Research Article

On Nonlinear Fractional Sum-Difference Equations via Fractional Sum Boundary Conditions Involving Different Orders

Saowaluk Chasreechai, Chanakarn Kiataramkul, and Thanin Sitthiwirattham

Nonlinear Dynamic Analysis Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand

Correspondence should be addressed to Thanin Sitthiwirattham; thanin.s@sci.kmutnb.ac.th

Received 13 July 2015; Revised 3 September 2015; Accepted 6 September 2015

Academic Editor: Sotiris K. Ntouyas

Copyright © 2015 Saowaluk Chasreechai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study existence and uniqueness results for Caputo fractional sum-difference equations with fractional sum boundary value conditions, by using the Banach contraction principle and Schaefer’s fixed point theorem. Our problem contains different numbers of order in fractional difference and fractional sums. Finally, we present some examples to show the importance of these results.

1. Introduction

In this paper we consider a Caputo fractional sum-difference equation with nonlocal fractional sum boundary value conditions of the form

\[\Delta^\alpha_C u(t) = f\left(t + \alpha - 1, u(t + \alpha - 1), (\Psi^\beta u)(t + \alpha - 2)\right), \]

\[t \in \mathbb{N}_{0,T} := \{0, 1, \ldots, T\}, \]

\[u(\alpha - 2) = y(u), \]

\[u(T + \alpha) = \Delta^{-\gamma} g(T + \alpha + \gamma - 3) u(T + \alpha + \gamma - 3), \]

where \(1 < \alpha \leq 2, 0 < \beta \leq 1, 2 < \gamma \leq 3,\) and \(\Delta_C^\alpha\) is the Caputo fractional difference operator of order \(\alpha.\) For \(U \subseteq \mathbb{R},\) \(g \in C(N_{\alpha-2,T+\alpha} \times \mathbb{R}^+ \cap U)\) and \(f \in C(N_{\alpha-2,T+\alpha} \times U \times U, U)\) are given functions and \(y : C(N_{\alpha-2,T+\alpha}, U) \rightarrow U\) is a given functional, and for \(\phi : N_{\alpha-2,T+\alpha} \times N_{\alpha-2,T+\alpha} \rightarrow [0, \infty),\)

\[(\Psi^\beta u)(t) := \left[\Delta^{-\beta} \phi u\right](t + \beta) \]

\[= \frac{1}{\Gamma(\beta)} \sum_{s=\alpha-\beta-2}^{t-\beta} (t - s)^{\beta-1} \phi(t, s + \beta) u(s + \beta). \]

Mathematicians have employed this fractional calculus in recent years to model and solve various applied problems. In particular, fractional calculus is a powerful tool for the processes which appear in nature, for example, biology, ecology, and other areas, and can be found in [1, 2] and the references therein. The continuous fractional calculus has received increasing attention within the last ten years or so, and the theory of fractional differential equations has been a new important mathematical branch due to its extensive applications in various fields of science, such as physics, mechanics, chemistry, and engineering. Although the discrete fractional calculus has seen slower progress, within the recent several years, a lot of papers have appeared, which has helped to build up some of the basic theory of this area; see [3–17] and references cited therein.

At present, there is a development of boundary value problems for fractional difference equations which shows an operation of the investigative function. The study may also have another function which is related to the one we are interested in. These creations are incorporating with nonlocal conditions which are both extensive and more complex, for instance.

Agarwal et al. [3] investigated the existence of solutions for two fractional boundary value problems:

\[\Delta^\mu_{\alpha-2} x(t) = g(t + \mu - 1, x(t + \mu - 1), \Delta x(t + \mu - 1)), \]

\[t \in \mathbb{N}_{0,\mu+2}, \]
where $2 < \mu \leq 3, \alpha, \beta, \gamma \in \mathbb{N}_{\mu-2, \mu+b},$ and $g \in C(\mathbb{N}_{\mu-2, \mu+b} \times \mathbb{R} \times \mathbb{R}, \mathbb{R})$ is a given function.

