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Abstract. 
This paper extends the stochastic stability criteria of two measures to the mean stability and proves the stability criteria for a kind of stochastic Itô’s systems. Moreover, by applying optimal control approaches, the mean stability criteria in terms of two measures are also obtained for the stochastic systems with coefficient’s uncertainty.



1. Introduction
Lyapunov’s method, which makes an essential use of auxiliary functions (also called Lyapunov functions), is an important approach to study the stability of differential systems including ordinary differential equations (ODEs) and stochastic differential equations (SDEs). This method started in Lyapunov’s original work in 1892 [1] for demonstrating stability of ODEs. In the 1960s, Movchan [2] studied the stability with two measures; such works were also developed and can be seen in [3]. In the past decades, Lyapunov’s method is modified to the study of stability of Markovian processes [4], stochastic differential systems based on Brownian motions [5], semimartingales [6], or Lévy processes [7] and is also developed with the form of exponential stability [8] or LaSalle theorem [9], and so forth. Recently, the stability for systems with unknown parameters is also discussed [10], and the theorems of stability are widely applied in aerospace [11], state-feedback control [12], automatic control [13], neural networks [14], and other fields.
In this paper, we will discuss the following stochastic Itô’s systems: where  satisfy the usual Lipschitzian conditions and  is -dimensional standard Brownian motion. It is well known that, for a stochastic process  and a given positive function ,  almost surely discussed in [15] does not imply that . So, we extend Lyapunov’s methods used by [3] for ODEs to the stochastic cases and study the mean stability criteria in terms of two measures for system (1).
This paper is organized as follows: In Section 2, we first introduce Lyapunov’s derivatives for (1) and deduce the basic comparison results in terms of Lyapunov’s function. In Section 3, we prove the stochastic two-measure stability criteria for Itô systems, which can be seen as the extension of that of the ODEs. As described in [16], stability, robustness, and optimality can be considered systematically and simultaneously. In Section 4, the optimal control approach is extended to the stochastic systems with coefficient’s uncertainty.
2. Basic Comparison Results for Stochastic Differential Equations
Let  be a given completed probability space, and  is a standard Brownian motion with filtration:Let ,  be deterministic functions and satisfy the following Lipschitz condition and linear growth condtion: there exists , for every , such that For a given function , , we denote where  represents a -dimensional random variable with standard normal distribution; that is,  and  is a -order identity matrix.
Remark 1. We use the notation  to emphasize the definition with respect to system (1). For convenience, we use the shortened form  to substitute .
Remark 2. If ,  is Lyapunov’s operator  associated with (1); that is, where  is the partial derivative for ,  is the gradient of  for , and  is the Hessian matrix of  for .
Since (4) is dependent on expectation calculating, it is not easy to check whether  exists or not. The following lemma gives a condition for the existence of .
Lemma 3.  Let  be continuous one-order differentiable for  and also satisfy the following condition: where  is continuous on  and  is locally bounded for . Then  exists at .
Proof. Denote ; then, for fixed , By (6) and distribution of , we have the first item of the right side of (7) that is bounded: Since  is differentiable for , so the last item of the right side of (7) is also bounded. Therefore, the supremum limit of (7) exists; that is,  exist exactly.
The following lemmas will be used later.
Lemma 4 (see Theorem   in [6], or Theorems  and   in [17]).  Suppose  satisfy (3). Then, stochastic differential equation (1) admits a unique strong solution  such that, for any , there exists ( is a constant dependent only on , , and ): 
Lemma 5.  Suppose  satisfies (6), and  is the solution of (1); let ; then where  and  is the usual right upper Dini derivative defined by 
Proof. For small , we have We now prove that the first two items of the right side are the higher infinitesimal of . By (1), we know that For convenience, we denote , similar meaning for . We have By Lemma 4 and inequality (10), we have Let ; then ( replaces  for shortening)Now we estimate the order of Since  and , so where  are continuous positive functions. By (19), we have Since by (17) and (20), we see that the first two items of right side are higher infinitesimal of . So we have For the last two items of (13), since  is independent of  with normal distribution , so we have This proves (11).
The following lemma will be used in the proof of Theorem 7.
Lemma 6 (see Theorem   in [3]).  Let  and  be the maximal solution of existing on . Suppose  and , , where  is any fixed Dini derivative. Then  implies , .
Now we formulate the basic comparison results in terms of Lyapunov function .
Theorem 7.  Assume  satisfies where  is concave for . Let  be the maximal solution of the differential equation Then, for every solution of (1) ,  implies 
Proof. Denote . By Lemma 5 and the concave of  we haveBy Lemma 6, we can obtain the result (27).
Remark 8. If , the inequality (25) became 
3. Stability Criteria in terms of Two Measures
Now we discuss the two-measure stability criteria for the stochastic differential system (1). We assume  for all . Firstly, we give some definitions for stochastic stability.
