of Δ𝑝 along the depth is greater
for the front wall and lower for the internal walls due the
wave dissipation generated by the presence of perforations, as
also observed by Takahashi [16]. A general underestimation
of the dynamic pressures is observedwhen the formulation of
Molteni and Colagrossi [17] is applied. Since the hydrostatic
solution is not preserved in the above mentioned model,
unphysical negative values of Δ𝑝 appear near the lower
horizontal parts of the caisson and the maximum dynamic
pressure at the SWL is underestimated with respect to the
laboratory data. Conversely, the use of the present hybrid
formulation and the one developed byAntuono et al. [18] lead
to a better assessment of load diagrams along the depthwhere
a general compressive strain state occurs at the walls due to
the preservation of the hydrostatic pressure, as expected. A
substantial difference between SPH and experiments in eval-
uatingΔ𝑝 can be observed near the holes of front walls where
the results obtained by the three diffusive models highlight
lower dynamic pressures than the experimental ones. Near
these geometrical singularities, the reference experimental
measurements are missing because of constructional con-
straints induced by the difficulty to place the pressure sensors
near the edges of a structure. As solely carried out in the
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Figure 6: Spatial distribution of wave pressures at perforated breakwater number 2 using the adopted diffusive SPH schemes.

design purposes, a linear variation is imposed between the
measurements deduced from a discrete battery of pressure
sensors [15] and this approach was historically adopted in
laboratory investigations addressed to study the interaction
between waves and perforated breakwaters (see, e.g., [14]).
The experimental load diagrams adopted for the evaluation
of wave forces are therefore approximated with respect to the
spatial discretization but, at the same time, they provide a
safe dimensioning from the engineering point of view. The
discrepancies between SPH and experimental values allow
furnishing similar values of the resulting wave forces acting
on the large inertia caisson and different results when the
total force is applied to the slender structural components of
the slotted wall. This result suggests the need to assess load
diagrams on distinct elements of the perforated breakwaters
for subsequent structural analyses.

In the reference experiments by Chen et al. [28], the
pressure gauges were only placed along the solid contours
of the vertical parts of the considered perforated breakwaters
and, consequently, the experimental values of pressures were
adopted to evaluate horizontal wave forces. As a result, the
validation of the proposed hybrid SPH model refers to the
available experimental values due to the lack of pressure
measurements at the top cover of the caissons. Moreover,
we observe that, in the present numerical simulations, the
adopted wave trains interact with a small part of the top cover
and for a short time interval just for the perforated breakwater
number 1.

An application example of the adopted hybrid diffusive
formulation is given in Figure 7, where the dynamic pres-
sure distribution at the perforated breakwater number 1 is
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Figure 7: Dynamic pressure for the hybrid SPH formulation at a
perforated breakwater number 1 when the crest within the regular
wave train impacts on the front wall.

illustrated when the maximum wave crest impacts on the
front wall. Strong variations in the values of Δ𝑝 are evident
across the holes of the structures due to the loss of wave
energy. In this case, negative dynamic pressure can occur
during the passage of the water flux. The pressure drops are
related to the strong horizontal velocity gradients occurring
at the geometrical singularities, as expressed by the canonical
Bernoulli’s theorem (see, e.g., [14]).
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Figure 8: Root mean square errors on Δ𝑝 versus parameter 𝛿.

In order to assess the capabilities of the involved diffusive
SPH forms in simulating the experimental values of wave
pressures on the three faces of the caissons [28], Figure 8
shows the root mean square errors, 𝑒RMS, as a function of the
magnitude of the diffusive parameter 𝛿. In all cases the value
of 𝑒RMS is less than 30N/m2 and, particularly, for the second
perforated breakwater, the use of the hybrid formulation gives
the lowest errors.

4. Conclusions

The work presented an SPH analysis of dynamic pressures
induced by the interaction between regular wave trains and
vertical/perforated breakwaters. The research was addressed
to overcome the limitations in the breakwater design, in par-
ticular, when different structural components are involved.
The present phenomenon is characterized by the occurrence
of different flow dynamics and the pressure field was evalu-
ated through a hybrid formulation based on the coupling of
the diffusive terms developed by Molteni and Colagrossi [17]
(close to the breakwater walls) and Antuono et al. [18] (away
from them) through a transition zone.

Numerical simulations of the wave pressures acting on
a simple vertical breakwater and two types of perforated
breakwaters using the adopted diffusive SPH schemes were
comparedwith laboratory experiments. SPH analysis in time,
frequency, and space domain allowed an assessment of the
capabilities of the involved diffusive models to smooth out
the high-frequency noise and furnish a suitable evaluation of

dynamic loads. Application of Molteni and Colagrossi model
provided the smoothest effect on the spurious frequencies
in the underwater part of the breakwater but it failed on
the estimation of the maximum wave loads close to the
SWL and the horizontal structural parts. The present hybrid
formulation gave less errors and a higher smoothing effect
than the Antuono et al. model along the depth. However,
these two models furnish a globally better evaluation of the
load diagrams and, in particular, between the wave run-
up and run-down where the highest wave pressures occur.
With regard to the perforated structures, SPH simulations
described the presence of pressure drops occurring across
their holes. Further investigations will be addressed to ana-
lyze the performances of the proposed hybrid formulation
considering breakwaters subjected to breaking wave loads.
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