Kang et al. [5] obtained sufficient conditions for the existence of positive solutions for a nonlocal boundary value problem (1). Sufficient conditions for the existence and uniqueness of the solutions of boundary value problem (1) by the help of the Banach fixed point theorem and Schaefer’s fixed point theorem are used in the main results. Some illustrative examples are presented in Section 4.

Definition 3. For $\alpha > 0$ and f defined on $\mathbb{N}_{\mu} := \{a, a+1, \ldots\},$ the α-order fractional sum of f is defined by

$$\Delta^{-\alpha} f(t) := \frac{1}{\Gamma(\alpha)} \sum_{r=t}^{t-\alpha} (t - \sigma(s))^{\alpha-1} f(s),$$

where $t \in \mathbb{N}_{\alpha},$ and $\alpha(s) = s + 1.$

Definition 4. For $\alpha > 0$ and f defined on $\mathbb{N}_{\mu},$ the α-order Caputo fractional difference of f is defined by

$$\Delta^\alpha_C f(t) := \Delta^{-\alpha} \Delta^{\alpha} f(t)$$

$$= \frac{1}{\Gamma(N - \alpha)} \sum_{r=t}^{t-N+\alpha} (t - \sigma(s))^{N-\alpha-1} \Delta^N f(s),$$

where $t \in \mathbb{N}_{\alpha+N-\alpha}$ and $N \in \mathbb{N}$ is chosen so that $0 \leq N - 1 < \alpha < N.$ If $\alpha = N,$ then $\Delta^\alpha_C f(t) = \Delta^N f(t).$

Lemma 5 (see [9]). Assume that $\alpha > 0$ and $0 \leq N - 1 < \alpha \leq N.$ Then

$$\Delta^{-\alpha} \Delta^\alpha_C y(t) = y(t) + C_0 + C_1 t^{\alpha} + C_2 t^{2\alpha} + \cdots + C_i t^{N-1},$$

for some $C_i \in \mathbb{R},$ $0 \leq i \leq N - 1.$

Lemma 6. Let $1 < \alpha \leq 2, 2 < \gamma \leq 3, \gamma : C(\mathbb{N}_{\alpha-1, \alpha+\gamma-1}, U) \rightarrow U,$ and $h \in C(\mathbb{N}_{\alpha-1, \alpha+\gamma-1}, U)$ be given. Then the problem

$$\Delta^\alpha_C u(t) = h(t + \alpha - 1), \quad t \in \mathbb{N}_{0,T},$$

$$u(\alpha - 2) = y(u),$$

$$u(T + \alpha) = \Delta^{-\gamma} g(T + \alpha + \gamma - 3) \Delta^\alpha u(T + \alpha + \gamma - 3),$$

has the unique solution

$$u(t)$$

$$= \left(1 - \frac{t^\alpha}{T + \alpha}\right) y(u) + \frac{t^\alpha}{T + \alpha} A(u)$$

$$- \frac{t^\alpha}{(T + \alpha) \Gamma(\alpha)} \sum_{s=\alpha-1}^{T+\alpha-1} (T + 2\alpha - 1 - \sigma(s))^{\alpha-1} h(s)$$

$$+ \frac{1}{\Gamma(\alpha)} \sum_{s=\alpha-1}^{T-1} (t + \alpha - 1 - \sigma(s))^{\alpha-1} h(s),$$

for some $A \in \mathbb{R}.$
where
\[
A(\alpha) = -\frac{y(u) \sum_{s=\alpha-2}^{T+\alpha-3} g(s) (T + \alpha + \gamma - 3 + \sigma(s))^{\gamma-1} (1 - \frac{s}{T+\alpha})}{(1/\Gamma(\alpha)) \sum_{s=\alpha-2}^{T+\alpha-3} g(s) (T + \alpha + \gamma - 3 + \sigma(s))^{\gamma-1} - \Gamma(\gamma)} \cdot \sum_{s=\alpha-2}^{T+\alpha-3} \frac{1}{s} (T + \alpha + \gamma - 3 + \sigma(s))^{\gamma-1} h(\xi) \cdot \frac{1}{\Gamma(\gamma)} \cdot \sum_{s=\alpha-2}^{T+\alpha-3} s g(s) (T + \alpha + \gamma - 3 + \sigma(s))^{\gamma-1} - \Gamma(\gamma) \cdot \sum_{s=\alpha-1}^{T+\alpha-3} (T + \alpha + \gamma - 3 + \sigma(s))^{\gamma-1} \frac{1}{s} h(\xi).
\]

