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Abstract. 
This paper studies the identification of Hammerstein finite impulse response moving average (H-FIR-MA for short) systems. A new two-stage least squares iterative algorithm is developed to identify the parameters of the H-FIR-MA systems. The simulation cases indicate the efficiency of the proposed algorithms.



1. Introduction
System modeling [1–5] and parameter estimation [6–10] are basic for controller design [11, 12]. Nonlinear Hammerstein model identification has received much attention due to its ability to describe a wide class of nonlinear systems and has extensive applications in many engineering problems [13, 14]. The Hammerstein models are special class of nonlinear systems; the nonlinear block is usually static nonlinearity and is followed by a linear system [15]. For example, Wang et al. discussed the identification problem for a Hammerstein nonlinear system with a dynamic subspace state space [16]; Greblicki investigated a class of continuous time Hammerstein system identification [17].
There are a lot of research topics about linear or nonlinear system identification [18, 19] and control [20, 21]. For example, Ding et al. derived the gradient search based and the Newton based identification methods for Hammerstein systems [22]; Wang and Ding proposed a hierarchical least squares identification method for Hammerstein-Wiener systems by using the hierarchical identification principle and the auxiliary model identification idea [23]; Based on the data filtering technique and the key-term separation principle, Wang et al. investigated a filtering based recursive least squares identification algorithm for Hammerstein output error moving average systems [24]. The proposed algorithm can identify not only the system model parameters but also the noise model parameters and the internal variables.
The iterative algorithm is one of the basic methods for system analysis and synthesis, and nonlinear optimization [25–28]. In [29], Wang and Ding presented a gradient based and least squares based iterative identification algorithms for Wiener systems through the use of the hierarchical identification principle. In [30], Ding et al. discussed the Newton iterative identification algorithm of a class of Wiener nonlinear systems with moving average noises from input-output measurement data. Li et al. derived iterative parameter identification methods for nonlinear functions [31]. Pan et al. proposed a digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements [32]. In the field of control, Zhang et al. applied the iterative algorithm to the predictive control field [33, 34].




Recently, the multistage identification strategy is widely applied to the system identification field [35, 36]. For example, Ding and Duan studied a new-type two-stage least squares based iterative algorithm for identifying the system model parameters and the noise model parameters [37].
The main concern of this paper is to investigate the parameter identification problem of Hammerstein finite impulse response moving average (H-FIR-MA) systems. The memoryless polynomial input nonlinearity is followed by a linear dynamical system, as is explained in Figure 1. Both the least squares iterative and the two-stage least squares iterative algorithms are proposed to estimate the parameters of the H-FIR-MA systems.




	
	
		
			
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
		
			
		
			
		
			
		
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
		
			
		
			
		
			
	


Figure 1: The LSI estimation errors  versus  (, , and ).


