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Received 4 August 2014; Revised 19 December 2014; Accepted 19 December 2014

Academic Editor: Hamid Reza Karimi
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A stochastic modeling approach based on the Bertalanffy law gained interest due to its ability to produce more accurate results
than the deterministic approaches.We examine tree crownwidth dynamic with the Bertalanffy type stochastic differential equation
(SDE) and mixed-effects parameters. In this study, we demonstrate how this simple model can be used to calculate predictions of
crown width. We propose a parameter estimation method and computational guidelines. The primary goal of the study was to
estimate the parameters by considering discrete sampling of the diameter at breast height and crown width and by using maximum
likelihood procedure. Performance statistics for the crown width equation include statistical indexes and analysis of residuals.
We use data provided by the Lithuanian National Forest Inventory from Scots pine trees to illustrate issues of our modeling
technique. Comparison of the predicted crown width values of mixed-effects parameters model with those obtained using fixed-
effects parameters model demonstrates the predictive power of the stochastic differential equations model with mixed-effects
parameters. All results were implemented in a symbolic algebra system MAPLE.

1. Introduction

Ordinary differential equation is a powerful tool for analyzing
scientific data bymodel-driven approach.Many real-life phe-
nomena can be described by a nonlinear ordinary differential
equation [1, 2]. Usually, the nonlinear model parameters are
easier to interpret compared to those from linear regression
models because the parameters in nonlinearmodels generally
have a natural physical interpretation. The dynamics of bio-
logical systems are largely driven by stochastic processes and
are subject to random external perturbations. A stochastic
differential equation (SDE) is a differential equation in which
some of the terms evolve according to Brownian Motion.
This approach assumes that the dynamic is partly driven by
noise. SDEs are often used to model the stochastic dynamics
of biological systems [3].

Tree growth dynamical models project the growth and
development of forest ecosystems, known to be stochastic in
nature [4]. In order to understand this complex dynamics

behavior computational modeling is inevitable. As an alter-
native to model-based approach, data-based methods have
been developed during the past several decades. The recent
surveys by Yin et al. [5, 6] provide the excellent review of the
current development of the advanced and sophisticated data-
based methods, schemes, and their applications. However,
traditionally used multivariate statistical methods [7] are
not suitable to handling the process dynamics of forest
ecosystems and operation condition changes.

Tree crown width models can be classified into two basic
types according to their independent variables [8]. The first
type (local model) assumes that tree crown width is com-
pletely dependent on the breast height diameter. The second
type (generalized model) includes the breast height diameter
and other individual tree variables (exogenous variables)
such as tree crown height, total tree height. The first model
type requires only low sampling effort and is usually locally
applied, whereas the secondmodel type demands high samp-
ling effort and is often applied regionally. All the methods
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traditionally used in nonlinear crown regression models
ignore the variation of residuals that assumes independence
and constant variance.

In this study, we use crown width as a test case and exam-
ine how the behavior of a small-size tree is altered when sto-
chasticity is introduced into the deterministic Bertalanffy
type equation. To detect an explanation about the behavior
of the crown width by the diffusion a set of external factors
(exogenous variables) is introduced in the model. The breast
height diameter and exogenous stand variables behaviors
are assumed to be known and they must contribute to the
description of the evolution of the stochastic crown width
process. Several SDE models with fixed-effects parameters
[4, 9–12] and mixed-effects parameters [13] have previously
been developed for modeling the tree diameter and height.
In this paper, more sophisticated Bertalanffy type stochastic
process of a response variable is proposed including mixed-
effects parameters and nonhomogeneous drift coefficient
which depends on deterministic functions that describe the
dynamics of certain stand variables named as exogenous
variables. The importance of the mixed-effects parameters
SDE Bertalanffy type model lies in its ability to split the total
variation into within- and between-stands components. The
new developedmodel describes the within-stand variation in
data through two sources of noise: the measurement noise
representing the uncorrelated part of the residual variability
associated with assay or sampling errors and the system noise
reflecting the random fluctuations around the corresponding
theoretical growth model. If the magnitude of the parameter
of the system noise 𝜎 is zero, then the entire system noise
term will vanish and the remaining part of the SDE will
simply be the ordinary differential Bertalanffy form whose
solution is the regression term of the mixed-effects model.
Maximum likelihood estimations of the fixed- and mixed-
effects parameters are calculated using Laplace approxima-
tions of the maximum likelihood. The maximum likelihood
methodology developed allows us to statistically fit themodel
to the sample dataset considered.

The objective of this paper is to develop a novel SDE Ber-
talanffy type model for growth modeling and to put forward
the advantages of using diffusion processes, random param-
eters, and exogenous stand variables in the analysis of crown
width dynamics. We also discuss how conditional density
function can be used to construct maximum likelihood esti-
mators of the fixed- andmixed-effects parameters. AMAPLE
program was implemented to carry out the calculations req-
uired for this study.