Proof. Using Lemma 5, a general solution for (10) can be written in the form
\[
u(t) = C_0 + C_1 t^l + \frac{1}{\Gamma(\alpha)} \sum_{s=0}^{T+\alpha-3} (t - \sigma(s))^{\alpha-1} h(s + \alpha - 1),
\]
for $t \in \mathbb{N}_{\alpha-2,\alpha+T}$. Applying the first boundary condition of (10) implies
\[
C_0 = y(u).
\]
So,
\[
u(t) = y(u) + C_1 t^l + \frac{1}{\Gamma(\alpha)} \sum_{s=0}^{T+\alpha-3} (t - \sigma(s))^{\alpha-1} h(s + \alpha - 1).
\]
The second condition of (10) implies
\[
u(T + \alpha) = y(u) + C_1 (T + \alpha)
\]
\[
= y(u) + C_1 (T + \alpha)
\]
\[
+ \frac{1}{\Gamma(\alpha)} \sum_{s=0}^{T+\alpha-3} (T + \alpha - \sigma(s))^{\alpha-1} h(s + \alpha - 1)
\]
\[
= \frac{1}{\Gamma(\gamma)} \sum_{s=\alpha-2}^{T+\alpha-3} (T + \alpha + \gamma - 3 - \sigma(s))^{\gamma-1} g(s) u(s).
\]
A constant C_1 can be obtained by solving the above equation, so
\[
C_1 = \frac{1}{(T + \alpha) \Gamma(\gamma)} \cdot \sum_{s=\alpha-2}^{T+\alpha-3} (T + \alpha + \gamma - 3 - \sigma(s))^{\gamma-1} g(s) u(s)
\]
we simplify (19) becomes (12).
Substituting $A(u)$ into (18), we obtain (11). □
3. Main Results

Now we are in a position to establish the main results. First, we transform boundary value problem (1) into a fixed point problem.

For $U \subseteq \mathbb{R}$, let $(U, || \cdot ||)$ be a Banach space and let $C = C(\mathbb{N}_{\alpha-2,T+\alpha}, U)$ denote the Banach space of all continuous functions from $\mathbb{N}_{\alpha-2,T+\alpha} \rightarrow U$ endowed with a topology of uniform convergence with the norm denoted by $|| \cdot ||_C$. For this purpose, we consider the operator $F : C \rightarrow C$ by

$$
(Fu)(t) = \left(1 - \frac{t^\alpha}{T + \alpha} \right) y(u) + \frac{t^\alpha}{T + \alpha} A(u)
$$

where

$$
A(u) = \frac{1}{(1/(T + \alpha)) \sum_{s=\alpha-2}^{T+\alpha-3} \frac{1}{s^\alpha}} \left[-y(u) \sum_{s=\alpha-2}^{T+\alpha-3} g(s) (T + \alpha + y - 3 - \sigma(s))^{-1} \Gamma(\gamma) \left(1 - \frac{1}{s} \right) - \frac{1}{\Gamma(\alpha)} \sum_{s=\alpha-1}^{T+\alpha-3} \sum_{\xi=\alpha-1}^{s-1} g(s) (T + \alpha + y - 3 - \sigma(s))^{-1} (s + \alpha - 1 - \sigma(\xi))^{-1} f(\xi, u(\xi), (\Psi^\beta u)(\xi-1)) \right].
$$

It is easy to see that problem (1) has solutions if and only if operator F has fixed points.

