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Abstract. 
This paper presents an application of the canonical duality theory for box constrained nonconvex and nonsmooth optimization problems. By use of the canonical dual transformation method, which is developed recently, these very
difficult constrained optimization problems in  can be converted into the canonical dual problems, which can be solved by deterministic methods. The global and local extrema can be identified by the triality theory. Some examples are listed to illustrate the applications of the theory presented in the paper.



1. Primal Problems
The methods of solving nonconvex and nonsmooth optimization have been the topic of intense research during the last forty years. As we know, the general methods of nonsmooth optimization are based on some subdifferentials. However, in the general nonconvex and nonsmooth optimization problem, due to the nonconvexity and nonsmoothness of the objective functions and inequality constraints, the computation of subdifferential is rather time-consuming. So the traditional theories and direct methods are very difficult in solving the nonconvex and nonsmooth optimization and global optimality with constraints. Recently, some effective methods have been studied to solve certain box constrained nonconvex minimization problems [1–8].
In this paper, the primary goal is to solve the following box constrained nonconvex and nonsmooth optimization problems (in short, the primal problem ). Considerwhere  (the notation  denotes integer vectors of  with components either  or 1) is a feasible space,  is a nonzero vector, and  is an  times  matrix.  is a nonconvex and nonsmooth function. Here, we simply assume that  is defined by where  is an  times  matrix,  is a vector of parameter,  is an arbitrary constant,  and  are both nonzero positive constants,  is the Euclidean norm, and  is an arbitrary positive constant. In constrained global optimization problems,  could be the indicator of a feasible set [9]. In particular, if we abandon the box constraint, problem  will be turned into unconstrained optimal problem which has been discussed in [10]. The primal problem  appears frequently in many applications, such as semilinear nonconvex partial differential equations, structural limit analysis, discretized optimal control problems with distributed parameters, and network communication [6, 11, 12].
In the primal problem , the box constraint  is equivalent to . Thus, based on the traditional Lagrangian multiplier method, we have In the case where  is positive definite, for a given , the traditional dual function can be defined via the Fenchel-Moreau-Young duality theory: However, due to the nonconvexity of the objective function , the Young-Fenchel inequality can lead to a weak duality relationship in general nonconvex systems: The nonzero value  is called the duality gap, which is usually  if  is indefinite. This nonzero duality gap shows that the Fenchel-Rockafellar duality theory and method can be used mainly in convex systems. In order to eliminate this duality gap, many modified Fenchel-Rockafellar duality theories and methods for nonconvex optimization problems have been proposed [12–20]. Recently, the so-called canonical dual transformation method (without the duality gap) has been developed in general nonconvex systems [21]. This method is a newly useful tool for optimal problem. At present, the method has been successfully used for a large class of nonsmooth or nonconvex minimization [9, 10, 21, 22].
In this paper, we will present the application of the canonical dual transformation method for the solutions of the box constrained nonconvex and nonsmooth optimization problems () in . In the next section, a perfect dual problem is formulated, which is equivalent to the primal problem in the sense that they have the same set of critical points. Section 3 shows the sufficient conditions for global and local minima. In Section 4, some concrete examples for box constrained nonconvex and nonsmooth optimization problems are presented. We state some conclusions in Section 5.
2. Canonical Dual Problem and Complete Solutions
In order to use the canonical dual transformation method to solve the box constrained nonconvex and nonsmooth optimization problem, we need to reformulate the constraint  in canonical form .
Following the stand procedure of the canonical dual transformation method developed in [21], the canonical geometrical operator  in the primal problem () can be defined as where  is a scale and  for . Let  be the range of the mapping  which can be written asAccording to the canonical transformation method, we define a real-valued function . Thus, the nonconvex and nonsmooth function  can be written in a canonical form: Then  is a canonical function defined on the subset  which can be written as where 
We yet assume that matrix  is invertible. For each given nonzero vector , the function  is defined by where  is a canonical function on  since its Gâteaux derivative  is one-to-one onto mapping. Thus, we can rewrite the primal minimization problem () in the unconstrained canonical form (() in short):where  stands for finding all the stationary points of .
Let  be a dual variable of y and , where  represents a diagonal matrix with  as its diagonal entries and the dual variable  is also a vector in . Then the -canonical conjugate  of the canonical function  can be well defined by the -canonical dual transformation [21]:where , ,  is the Gâteaux derivative of  at , and  denotes the gradient  at .