2. Material and Methods

2.1. Stochastic Differential Equations Model. The focus of the
present work is on the dynamics of the response variable
(crown width), 𝑌, as a stochastic process with respect to the
predictor variable (diameter at breast height− diameter in the
sequel), 𝑥. In this study, we selected using the generalization
of the Bertalanffy type ordinary differential equation.The von
Bertalanffy [14] hypothesized that the growth of an organism
could be represented as the difference between the synthesis

and degradation of its building materials.There are few theo-
retical equations formulated specifically for biology applica-
tions. In this paper, we use deterministic model developed by
Román-Román et al. [15] as the basis of the newly developed
stochastic model. The changes in response variable, 𝑦(𝑥), are
described using the ordinary differential equation

𝑑𝑦 (𝑥)

𝑑𝑥

=

𝛼𝛽𝛾

𝑒
𝛽𝑥

− 𝛾

𝑦 (𝑥) , (1)

where 𝛼, 𝛽, and 𝛾 are unknown fixed-effects parameters and
verify 𝑑 ≥ 0 > ln(𝛾)/𝛽, 𝛽 > 0, 𝛼 > 1. The formula describing
the Bertalanffy trajectory follows the form of a sigmoidal
function

𝑦 (𝑥) = 𝑦0 (
1 − 𝛾𝑒

−𝛽𝑥

1 − 𝛾𝑒
−𝛽𝑥0

)

𝛼

, 𝑥 ∈ [𝑥0; 𝑋0] , (2)

where𝑦0 = 𝑦(𝑥0). Equation (1) can be seen as a generalization
of the Malthusian growth model with nonconstant fertility
depending on the predictor variable (diameter) by 𝑟(𝑥) =

𝛼𝛽𝛾/(𝑒
𝛽𝑥

− 𝛾). There are alternative ways of introducing
stochasticity into the behavior of the response variable. In this
work, the randomness in the operation of response variable
was defined by standard Brownian Motion. Therefore, the
complete deterministic model defined by (1) was converted
into a stochastic model assuming that the fertility varies
randomly around the mean

𝑟 (𝑥) =

𝛼𝛽𝛾

𝑒
𝛽𝑥

− 𝛾

+ 𝜎𝜀 (𝑥) , (3)

where 𝜎 is the diffusion coefficient and 𝜀(𝑥) is a Gaussian
white noise process. The relationship between the response
and predictor variables is altered by environmental conditi-
ons. Stand-specific characteristics, such as soil type, nutrient
status, and elevation, cause parameters to differ between
different stands. In the case of between-stand variation,
the parameters 𝛼, 𝛽, and 𝛾 vary from stand to stand and
hence account for this variation. The interest of this study
is the development of growth models for a large geographic
region rather than localized areas. In order to compensate
for the randomness found in stands we can add a random
term to our model. Thus, specific stands may have what
are generally termed “random parameters” in mixed-effects
model terminology. For the construction of a mixed-effects
model, the model first needs to determine which parameters
should be considered mixed and which should be considered
purely fixed. The parameter with high variability could be
considered as mixed-effects parameter. The parameter 𝛼

exhibits high variation between stands and thus can be
altered by adding stand-specific random effects to the fixed-
effects parameter to produce a stand-specific parameter in
the following form:

𝛼 = 𝛼0 + 𝜙𝑖, (4)

where parameters 𝜙𝑖 of the 𝑖th stand (𝑖 = 1, 2, . . . ,𝑀) are
stand-specific random effects. It is assumed that the random
effects 𝜙𝑖 (𝑖 = 1, 2, . . . ,𝑀) are independent and normally
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distributed with a mean of 0 and a constant variance (𝜙𝑖 ∼

𝑁(0; 𝜎
2
𝜙)). Therefore, the response variable, 𝑌𝑖(𝑥), 𝑥 ≥ 0,

𝑖 = 1, 2, . . . ,𝑀, is described using a stochastic differential
equation of the Bertalanffy type:

𝑑𝑌
𝑖
(𝑥) =

(𝛼0 + 𝜙𝑖) 𝛽𝛾

𝑒
𝛽𝑥

− 𝛾

𝑌
𝑖
(𝑥) 𝑑𝑥 + 𝜎𝑌

𝑖
(𝑥) 𝑑𝑊

𝑖
(𝑥) ,

𝑃 (𝑌
𝑖
(𝑥0) = 𝑦0) = 1,

𝑥 ∈ [𝑥0; 𝑋0] ,

(5)

where𝑊
𝑖
(𝑥), 𝑥 ≥ 0, are the independent standard Brownian

Motions, 𝑊𝑖(𝑥) and 𝜙𝑗 are assumed to be mutually indep-
endent for all 1 ≤ 𝑖, 𝑗 ≤ 𝑀, and 𝑀 is the total number of
stands used for model fitting.

Moreover, to account for the variation between different
growth conditions, the parameter 𝛼 can be modified by inc-
luding function 𝑔(𝑥) that introduces the dynamics of each
exogenous stand variable into the model. The function 𝑔(𝑥)

is considered as a linear combination of the exogenous stand
variables and is given by

𝑔 (𝑥) = 𝛼0 +

𝑞

∑

𝑘=1

𝛼𝑘𝑔𝑘 (𝑥) , (6)

where 𝑔𝑘(𝑥) for 𝑘 = 1, 2, . . . , 𝑞 are termed exogenous stand
variables and constitute a diameter-continuous function in
𝑥 ∈ [𝑥0; 𝑋0], 𝛼0, 𝛼𝑘 are diameter-independent real fixed-
effects parameters (to be estimated), and 𝑞 is the number of
exogenous stand variables. One candidate set for the basis
functions 𝑔𝑘(𝑥) that is widely used is polygonal functions.
Therefore, the multifunctional nature of the parameter 𝛼 is
established in terms of a random-effect parameter and a
linear combination of exogenous stand variables functions,
which are deterministic diameter functions, in the following
form:

𝛼 (𝑥) = 𝛼0 + 𝜙𝑖 +

𝑞

∑

𝑘=1

𝛼𝑘𝑔𝑘 (𝑥) . (7)

Equation (7) can be put into the above formulae (5) to deter-
mine the effects of the covariates (exogenous stand variables)
and random effects on response variable. In this situation, the
nonhomogeneous SDE of the response variable is expressed
as follows:

𝑑𝑌
𝑖
(𝑥) =

𝛽𝛾 (𝛼0 + 𝜙𝑖 + ∑
𝑞

𝑘=1
𝛼𝑘𝑔𝑘 (𝑥))

𝑒
𝛽𝑥

− 𝛾

𝑌
𝑖
(𝑥) 𝑑𝑥

+ 𝜎𝑌
𝑖
(𝑥) 𝑑𝑊

𝑖
(𝑥) ,

𝑃 (𝑌
𝑖
(𝑥0) = 𝑦0) = 1,

𝑥 ∈ [𝑥0; 𝑋0] .

(8)

By Itô’s [16] lemma, the logarithmic transformation 𝑍 ≡

ln(𝑌) transforms (8) to the following form:

𝑑𝑍
𝑖
(𝑥) = (

𝛽𝛾 (𝛼0 + 𝜙𝑖 + ∑
𝑞

𝑘=1
𝛼𝑘𝑔𝑘 (𝑥))

𝑒
𝛽𝑥

− 𝛾

−

𝜎
2

2

)𝑑𝑥

+ 𝜎𝑑𝑊
𝑖
(𝑥) ,

𝑃 (𝑍
𝑖
(𝑥0) = ln (𝑦0)) = 1.

(9)

Then, by integration and 𝑌 ≡ exp(𝑍), we have

𝑌
𝑖
(𝑥)

= 𝑦0 exp(∫

𝑥

𝑥0

𝛽𝛾 (𝛼0 + 𝜙𝑖 + ∑
𝑞

𝑘=1
𝛼𝑘𝑔𝑘 (𝑢))

𝑒
𝛽𝑢

− 𝛾

𝑑𝑢

−

𝜎
2

2

(𝑥 − 𝑥0) + 𝜎∫

𝑥

𝑥0

𝑑𝑊
𝑖
(𝑢)) .

(10)

Taking into account that the random variable ∫𝑥
𝑥0

𝑑𝑊
𝑖
(𝑢) has

a normal distribution with mean 0 and variance 𝑥 − 𝑥0 we
can deduce that the process𝑌𝑖(𝑥) corresponds to a lognormal
distribution, Λ 1(𝜇

𝑖
(𝑥 | 𝑦0, 𝑥0); V(𝑥 | 𝑥0)). In this case, the

conditional probability density function for the considered
stochastic process 𝑌𝑖(𝑥) is

𝑓
𝑖
(𝑦, 𝑥) =

1

𝑦√2𝜋V (𝑥 | 𝑥0)

× exp(−

1

2V (𝑥 | 𝑥0)
(ln𝑦 − 𝜇

𝑖
(𝑥 | 𝑦0, 𝑥0))

2
) ,

(11)

where

𝜇
𝑖
(𝑥 | 𝑦0, 𝑥0)

= ln(𝑦0(

𝛽𝛾 (1 − 𝛾𝑒
−𝛽𝑥

)

1 − 𝛾𝑒
−𝛽𝑥0

)

(𝛼0+𝜙𝑖)

)

+ 𝛽𝛾

𝑞

∑

𝑘=1

𝛼𝑘 ∫

𝑥

𝑥0

𝑔𝑘 (𝑢)

𝑒
𝛽𝑢

− 𝛾

𝑑𝑢 −

𝜎
2

2

(𝑥 − 𝑥0) ,

(12)

V (𝑥 | 𝑥0) = 𝜎
2
(𝑥 − 𝑥0) . (13)

In this paper, we approximate the functions 𝑔𝑘(𝑑), 𝑘 =

1, 2, . . . , 𝑞, by polygonal functions. We have real observations
𝑧
𝑖
0𝑘, 𝑧
𝑖
𝑗𝑘; 𝑗 = 1, 2, . . . , 𝑛𝑖 (𝑛𝑖 is the number of observations

possessed in the 𝑖th stand) for exogenous stand variables, 𝑧𝑘,
in the values of predictor variables 𝑥0 and 𝑥

𝑖
𝑗𝑘. Hence, for

𝑘 = 1, 2, . . . , 𝑞 we have

𝑔𝑘 (𝑥) = 𝑧
𝑖
0𝑘 +

𝑧
𝑖
𝑗𝑘 − 𝑧

𝑖
0𝑘

𝑥
𝑖
𝑗𝑘

(𝑥 − 𝑥0) ,

0 ≤ 𝑥 ≤ 𝑥
𝑖
𝑗𝑘, 𝑗 = 1, 2, . . . , 𝑛𝑖.