The layout of this paper is organized as follows. Section 2 describes the identification model of H-FIR-MA systems. Section 3 provides the least squares iterative algorithm for the H-FIR-MA systems. Section 4 introduces the two-stage least squares iterative algorithm for the H-FIR-MA systems. In Section 5, we apply the proposed algorithms to an example to illustrate their implementation. Finally, concluding remarks are offered in Section 6.
2. System Description and Identification Model
Some notation is given.  stands for the norm of a matrix ; “” or “” expresses that “ is defined as ”;  represents the identity matrix of appropriate sizes and  is defined as an -dimensional identity column vector.
Consider an H-FIR-MA system, which is described by where  and  are the input and output sequences of the systems,  is an uncorrelated stochastic noise sequence with zero mean and variance , and , , and  are unmeasurable. The output  of the nonlinear block is a linear combination, with unknown coefficients , of a known basis  in the system input , and can be expressed as 
Assume that the orders , , and  are known in (1) and (4) and , , , and  for . In order to get unique parameter estimates, here we let  [24]. The item  in (1) is chosen as the key term; substituting (4) into (1) gets 
Define the parameter vector  and the information vector  as follows:
From (5), we obtain the following identification model:
Define the cost function:
In what follows, we derive the algorithms for identifying the H-FIR-MA system using the least squares and two-stage least squares iterative estimation algorithms.
3. The Least Squares Iterative Estimation Algorithm
In this section, referring to the method in [27], we give simply the least squares iterative (LSI) estimation algorithm for the H-FIR-MA system for comparison.
Consider the data from  to  and define the stacked information matrices , the stacked output vector , and the stacked white noise vector  as Hence, (7) can be rewritten asAccording to the estimation model in (12), the cost function in (8) can be written asTo minimize , letting its partial derivative of  with respect to  be zero, we have
It is impossible to obtain the estimate , because the information matrix  (i.e.,  in (6)) contains the unmeasurable inner variables  and the noise terms . Here we adopt the auxiliary model idea and the hierarchical identification principle: let … be iteration variable, let  be the iterative estimate of  at iterative  and , and let  be the  iterative estimates of   and . We replace  and  in (6) with their estimates and obtain the estimates  and  as follows:Replacing  in (14) with  and combining (10) and (15), we can obtain the LSI estimation algorithm of identifying  for the H-FIR-MA system as follows [27]:The computation procedures of the LSI algorithm in (16)–(22) are summarized as follows.
Step 1. Let  and set the initial values , , ;  is a large number (i.e., ).
Step 2. Collect the input and output data  and  (), compute  by (20), structure  and  by (17) and (19), respectively, and form  by (18).
Step 3. Update the parameter identification  by (16).
Step 4. Compute  and  by (21) and (22), respectively.
Step 5. Increase  by 1 and jump to Step 2.
4. The Two-Stage Least Squares Iterative Estimation Algorithm
Here, we derive a two-stage least squares iterative (TS-LSI) estimation algorithm for the H-FIR-MA system. From (5) and (6), we can obtain the following identification model:Define the information vector  and  asDefine two intermediate variables  and ; then the system in (23) can be decomposed into two “suppositional” subsystems:The estimates of two “suppositional” subsystems in (25) can be obtained by minimizing the cost function:
Consider the data from  to  and in (25) define the stacked information matrices  and  and the stacked vector  and  asTwo intermediate variables can be rewritten as From (25), we haveAccording to the estimation model in (31), the cost function in (26) can be written as To minimize , let its partial derivative of  with respect to  be zero:From (34), the least squares estimate of the parameter vector  can be expressed asHere, put (29) into (35) and (35) gives In accordance with the same derivation process of , we can easily get the estimation formula ofHowever, (36) and (37) contain the unknown parameter  and , respectively, it is impossible to  and . According to the method in Section 3, we can summarize the two-stage least squares iterative estimation algorithm for estimating  and  of the H-FIR-MA systems as follows:The computation procedures of the TS-LSI algorithm in (38)–(46) are summarized as follows.
Step 1. Let , and set the initial values , , , ,  (i.e., ).
Step 2. Collect the input and output data  and  , compute  by (44), and form  by (40) and  by (42).
Step 3. Structure  and , respectively, by (41) and (43).
Step 4. Update the parameter identification  by (38) and (39), respectively.
Step 5. Compute  and  by (45) and (46), respectively.
Step 6. Increase  by 1 and jump to Step 2.
5. Simulations and Case Study
In this section, we consider an H-FIR-MA system, where the static nonlinearity  is chosen as polynomials. More precisely
In simulation, the input  is taken as an uncorrelated measured stochastic signal sequence with zero mean, the noise  is a white noise sequence with zero mean and variances  and , respectively, and the corresponding noise-to-signal ratios are  and . The noise-to-signal ratios can be calculated by the following formula:where  and  are, respectively, expressed as the variances of  and  in (1).
Take two different data lengths  and . The parameter values  are estimated using the two different methods described in the paper, namely, the LSI and the TS-LSI methods in Sections 3 and 4. We apply the LSI method to estimate the parameters of this case; the parameter estimation with different data length and noise variances  are shown in Tables 1 and 2, and the estimation errors  versus iteration  are shown in Figures 1 and 2, where .
Table 1: The LSI estimation and errors with  and  ().
	

									
	

	0.5	1	−1.4978	0.5020	−0.0174	0.8217	0.5027	0.3252	 31.5090
	5	−1.4950	0.5016	−0.6198	0.8202	0.4979	0.3228	1.5288
	10	−1.4953	0.5014	−0.6199	0.8202	0.4972	0.3228	1.5276
	

	1.0	1	−1.4956	0.5040	−0.0348	0.8435	0.5055	0.3195	30.694
	5	−1.4890	0.5027	−0.6198	0.8405	0.4954	0.3147	2.5092
	10	−1.4896	0.5022	−0.6199	0.8406	0.4935	0.3146	2.5156
	

	True values	 	−1.5000	0.5000	−0.6400	0.8000	0.5000	0.3310	 
	



Table 2: The LSI estimation and errors with  and  ().
	