Definition 9. The stochastic differential system (1) is said to bemean -equistable, if for each  and , there exists a function  which is continuous in  for each  such that  where  is any solution of (1);mean -uniformly stable, if  holds with  being independent of ;mean -quasiequiasymptotically stable, if for each  and , there exist positive number  and  such that mean -quasiuniform asymptotically stable if  holds with  and  being independent of ;mean -asymptotically stable if  holds and, given , there exists a  such that mean -uniformly equiasymptotically stable, if  and  hold together;mean -uniformly asymptotically stable if  and  hold simultaneously;mean -unstable if  fails to hold.
The following classes of functions will be used in this paper: , , 
Definition 10. Let . Then, we say that  is finer than  if there exists a function  such that . Furthermore, if  is independent of  then we call  uniformly finer than .
Definition 11. Let . If there exists a function convex  such that , then we call -positive definite. If there exists a concave function  such that , then we call -decrescent.
Theorem 12.  Assume that  and  is uniformly finer than ,,  satisfies (6), and  is -positive definite and -decrescent, and , for . 
Then, the stability properties of the trivial solution of (26) imply the corresponding -stability properties of (1).
Proof. Since  is -positive definite, so there exists a convex  such that Suppose the trivial solution of (26) is equistable and    is its maximal solutions with initial time  and initial value , then, for every , there exists , when , Let ; then, by Theorem 7, we have Since  is -decrescent, there exists a concave  such that So Since  is continuous and strictly increasing, so let ; then when , inequality (34) holds. Combining (33), (34), and (35) and using the strictly increase of , we can gain which implies (1) -equistability.
Remark 13. If , then condition  can be replaced by 
Remark 14. The stabilities of auxiliary ordinary differential equation (26) are defined by Definition   in [3].
Example 15. Consider the following 2-dimensional Itô’s system: Let ; suppose  has the form ThenIn order to make -positive, we let Let , ; in order to find  to satisfywe set When , combining (43) and (45), we have that, when there exists  which satisfies (44). Moreover, the trivial solution of is uniformly asymptotically stable; by Theorem 12, the stochastic differential is mean--asymptotically stable.
However, in practice, the coefficients maybe have some uncertainty properties; that is, we only know the range of the parameters . Then how to discuss the stability of such systems with uncertainty is still a very interesting problem. The following section will introduce an optimal control approach to discuss the stability of such systems with uncertainty.
4. The Stability for Systems with Uncertainty
Consider the following stochastic differential equations with uncertainty: where  is an uncertainty function, and , that is, the trivial solution, is  of (48). Furthermore, we also suppose there exists a function  such that 
Now we discuss how to determine the asymptotic stability of system (48) for all uncertainty function . Similar to the methods applied by [18, 19], we can translate this stability problem into an optimal problem.
For the nominal system suppose we can find a state-feedback control  that minimizes the cost functionalwhere ,  is the initial value of (50), , and  is admissible on  for each , and satisfies Let the value function 
Theorem 16.  Suppose  is an optimal control of problem (53), and there exists  satisfying and the value function ,  is also  positive, and  is decrescent, then system (48) is uniformly mean  uniformly asymptotically stable for all uncertainties .
Proof. The values function  satisfies the Hamilton-Jacobi-Bellman equation: So, the optimal control  satisfies Then, the Lyapunov generator of (48) for  is given as So, for the solutions  of (48) with uncertainty , applying Itô’s formula to , we have, when , Hence So  is decreasing on . Now we show  when . Suppose . Since  is  decrescent, so there exists  and , such that  () combining with (59); we haveThis contradicts the fact that . This implies that system (48) is uniformly mean  uniformly asymptotically stable.
Corollary 17.  Specially, let The value function can be given by  and the optimal control , where  satisfies the following Riccati equation: Let  be the maximal eigenvalue of . If , then the corresponding system with uncertainty is uniformly mean -equistable for all uncertainties  (which is also mean square asymptotically stable for all uncertainties ).
Example 18. Consider (41) with uncertainty coefficients. In (41), replace  by  and , respectively, and  takes values in ,  in , , and . Then the system with uncertainty is obtained: Let And let  be the 2-order identical matrix. Let ; then We can take  and the auxiliary optimal problem is with the cost functional , solving (62) with ; we have By Corollary 17, we can determine that the stochastic system (63) is uniformly mean  uniformly stable for all uncertainties.
5. Conclusion
In this paper, we extend the stability criteria of two measures to the mean stability situations for the stochastic systems with uncertainty. For the usual SDE, we give the results of mean stability criteria which are the basic criteria for such systems. As far as the systems with uncertainty, in order to resolve the difficulties coming from the coefficient uncertainty, we use the optimal control results as an auxiliary method to determine the mean stability. Furthermore, the stability criteria in terms of two measures for other stochastic systems, such as systems with Markovian jumps or Poisson jumps, are worth further studying.
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