(14)
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More often than not each exogenous stand variable in a par-
ticular stand has the same observed value, 𝑧𝑖𝑗𝑘 = 𝑧

𝑖
𝑘; 𝑗 = 1,

2, . . . , 𝑛𝑖. From (14), we deduce that analytical expression of
the integral to the right-side equation (12) is

∫

𝑥

𝑥0

𝑔𝑘 (𝑢)

𝑒
𝛽𝑢

− 𝛾

𝑑𝑢 =

1

𝛽𝛾𝑥

𝐺𝑘 (𝑥) , (15)

where

𝐺𝑘 (𝑥)

= (𝑧0𝑘𝑥 − 𝑥0 (𝑧𝑘 − 𝑧0𝑘)) ln(

1 − 𝛾𝑒
−𝛽𝑥

1 − 𝛾𝑒
−𝛽𝑥0

)

−

𝑧𝑗 − 𝑧0

2𝛽

[(𝑥
2
− 𝑥
2
0) + 𝑥 ln(1 −

𝑒
𝛽𝑥

𝛾

)

−𝑥0 ln(1 −

𝑒
𝛽𝑥0

𝛾

)

−2(𝐿𝑖2 (
𝑒
𝛽𝑥

𝛾

) − 𝐿𝑖2 (
𝑒
𝛽𝑥0

𝛾

))] ,

(16)

where 𝐿𝑖2(𝑥) is the dilogarithm function defined by 𝐿𝑖2(𝑥) =

∫

𝑥

0
(ln(1 − 𝑢)/𝑢)𝑑𝑢. The conditional mean, mode, median,

quantile, variance, and coefficient of variation functions,
respectively, 𝑚(⋅), 𝑚𝑜(⋅), 𝑚𝑒(⋅), 𝑚𝑞(⋅) (0 < 𝑞 < 1), and 𝑤(⋅),
of the stochastic crown width process are given by

𝑚
𝑖
(𝑥) = 𝑦0 (

1 − 𝛾𝑒
−𝛽𝑥

1 − 𝛾𝑒
−𝛽𝑥0

)

(𝛼+𝜙𝑖)

⋅

𝑞

∏

𝑘=1

exp (𝛼𝑘𝐺𝑘 (𝑥)) ,

(17)

𝑚𝑜
𝑖
(𝑥) = 𝑦0 (

1 − 𝛾𝑒
−𝛽𝑥

1 − 𝛾𝑒
−𝛽𝑥0

)

(𝛼+𝜙𝑖)

⋅

𝑞

∏

𝑘=1

exp (𝛼𝑘𝐺𝑘 (𝑥)) ⋅ exp(−

3

2

𝜎
2
(𝑥 − 𝑥0)) ,

(18)

𝑚𝑒
𝑖
(𝑥) = 𝑦0 (

1 − 𝛾𝑒
−𝛽𝑥

1 − 𝛾𝑒
−𝛽𝑥0

)

(𝛼+𝜙𝑖)

⋅

𝑞

∏

𝑘=1

exp (𝛼𝑘𝐺𝑘 (𝑥)) ⋅ exp(−

1

2

𝜎
2
(𝑥 − 𝑥0)) ,

(19)

𝑚𝑞
𝑖
(𝑥) = 𝑦0 (

1 − 𝛾𝑒
−𝛽𝑥

1 − 𝛾𝑒
−𝛽𝑥0

)

(𝛼+𝜙𝑖)

⋅

𝑞

∏

𝑘=1

exp (𝛼𝑘𝐺𝑘 (𝑥))

⋅ exp(−

1

2

𝜎
2
(𝑥 − 𝑥0) + 𝜎√(𝑥 − 𝑥0)𝑧1−𝑞) ,

(20)

𝑤
𝑖
(𝑥) = (𝑦0 (

1 − 𝛾𝑒
−𝛽𝑥

1 − 𝛾𝑒
−𝛽𝑥0

)

(𝛼+𝜙𝑖)

⋅

𝑞

∏

𝑘=1

exp(𝛼𝑘𝐺𝑘(𝑥)))
2

⋅ (exp (𝜎
2
(𝑥 − 𝑥0)) − 1) ,

(21)

𝑐V (𝑥) = √exp (𝜎
2
(𝑥 − 𝑥0)) − 1. (22)

2.2. Computation of the Parameter Estimators. We consider
the generalized SDE crown width (response variable) model
defined by (8) in two aspects. First, the maximum log-
likelihood function is derived for generalized fixed-effects
model (in this case the parameters of random effects, 𝜙𝑖, 𝑖 =
1, . . . ,𝑀, are assumed to be equal to its mean value 𝐸(𝜙𝑖) =

0). Second, the maximum log-likelihood function is derived
for generalizedmixed-effectsmodel.The fixed-effects param-
eters 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙 and random-effect parameters
𝜙𝑖, 𝑖 = 1, . . . ,𝑀, are estimated by means of the maximum
likelihood procedure using discrete sampling and conditional
probability density function defined by (11). We assume that
all observations are independent (no repeated measurements
are used in the dataset for model fitting). Let us consider
a discrete sample of the crown width process (𝑙𝑖1, 𝑙

𝑖
2, . . . , 𝑙

𝑖
𝑛𝑖
)

at the diameters (𝑑𝑖1, 𝑑
𝑖
2, . . . , 𝑑

𝑖
𝑛𝑖
), where 𝑛𝑖 is the number of

observed trees of the 𝑖th plot, 𝑖 = 1, 2, . . . ,𝑀. Under the initial
condition 𝑃(𝐿(0) = 1.0) = 1, the associate log-likelihood
function for generalized fixed-effects parameters model
defined by (8) can be obtained by the following expression:

LL1 (𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎) =

𝑀

∑

𝑖=1

𝑛𝑖

∑

𝑗=1

ln (𝑓 (𝑙
𝑖
𝑗, 𝑑
𝑖
𝑗)) , (23)

where 𝑛𝑖 is the number of observed trees of the 𝑖th plot
𝑖 = 1, 2, . . . ,𝑀, conditional density function 𝑓(𝑙, 𝑑) takes
the form defined by (11), and random effects 𝜙𝑖 ≡ 0;
𝑖 = 1, 2, . . . ,𝑀. The maximum log-likelihood function for
generalized mixed-effects parameters model defined by (8)
takes the following form:

LL2 (𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)

=

𝑀

∑

𝑖=1

∫

𝑅

𝑛𝑖

∑

𝑗=1

ln (𝑓
𝑖
(𝑙
𝑖
𝑗, 𝑑
𝑖
𝑗)) + ln (𝑝 (𝜙𝑖 | 𝜎𝜙)) ⋅ 𝑑𝜙𝑖,

(24)

where 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙 are fixed-effects parameters
(the same for all stands) and𝜙𝑖 are random-effects parameters
(stand-specific), which are assumed to follow a normal dis-
tributionwithmean 0 and standard deviation 𝜎𝜙,𝑝(𝜙𝑖 | 𝜎𝜙) is
the normal density of the random effects. Unfortunately, the
integral in (24) has no closed form solution. Since analytic
expression for the integrand in (24) is known, the Laplace
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methodmay be used [17]. Let us define a function 𝑔 : 𝑅 → 𝑅

by

𝑔
𝑖
(𝜙𝑖 | 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)

=

𝑛𝑖

∑

𝑗=1

ln (𝑓
𝑖
(𝑙
𝑖
𝑗, 𝑑
𝑖
𝑗)) + ln (𝑝 (𝜙𝑖 | 𝜎𝜙)) ,

𝑖 = 1, 2, . . . ,𝑀.

(25)

The integral ∫
𝑅2

𝑒
𝑔𝑖(𝜙𝑖|𝛼0,𝛼1,...,𝛼𝑞,𝛽,𝛾,𝜎,𝜎𝜙)

⋅ 𝑑𝜙𝑖, 𝑖 = 1, 2, . . . ,𝑀, by
a second-order Taylor series expansion can be approximated
as the Laplace approximation [18]:

ln(∫

𝑅2
𝑒
𝑔𝑖(𝜙𝑖|𝛼0 ,𝛼1,...,𝛼𝑞,𝛽,𝛾,𝜎,𝜎𝜙)

⋅ 𝑑𝜙𝑖)

≈ 𝑔
𝑖
(
̂
𝜙𝑖 | 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)

+

1

2

ln (2𝜋)

−

1

2

ln (−𝐻(
̂
𝜙𝑖 | 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)) ,

(26)

where

̂
𝜙𝑖 = argmax

𝜙𝑖

𝑔
𝑖
(𝜙𝑖 | 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙) , (27)

𝐻
𝑖
(
̂
𝜙𝑖 | 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)

=

𝜕
2
𝑔
𝑖
(𝜙𝑖 | 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)

𝜕
2
𝜙𝑖













𝜙𝑖 =
̂
𝜙𝑖 .

(28)

The log-likelihood function for a generalized mixed-effects
SDE model defined by (8) is approximately given by

LL2 (𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)

≈

𝑀

∑

𝑖=1

𝑔
𝑖
(
̂
𝜙𝑖 | 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)

+

1

2

ln (2𝜋)

−

1

2

ln (−𝐻
𝑖
(
̂
𝜙𝑖 | 𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)) .

(29)

Themaximization of LL2(𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙) is a nested
optimization problem. The internal optimization step estim-
ates the ̂

𝜙𝑖 for every stand 𝑖 = 1, 2, . . . ,𝑀 by (27).The external
optimization step maximizes LL2(𝛼0, 𝛼1, . . . , 𝛼𝑞, 𝛽, 𝛾, 𝜎, 𝜎𝜙)
after plugging the ̂

𝜙𝑖 into (29).

2.3. Calibration. In forestry literature, calibration requires
the prediction of the random-effects parameter using a sup-
plementary sample of observations collected at the same sam-
pling unit. The crown width of trees in new stand can be

predicted either by setting the random effects to zero or by
adding randomparameter predicted fromprior observations.
When the diameter, 𝑑, and crown width, 𝑙, of a subsample of
trees are known, the predicted random parameter is added
to the fixed parameter to obtain localized parameter for
the corresponding stand. If a subsample (without exogenous
stand variables) of 𝑟 trees with crown width 𝑙𝑖 and diameter
𝑑𝑖, 𝑖 = 1, 2, . . . , 𝑟, is taken from a new stand, the random-
effects parameter 𝜙 for the new stand can be predicted in the
following form:

̂
𝜙 =

1

𝑟

𝑟

∑

𝑖=1

((ln (𝑙𝑖) − ln (𝑙0))

×(ln(

1 − 𝛾 exp (−
̂
𝛽𝑑𝑖)