									
	

	0.5	1	−1.4976	0.4977	−0.0028	0.8038	0.5034	0.3325	32.2250
	5	−1.4951	0.4973	−0.6296	0.7956	0.5050	0.3345	0.7077
	10	−1.4946  	0.4969	−0.6296	0.7957	0.5052	0.3345	0.7215
	

	1.0	1	−1.4953	0.4955	−0.0058	0.8077	0.5069	0.3340	32.084
	5	 −1.4891	0.4943	−0.6296	0.7914	0.5094	0.3380	1.1290
	10	−1.4883	0.4935	−0.6291	0.7912	0.5091	0.3380	1.0966
	

	True values	 	−1.5000	0.5000	−0.6400	0.8000	0.5000	0.3310	 
	







	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
		
			
		
			
		
			
	


Figure 2: The LSI estimation errors  versus  (, , and ).


Similarly, the parameter estimation and estimation errors  of the TS-LSI method with different data length and noise variances  are shown in Tables 3 and 4 and Figures 3 and 4.
Table 3: The TS-LSI estimation and errors with  and  ().
	

									
	

	0.5	1	−1.5067	0.5064	−0.0874	0.8803	0.4947	0.2939	28.307
	5	−1.4961	0.5008	−0.6194	0.8185	0.4955	0.3235	1.4828
	10	−1.4955	0.5033	−0.6192	0.8182	0.5015	0.3237	1.4736
	

	1.0	1	−1.5048	0.5083	−0.1033	0.9010    	0.4971  	0.2882	27.708
	5	−1.4904	0.5016	−0.6196	0.8370	0.4927	0.3161	2.3477
	10	−1.4901  	0.5048	−0.6197	0.8366	0.5000	0.3163	2.3106
	

	True values	 	−1.5000	0.5000	−0.6400	0.8000	0.5000	0.3310	 
	



Table 4: The TS-LSI estimation and errors with  and  ().
	

									
	

	0.5	1	−1.4949	0.4998	0.0034	0.7899	0.4984	0.3378	32.552
	5	−1.4940  	0.4977	−0.6350	0.7964	0.5023	0.3344	0.5547
	10	−1.4934	0.4977	−0.6339	0.7962	0.5015	0.3341	0.4968
	

	1.0	1	−1.4913	0.4982	0.0077	0.7919   	 0.5004	0.3408	32.772
	5	−1.4867	0.4951	−0.6350	0.7929	0.5045	0.3379	1.0305
	10	−1.4858 	0.4950	−0.6349	0.7927	0.5038	0.3360	0.9382
	

	True values	 	−1.5000	0.5000	−0.6400	0.8000	0.5000	0.3310	 
	







	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
		
			
		
			
		
			
	


Figure 3: The TS-LSI estimation errors  versus  (, , and ).






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
		
			
		
			
		
			
	


Figure 4: The TS-LSI estimation errors  versus  (, , and ).


From the simulation results in Tables 1–4 and Figures 1–4, we can draw the following conclusions.(1)The parameter estimation errors given by the LSI and TS-LSI algorithms become small as iterations increase.(2)The parameter estimation errors given by the LSI and TS-LSI algorithms become closer to their true values with the data length  increasing.(3)It is easy to see that a high noise level results in a low consistence rate of the parameter estimates to the true parameters for both of the proposed algorithms.(4)When the data length goes to infinity, the estimation errors converge to zero. The simulations of results in Tables 1–4 and Figures 1–4 indicate that the proposed algorithms based iterative algorithm should stop for about . The fluctuation of the estimation errors is caused for large  due to the stationary of noise.
All in all, this shows that the proposed algorithms are effective.
6. Conclusions
The LSI and the TS-LSI identification algorithms are developed for H-FIR-MA systems. The simulation results indicate that the proposed algorithms can obtain highly accurate parameter estimates and fast convergence rate and illustrate the proposed algorithms’ performance. Compared with other methods, the LSI and TS-LSI methods must compute the matrix inversion. The proposed methods are simple in principle and the basic idea can be applied to other fields [38–41].
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