Theorem 7. Assume that $f : \mathbb{N}_{\alpha-2,T+\alpha} \times U \times U \rightarrow U$ is continuous and maps bounded subsets of $\mathbb{N}_{\alpha-2,T+\alpha} \times U \times U$ into relatively compact subsets of U, $\varphi : \mathbb{N}_{\alpha-2,T+\alpha} \times \mathbb{N}_{\alpha-2,T+\alpha} \rightarrow [0, \infty)$ is continuous with $\varphi_0 = \max \{ \varphi(t-1, s) : (t, s) \in \mathbb{N}_{\alpha-2,T+\alpha} \times \mathbb{N}_{\alpha-2,T+\alpha} \}$, and $y : C \rightarrow U$ is a given functional. In addition, suppose the following:

\begin{itemize}
 \item [(H_1)] There exist constants $\tau_1, \tau_2 > 0$ such that for each $t \in \mathbb{N}_{\alpha-2,T+\alpha}$ and $u, v \in C$

$$
|f(t, u(t), (\Psi^\beta u)(t-1)) - f(t, v(t), (\Psi^\beta v)(t-1))| \leq \tau_1 |u - v| + \tau_2 \left[(\Psi^\beta u) - (\Psi^\beta v) \right].
$$

\end{itemize}

\begin{itemize}
 \item [(H_2)] There exists a constant $\mu > 0$ such that for each $u, v \in C$

$$
|y(u) - y(v)| \leq \mu |u - v|_C.
$$

\end{itemize}

\begin{itemize}
 \item [(H_3)] For each $t \in \mathbb{N}_{\alpha-2,T+T}$

$$
0 < g(t) < K,
$$

\end{itemize}

\begin{itemize}
 \item [(H_4)] Consider $\Theta := \mu \Omega + \Lambda(\tau_1 + \tau_2 (\varphi_0(T+\beta+2)\beta/\Gamma(\beta+1))) < 1,$

\end{itemize}

where

$$
\Omega = 2 + \frac{K[y(T + 2) + 3] \Gamma(T + y)}{K[T + \alpha - y(2 - \alpha) - 3] - (T + \alpha) \Gamma(y + 2) \Gamma(T)},
$$

$$
\Lambda = \frac{K \Gamma(T + y - 2)}{TT(\alpha + 1) \Gamma(T - 2) [K[T + \alpha - y(2 - \alpha) - 3] - (T + \alpha) \Gamma(y + 2) \Gamma(T)]} \left[(y + 1) T (T - 1) (T - 2)(T + \alpha - 2) \right].
$$
\[+ \left[T + \alpha (\alpha + \gamma) - 3 \right] \frac{\Gamma(\alpha + 1)}{\Gamma(\alpha + \gamma) \Gamma(\alpha)} + \frac{2 \Gamma(T + \alpha + 1)}{\Gamma(\alpha + 1) \Gamma(T + 1)}. \]

(25)

Then problem (1) has a unique solution on \(\mathbb{N}_{\alpha - 2, \alpha + T} \).

Proof. We will show that \(F \) is a contraction. For any \(u, v \in \mathcal{C} \) and for each \(t \in \mathbb{N}_{\alpha - 2, \alpha + T} \), we have

\[|(Fu)(t) - (Fv)(t)| \leq 1 - \frac{t^\frac{1}{2}}{T + \alpha} |y(u) - y(v)| + \frac{t^\frac{1}{2}}{T + \alpha} |A(u) - A(v)| + \frac{t^\frac{1}{2}}{(T + \alpha) \Gamma(\alpha)} \sum_{s=\alpha-1}^{t-1} (T - 1 - \sigma(s))^{\alpha - 1}
\]

\[\cdot |f(s, u(s), (\Psi^\beta u)(s)) - f(s, v(s), (\Psi^\beta v)(s - 1))| + \frac{1}{\Gamma(\alpha)} \sum_{s=0}^{t-1} (t - \sigma(s))^{\alpha - 1} |f(s, u(s), (\Psi^\beta u)(s)) - f(s, v(s), (\Psi^\beta v)(s - 1))| < \mu \|u - v\|_{\mathcal{C}} \left(1 + \frac{t^\frac{1}{2}}{T + \alpha} \right)
\]