1 − 𝛾 exp (−
̂
𝛽𝑑0)

))

−1

− �̂�0) ,

(30)

where �̂�0,
̂
𝛽, 𝛾 are estimations of the parameters calculated

by the maximum likelihood procedure for mixed-effects
parameters model. The crown width of another tree from the
same stand can be estimated by adding the random effects
predicted by (30) to parameter �̂�0. Mixed-effects parame-
ters SDE model incorporates the variability between stands
through the expression of the model’s parameters and in
terms of both fixed and random effects. Random effects are
conceptually random variables and can be simulated as such
in terms of their distribution. To address this, a random
component to the random-effects parameter prediction, ̂

𝜙,
and the crownwidth predictions,̂𝑙, can additionally be added.
This stochastic approach uses the distribution functions and
confidence intervals of random variables, 𝜙, and 𝐿(𝑑). The
stochastic predictions of 𝜙 and 𝐿(𝑑) can be defined in the
following form, respectively:

𝜙stoch =
̂
𝜙 + Φ

−1
𝑈 (0; �̂�

2
𝜙) ,

𝑙stoch = 𝐿𝑁
−1
𝑈 (

̂
𝜇
𝑖
(𝑑 | 𝑙0, 𝑑0) ; V̂ (𝑑 | 𝑑0)) ,

(31)

where ̂
𝜙 is the estimation value of random effects obtained

by (30), �̂�𝜙 is the estimation value of the standard deviation
of random effects, Φ−1𝑈 (0; �̂�

2
𝜙) is the inverse of the normal

distribution with a mean of 0 and a constant variance �̂�
2
𝜙 for

a uniform random variable, 𝑈, in the interval [0.05; 0.95],
̂
𝜇
𝑖
(𝑑 | 𝑙0, 𝑑0) and V̂ (𝑑 | 𝑑0) are the estimated trend of the

mean and variance (calculated by (12) and (13)) of the lognor-
mal density of the crownwidth, respectively, and 𝐿𝑁

−1
𝑈 (

̂
𝜇
𝑖
(𝑑 |

𝑙0, 𝑑0); V̂ (𝑑 | 𝑑0)) is the inverse of the lognormal distribution
with a mean of ̂𝜇𝑖(𝑑 | 𝑙0, 𝑑0) and a variance of V̂(𝑑 | 𝑑0) for a
uniform random variable, 𝑈, in the interval [0.05; 0.95].

2.4. Statistical Analysis. Numerical and graphical analyses of
the residuals were used as criteria for comparing the gener-
alized fixed-effects, mixed-effects SDE crown width models.
The performance statistics of the SDE crown width models
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Table 1: Characterization of datasets.

Data Number of trees Min Max Mean St. Dev. Number of trees Min Max Mean St. Dev.
Estimation Validation

𝑙 (m) 1630 0.65 7.20 3.26 1.22 699 0.55 7.30 3.26 1.24
𝑑 (cm) 1630 1.7 51.1 24.29 8.33 699 6.4 49.3 24.04 8.63
ℎ𝑐 (m) 1630 1.8 27.8 16.16 4.47 699 0.9 27.6 15.38 3.68

Table 2: Estimated parameters (standard errors) of all the used fixed-effects and mixed-effects models applied to the estimation dataset.

Models
(number of parameters)

Parameters
𝛼0 𝛽 𝛾 𝛼1 𝜎 𝜎𝜙

Fixed
(4)

2.4943
(0.0153)

2.83 ∗ 10−6
(2.69 ∗ 10−7)

0.9999
(1.50 ∗ 10−5) — 0.0546

(0.0010) —

Fixed + ℎ𝑐

(5)
0.9532
(0.1141)

−0.0159
(0.0029)

1.1031
(0.0074)

−0.0238
(0.0018)

0.0495
(0.0074) —

Mixed
(5)

1.9439
(0.0964)

−0.0177
(0.0015)

2.8998
(0.3025) — 0.0742

(0.0008)
0.3394
(0.0671)

Mixed + ℎ𝑐

(6)
1.7490

(0.00670)
7.88 ∗ 10−5
(3.04 ∗ 10−5)

1.0010
(0.0009)

0.0068
(0.0009)

0.0452
(0.0008)

0.0638
(0.0134)

included seven fit statistics: the mean prediction bias (B),
the percentage mean prediction bias (PB), the root mean
squared error (RMSE), the percentage root mean squared
error (PRMSE), an adjusted coefficient of determination (𝑅2),
Akaike’s information criteria [19], and the Bayesian informa-
tion criterion [20]:

AIC = −2 ⋅ LL (
̂
𝜃) + 2𝑝,

(BIC = −2 ⋅ LL (
̂
𝜃) + ln (𝑛) ⋅ 𝑝) ,

(32)

where LL(̂𝜃) is the maximum log-likelihood function associ-
ated withmodel, ̂𝜃 is the maximum likelihood estimate of the
parameters of the model, and 𝑝 is the number of parameters
in the model.