In the case of , by the definition of the canonical function,  is Gâteaux differentiable, and the duality relation  is invertible, where  denotes the Gâteaux derivative of  at . Thus, the canonical conjugate , where  of , can be obtained by the Legendre transformation: The dual feasible spaces are three subsets of : 
By replacing  in  by the complementary form , we obtain the Gao-Strang total complementary function : Thus, on the dual feasible spaces, the canonical dual function  can be formulated as The canonical dual problem can be formulated as problem ():
In the case of , the canonical conjugate  of  can be written as It is similar to that in the case of  where the dual feasible spaces are also three subsets of : Hence, on the dual feasible spaces, the canonical dual problem () can be formulated as 
Theorem 1 (perfect duality theorem).  Suppose that vector  is a stationary point of the canonical dual problem (); then the vector defined by is a stationary point of the primal problem (), and 
Proof. Without loss of generality, we suppose that  is a stationary point of (); then we have the following canonical dual equation: In terms of  and (24), one has that By the condition , it is obtained that . On the other hand, as  is the stationary point of (), then where  is the th component of the vector . It is obvious that  is also a stationary point of the primal problem (). Thus, by  and we have This proves the theorem.
Theorem 1 shows that, by use of the canonical dual transformation, the primal problem  can be converted into a canonical dual problem, which can be solved to obtain the stationary points. However, the stationary conditions are only necessary for nonconvex optimization problem. In the next section we will present the optimality criteria.
3. Optimality Criteria
The two subsets of the set  are, respectively, defined by 
Theorem 2 (triality theorem).  For each dual solution , one lets  If , then  is a global maximizer of  on , while  is a global minimizer of  on , and If , then, on the neighborhoods  and  of  and the associated , respectively, we have that either or holds.
Proof. Without loss of generality, we suppose that ; that is, . The extended Lagrangian  can be written as It can be easily proved that the critical points of  solve the primal problem, and  By Theorem 1, we know that the vector  is a stationary point of problem () if and only if  is a stationary point of problem () and If  is definite, the extended Lagrangian  is convex on  and concave in each  and ; that is, the extended Lagrangian  is a saddle function on . By formula (12) and the definition of , one has thatThus, we have If , the matrix  is indefinite; the function  is a so-called super-Lagrangian [22]; that is, it is locally concave in each of its variables  and  on the neighborhood . In this case, by the triality theory developed in [21], we have either or The theorem is proved.
Theorem 2 shows that if , then  is global minimizer of , while the stationary point , then  is either a local minimizer or a local maximizer of the primal problem . The optimality criteria provides the sufficient conditions of both global and local minina, which can be used to develop for solving the nonconvex and nonsmooth problem with box constraints.
4. Numerical Tests
The canonical duality theory can be applied to solve many constrained nonconvex and nonsmooth problems in engineering and science. Now we list some examples to illustrate the applications of the theory presented in this paper.
Example 1. In the case of , the nonconvex and nonsmooth function whereIf we choose , then ; the function  can be written asAnd its canonical dual function  can be written asIn the effective domain , the canonical dual function  has one real root: In the effective domain , the canonical dual function  does not have any real roots. In the effective domain , the canonical dual function  has two real roots: Since , by Theorem 2, we know that is a global minimizer of  and , while  is a local maximizer and  is a local minimizer (see Figure 1(a)). The graphs of the box constrained nonconvex and nonsmooth function  and its canonical dual function  are shown in Figure 1.
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(b)
Figure 1: (a) Graph of the  in one-dimensional spcae. (b) Graph of the canonical dual function .


Example 2. In the case of , if we choose , , , , , then , and the function  can be written asIn the effective domain , the canonical dual function  has one real root Neither in the effective domain  nor in the effective domain , the canonical dual function  have any real roots.
Since , by Theorem 2, we know that is a global minimizer of  and  (see Figure 2).




	
	
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
		
			
		
		
			
		
		
		
		
			
		
			
		
			
		
			
	


Figure 2: Graph of the function  in two-dimensional spcae.


5. Conclusions
It is very difficult to solve the nonconvex and nonsmooth optimization problem with box constraints via the traditional methods. However, using the canonical dual transformation method, which is presented in the paper, we can easily obtain the global minimizer of  by solving its canonical dual problem. As the canonical dual function  is concave on the dual feasible space , when  is nonempty, the canonical dual function  has one stationary point in  at least. Thus, we can solve the canonical dual problem by well-developed deterministic optimization methods. The presented paper shows again that the canonical dual transformation method may possess important computational impacts on global optimization.
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