\[+ \frac{\sum_{s=\alpha-2}^{T+\alpha-3} s^\frac{1}{2} g(s) (T + \alpha + \gamma - 3 - \sigma(s))^{\alpha - 1} - (T + \alpha) \Gamma(\gamma)}{(T + \alpha) \Gamma(\gamma)} \left[\mu \|u - v\|_{\mathcal{C}} \sum_{s=\alpha-1}^{T+\alpha-3} \sum_{\xi=\alpha-1}^{s-1} g(s) (T + \alpha + \gamma - 3 - \sigma(s))^{\alpha - 1} (s + \alpha - 1)
\]

\[- \sigma(\xi)^{\alpha - 1} \left[\frac{(T + \alpha) \Gamma(\alpha)}{(T + \alpha) \Gamma(\alpha)} \frac{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}}{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}} \right] \left[\frac{(T + \alpha) \Gamma(\alpha)}{(T + \alpha) \Gamma(\alpha)} \frac{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}}{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}} \right] \left[\frac{(T + \alpha) \Gamma(\alpha)}{(T + \alpha) \Gamma(\alpha)} \frac{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}}{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}} \right]
\]

\[+ \frac{2}{(T + 1)} \frac{(T + \alpha) \Gamma(\alpha)}{\Gamma(\alpha + 1) \Gamma(T + 1)} \left[\frac{(T + \alpha) \Gamma(\alpha)}{(T + \alpha) \Gamma(\alpha)} \frac{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}}{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}} \right] \left[\frac{(T + \alpha) \Gamma(\alpha)}{(T + \alpha) \Gamma(\alpha)} \frac{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}}{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}} \right]
\]

\[+ \frac{2}{(T + 1)} \frac{(T + \alpha) \Gamma(\alpha)}{\Gamma(\alpha + 1) \Gamma(T + 1)} \left[\frac{(T + \alpha) \Gamma(\alpha)}{(T + \alpha) \Gamma(\alpha)} \frac{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}}{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}} \right] \left[\frac{(T + \alpha) \Gamma(\alpha)}{(T + \alpha) \Gamma(\alpha)} \frac{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}}{(T + 2\alpha - 1 - \sigma(s))^{\alpha - 1}} \right]
\]

\[= \|u - v\|_{\mathcal{C}} \Theta \leq \|u - v\|_{\mathcal{C}}. \]
Consequently, F is a contraction. Therefore, by the Banach fixed point theorem, we get that F has a fixed point which is a unique solution of problem (1) on $t \in \mathbb{N}_{\alpha-2,\alpha+T}$.

The following result is based on Schaefer's fixed point theorem.

Theorem 8 (Arzelá-Ascoli Theorem (see [18])). A set of function in $C[a, b]$ with the sup norm is relatively compact if and only if it is uniformly bounded and equicontinuous on $[a, b]$.

Theorem 9 (see [18]). If a set is closed and relatively compact then it is compact.

Theorem 10 (Schaefer's fixed point theorem (see [19])). Assume that X is a Banach space and that $T : X \to X$ is continuous compact mapping. Moreover assume that the set

$$
\bigcup_{0 \leq \lambda \leq 1} \{x \in X : x = \lambda F(x)\}
$$

is bounded. Then T has a fixed point.

Theorem 11. Assume that $f : \mathbb{N}_{\alpha-2,\alpha+T} \times U \times U \to U$ is continuous and maps bounded subsets of $\mathbb{N}_{\alpha-2,\alpha+T} \times U \times U$ into relatively compact subsets of U and $y : C \to U$ is a given functional. In addition, suppose that (H_5) holds, and suppose the following:

(H_5) There exists a constant $L_1 > 0$ such that for each $t \in \mathbb{N}_{\alpha-2,\alpha+T}$ and $u \in \mathcal{C}$

$$
|f(t, u(t), (\Psi^\theta u)(t-1))| \leq L_1.
$$

(H_6) There exists a constant $L_2 > 0$ such that for each $u \in \mathcal{C}$

$$
|y(u)| \leq L_2.
$$

Then problem (1) has at least one solution on $\mathbb{N}_{\alpha-2,\alpha+T}$.