In practice, many stand exogenous variables are intro-
duced to reduce the possible model deviation. Generally spe-
aking, the larger the number of introduced exogenous stand
variables is, the less the crown width biases are. However,
many of them may be insignificant and should be excluded
from the final model to increase the accuracy of prediction.
So it is necessary to study the exogenous stand variable
selection procedure. Additionally, we used a statistical test
defined by the ratio of the maximum log-likelihood of the
model to determine whether exogenous stand variables are
significant.The test statistic of the ratio of the maximum log-
likelihoods of the models is defined by

𝑇 = −2 ⋅ ln(

LL (
̂
𝜃2)

LL (
̂
𝜃1)

) , (33)

where the test statistic𝑇 is asymptotically distributed as a chi-
squared randomvariable𝜒2𝑝2−𝑝1 with degrees freedom𝑝2−𝑝1,
where 𝑝1 and 𝑝2 are the number of free parameters and ̂

𝜃1, ̂𝜃2
are the maximum likelihood parameter estimates for models
1 and 2, respectively.

To assess the standard errors of the maximum log-likeli-
hood estimators for the SDE Bertalanffy type models, a study
of the Fisher [21] information matrix was performed. The
asymptotic variance of the maximum likelihood estimator is
given by the inverse of the Fisher’ information matrix [21].

3. Results and Discussion

3.1. Data. We focus on the modeling of Scots pine (Pinus Syl-
vestris L.) tree dataset. Scots pine tree stands dominate Lith-
uanian forests, grow onArenosols and Podzols forest sites,and
cover 725,500 ha. At plot establishment, the following data
were recorded for every sample tree: crownwidth, 𝑙, diameter
over bark at 1.30m,𝑑, and crownheight, ℎ𝑐. A random sample
of 12 plots (1630 trees) was selected for model estimation, and
the remaining dataset of 5 plots (698 trees) was utilized for
model validation. Summary statistics for the breast height
diameter over bark (diameter), 𝑑, crown height, ℎ𝑐, and
crown width, 𝑙, of all the trees used for model estimation and
validation are presented in Table 1.

3.2. Performance of SDE Models. To examine the effect of
fixed, random parameters and exogenous stand variables on
crown width predictions, the parameters were estimated by
the maximum likelihood method using the NLPSolve proce-
dure in amathematical software packageMAPLE [22]. A large
estimation dataset allowed us to obtain precise estimates of all
fixed-effects and random-effects parameters as well as their
standard errors. Estimation results are presented in Table 2.
All parameters are highly significant (𝛼 < 0.05).

Table 3 lists the fit statistics for all the new developed
fixed- and mixed-effects parameters and without and with
exogenous stand variable SDE crown width models for both
estimation and validation datasets. On the whole, for fixed-
and mixed-effects SDE crown width models the mean pre-
diction bias (the percentage mean prediction bias) proves
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Table 3: Estimation goodness of fit statistics for all the used fixed-effects models applied to the estimation and validation datasets∗.

Models
(number of
parameters)

Estimation Validation
𝐵
∗∗, m

(PB, %)
RMSE∗∗∗, m
(PRMSE, %)

AIC
(BIC) 𝑅

2∗∗∗∗ 𝐵, m
(PB, %)

RMSE, m
(PRMSE, %) AIC 𝑅

2

Fixed
(4)

−0.0504
(−6.70)

0.7104
(21.80)

10922.1
(10943.79) 0.6584 −0.0236

(−5.18)
0.6686
(20.46)

4012.63
(4030.82) 0.7066

Fixed + ℎ𝑐

(5)
−0.0477
(−4.74)

0.6516
(20.00)

10634.64
(10661.61) 0.7123 0.1117

(−6.21)
0.6909
(21.14)

4059.46
(4082.20) 0.6867

Mixed
(5)

0.0350
(−3.41)

0.6414
(19.67)

10590.63
(10617.60) 0.7215 0.0344

(−2.01)
0.6390
(19.55)

3950.60
(3973.74) 0.7319

Mixed + ℎ𝑐

(6)
0.0374
(−2.68)

0.6238
(19.13)

10501.09
(10533.46) 0.7366 0.1105

(−0.70)
0.6716
(19.98)

4020.96
(4048.25) 0.7270

∗The best values of the performance statistics for all scenarios of stand variables are in bold, ∗∗the mean prediction bias 𝐵 = (1/𝑛)∑𝑛𝑖=1(𝑦𝑖 −
∧
𝑦𝑖) and

the percentage mean prediction bias PB = (1/𝑛)∑𝑛𝑖=1((𝑦𝑖 −
∧
𝑦𝑖)/𝑦𝑖),

∗∗∗the root mean squared error RMSE = √(1/(𝑛 − 𝑝))∑𝑛𝑖=1 (𝑦𝑖 −
∧
𝑦𝑖)
2 and the

percentage root mean squared error PRMSE = √(1/(𝑛 − 𝑝))∑𝑛𝑖=1 ((𝑦𝑖 −
∧
𝑦𝑖)/𝑦𝑖)

2, ∗∗∗∗an adjusted coefficient of determination 𝑅2 = (1 − ((𝑛 − 1)/(𝑛 −
𝑝)))(∑𝑛𝑖=1 (𝑦𝑖 −

∧
𝑦𝑖)
2/∑𝑛𝑖=1 (𝑦𝑖 − 𝑦)

2), and 𝑝 is the number of parameters in the model, 𝑛 = ∑𝑀𝑖=1 𝑛𝑖 is the total number of observations used to fit the model,
𝑀 is the number of stands, 𝑛𝑖 is the number of trees in 𝑖th stand, and 𝑦𝑖,

∧
𝑦𝑖, and 𝑦 are the measured, estimated, and average values of the dependent variable

(crown width).
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Figure 1: Residuals against the predicted crown width and lowess regression curve for all fitted crown width SDE Bertalanffy type models:
fixed-effects models (a) and mixed-effects models (b).

to be in intervals −0.0504m–−0.0477m (−6.70%–−4.74%)
and 0.0350m–0.0374m (−3.41%–−2.68%), respectively, for
the estimation dataset. For the estimation dataset the percent
of variation explained attains high levels 65.84% and 73.66%,
respectively. For the validation dataset the crown width’s
estimate for the fixed- and mixed-effects SDE models proves
satisfactory, with the mean prediction biases (the percentage

mean prediction bias) −0.0236m–0.1117m (−6.21%–−5.18%)
and 0.0344m–0.1115m (−2.01%–−0.70%), respectively. For
the validation dataset the percent of variation explained
attains high levels too, 70.66% for the fixed-effects method-
ology and 73.19% for the mixed-effects methodology.

The fixed- and mixed-effects parameters SDE Bertalanffy
type models with exogenous stand variable (crown height)
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Figure 2: Predicted mean (equation (17)) and 5% and 95% quantiles (equation (20)) functions of the crown width: mean—solid line,
quantiles—dash line, and observations—circle.

showed no difference of the fit statistics for the validation
dataset (see Table 3). The statistical significance of the differ-
ence between two models can be assessed by the simple test
defined by (33). For the estimation dataset the 𝑃 values calcu-
lated under the appropriate chi-squared distribution showed
that the generalized fixed- and mixed-effects SDEs Berta-
lanffy type models including crown height, as exogenous
stand variable, fit the estimation dataset significantly better
than the SDEs models without exogenous stand variable, and
we infer that this additional stand variable is biologically
meaningful.

Another way to evaluate and compare the SDE crown
width models is to look at the graphics of the residuals with
lowess regression for the estimation dataset. The residuals
are the differences between measured and predicted crown
widths. Positive residualsmeanunderestimation andnegative
residuals mean overestimation. The plots of the residuals
do not indicate any serious tendency towards overestima-
tion or underestimation of predicted crown width values

(see Figure 1) for the fixed- and mixed-effects parameter
models. Both mixed-effects parameter models also had an
approximately homogeneous variance over the full range of
the predicted crown width values, as well as no systematic
pattern in the variation of the residuals (see Figure 1). In
the estimation dataset, the greatest prediction errors were
obtained for larger diameter classes. It was also found that the
overestimation (negative prediction error) increases slightly
with crown widths, in particular, for values higher than 5m.
This can be due to the very few observations of a crownwidth
of more than 5m in our estimation dataset.

In order to illustrate the behavior of the new developed
mixed-effects SDE Bertalanffy typemodels, crown width ver-
sus diameterwas plotted in Figure 2 for all the validation plots
and without exogenous (stand) variable. Crown width was
calculated using themixed-effects model defined by (8) with-
out exogenous variable. The calibrated value of the random
parameter for a stand present in the validation dataset was
calculated by (30). The crown width-diameter relationships
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developed in this study are constrained to pass through the
point (𝑙 = 1.0; 𝑑 = 0.0).

The models traditionally used in nonlinear mixed-effects
mode of regression analysis are supplemented by a model
for the between-stand variation in the model parameters
and a model for the variation of the residuals that assumes
independence and constant variance. However, the variance
over the full range of the predicted values is not homoge-
neous, and it may lead to inexact estimates. New developed
nonlinear mixed-effects models based on SDE extend the
usual nonlinearmixed-effects regressionmodels by including
system noise as an additional source of variation in the first-
stage model.This extendedmodel describes the within-stand
variation in data through two sources of noise: the measure-
ment noise representing the uncorrelated part of the residual
variability associated with assay or sampling errors and
the system noise reflecting the random fluctuations around
the corresponding theoretical crown width model. If the
magnitude of the parameter of the systemnoise𝜎 is zero, then
the entire system noise term will vanish and the remaining
part of the SDE will simply be the ordinary differential form
whose solution is the regression term of the mixed-effects
model. Regarding stochastic differential equations, as far as
I know, in tree crown widthmodeling the generalizedmixed-
effects parameters model methodology has not previously
been applied. Unfortunately, mixed-effects parameters SDE
models can be implemented using a symbolic calculus pro-
gram for computing the analytic expressions for theHessians.

4. Conclusions

The new Bertalanffy type crown width models were devel-
oped using stochastic differential equation. The SDE method
providesmoremathematical sophisticated and narrow exam-
ination analysis tools compared to regression approaches.
Comparison of the predicted crown width calculated using
SDE models with the values obtained using the existing
regression models revealed a comparable predictive power of
the SDE crown width model with mixed-effects parameters.

The developed SDE crown width models may be rec-
ommended for both their ease of fitting procedure and the
biological interpretation of the relevant parameters.

The SDE approach allows us to incorporate new tree and
stand variables and new forms of stochastic dynamic.

The variance functions developed here can be applied to
generate weights in every linear and nonlinear least squares
regression crown width model by the weighted least squares
form.

Finally, SDE methodology may be of interest in diverse
areas of research that are far beyond the modeling of tree
crown width.
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