Proof. We will use Schaefer's fixed point theorem to prove this result. Let F be the operator defined in (20). It is clear that $F : \mathcal{C} \to \mathcal{C}$ is completely continuous. So, it remains to show that the set

$$
\mathcal{C} = \{u \in \mathcal{C} : u = \lambda F u \text{ for some } 0 < \lambda < 1\}
$$

is bounded.

Let $u \in \mathcal{C}$; then $u(t) = \lambda (Fu)(t)$ for some $0 < \lambda < 1$. Thus, for each $t \in \mathbb{N}_{\alpha-2,\alpha+T}$, we have

$$
u(t) = \lambda (Fu(t)) < (Fu)(t)
$$

$$
\leq |y(u)| \cdot \left|1 - \frac{t^{\frac{1}{\alpha}}}{T + \alpha}\right|
$$

$$
+ \frac{t^{\frac{1}{\alpha}}}{\sum_{s=\alpha-2}^{T+\alpha-3} s^\frac{1}{\alpha}g(s)(T + \alpha + \gamma - 3 - \sigma(s))^{\gamma-1}(T + \alpha)\Gamma(\gamma)} |y(u)| \sum_{s=\alpha-2}^{T+\alpha-3} s^\frac{1}{\alpha}g(s)(T + \alpha + \gamma - 3 - \sigma(s))^{\gamma-1}(s + \alpha - 1 - \sigma(\xi))^{\frac{1}{\gamma-1}} f\left(\xi, u(\xi), (\Psi^\theta u)(\xi - 1)\right)|
$$

$$
+ \frac{1}{(T + \alpha)\Gamma(\alpha)} \sum_{s=\alpha-1}^{T+\alpha-1} (T + 2\alpha - 1 - \sigma(s))^{\frac{1}{\gamma-1}} f\left(s, u(s), (\Psi^\theta u)(s - 1)\right) + \frac{1}{\Gamma(\alpha)} \sum_{s=\alpha-1}^{\alpha-1} (t + \alpha - 1 - \sigma(s))^{\frac{1}{\gamma-1}} f\left(s, u(s), (\Psi^\theta u)(s - 1)\right)
$$

$$
+ \frac{t^{\frac{1}{\alpha}}}{(T + \alpha)\Gamma(\alpha)} \sum_{s=\alpha-1}^{T+\alpha-1} (T + 2\alpha - 1 - \sigma(s))^{\frac{1}{\gamma-1}} f\left(s, u(s), (\Psi^\theta u)(s - 1)\right) + \frac{1}{\Gamma(\alpha)} \sum_{s=\alpha-1}^{\alpha-1} (t + \alpha - 1 - \sigma(s))^{\frac{1}{\gamma-1}} f\left(s, u(s), (\Psi^\theta u)(s - 1)\right)
$$

$$
\leq 2L_2 + L_1 \frac{2\Gamma(T + \alpha + 1)}{\Gamma(\alpha + 1)\Gamma(T + 1)} + \left(L_2 - L_1 \frac{K[T + \alpha + 1]}{\gamma(\gamma + 1)\Gamma(T)}\right) \left(1 - \frac{1}{\Gamma(T + \alpha)}\right)
$$

$$
+ L_1 \left[\frac{K[T + \alpha + 1]}{\gamma(\gamma + 1)\Gamma(T)} + \frac{K[T + \alpha + \gamma - 3]}{\gamma(\gamma + 1)\Gamma(T + \alpha + 1)\Gamma(T + \gamma - 2)} - \frac{1}{\Gamma(T + \alpha + 1)\Gamma(\gamma + 1)\Gamma(T + \gamma)} \right] \left(1 - \frac{1}{\Gamma(T + \alpha)}\right) = L_2 \Omega + L_1 \Lambda,
$$
which implies that, for each \(t \in \mathbb{N}_{\alpha-2,\alpha+T} \), we have
\[
\|u\|_C \leq L_2 \Omega + L_1 \Lambda,
\]
(32)
where \(\Omega \) and \(\Lambda \) are defined on (25). This shows that set \(\mathcal{S} \) is bounded. As a consequence of Schaefer's fixed point theorem, we conclude that \(F \) has a fixed point which is a solution of problem (1).

4. Some Examples

In this section, in order to illustrate our results, we consider some examples.

Example 1. Consider the following fractional sum boundary value problem:
\[
\Delta^{3/2} u(t) = e^{-(t+1/2)} \cdot \frac{|u| + 1}{1 + \sin^2 u} + \sum_{t=1}^{t+1} \left(t - \frac{1}{2} - \sigma(s) \right)^{-1/2} \cdot \frac{\arctan \left[\cos^2 \left(t - 3/2 \right) \pi \right] e^{-2|t-1/2|^2}}{2000 \sqrt{\pi} (t + 19/2)^3} \cdot u \left(s + \frac{1}{2} \right),
\]
t \in \mathbb{N}_{0,4},
\]
\[
u \left(\frac{11}{2} \right) = \Delta^{-1/4} u \left(\frac{17}{8} \right) \left[1000e + 200 \cos^2 \left(\frac{17}{8} \right) \right].
\]
Here \(\alpha = 3/2, T = 4, \beta = 1/2, y(u) = (|u|/(100e^3))\sin^2 |\pi u|, \gamma = 11/4, g(t) = 1000e + 200 \cos^2 t, \phi(t-1,s+\beta) = e^{-2|t-s+1/2|}/2000 \sqrt{\pi}, \) and
\[
f \left(t, u(t), (\Psi^\beta u)(t-1) \right) = e^{-t} \cdot \frac{|u| + 1}{1 + \sin^2 u} + \frac{\arctan \left[\cos^2 \left(t - 3/2 \right) \pi \right]}{(t + 1/2)^3} \cdot \Delta^{-1/2} \phi u \left(t + \frac{1}{2} \right).
\]
Let \(t \in \mathbb{N}_{1,2,9/2} \); we have
\[
\left| f \left(t, u(t), (\Psi^{1/2} u)(t-1) \right) \right| - f \left(t, v(t), (\Psi^{1/2} u)(t-1) \right) \leq \frac{4}{404010} |u - v|
\]
(35)
so \((H_1)\) holds with \(\tau_1 = 4/404010, \tau_2 = 22/2527, \) and we have \(\varphi_0 = 1/2000e^3 \sqrt{\pi}, \) and
\[
\left| y(u) - y(v) \right| \leq \frac{1}{(100e)^2} \|u - v\|_C,
\]
(36)
so \((H_2)\) holds with \(\mu = 1/(100e)^3 \).
Since \(1000e \leq g(t) \leq 1000e + 200 = K, \) we have
\[
K \left[T + \alpha - y(2 - \alpha) - 3 \right] - (T + \alpha) \Gamma (y + 2) \Gamma (T) \approx 547.011 > 0;
\]
then \((H_3)\) is satisfied.
Also, we have
\[
\Omega \approx 47128.501, \quad \Lambda \approx 14297.052.
\]
(38)
We can show that
\[
\mu \Omega^{1/2} \left(\tau_1 + \tau_2 \varphi_0 \right) \left(\Gamma (\beta + 1) \right) \cdot \left[\frac{4}{404010} + \left(\frac{22}{2527} \right)^{1/2} \right] \approx 0.144 < 1.
\]
(39)
Hence, by Theorem 7, boundary value problem (33) has a unique solution.

Example 2. Consider the following fractional sum boundary value problem:
\[
\Delta^{3/2} u(t) = e^{-(t+1/2)} \cdot \frac{|u| + 1}{1 + \sin^2 u} + \sum_{t=1}^{t+1} \left(t - \frac{1}{2} - \sigma(s) \right)^{-1/2} \cdot \frac{\arctan \left[\cos^2 \left(t - 3/2 \right) \pi \right] e^{-2|t-1/2|^2}}{2000 \sqrt{\pi} (t + 19/2)^3} \cdot u \left(s + \frac{1}{2} \right),
\]
t \in \mathbb{N}_{0,3},
\]
\[
u \left(\frac{9}{2} \right) = \Delta^{-8/3} u \left(\frac{11}{6} \right) \left[12e + \sin \left(\frac{11}{6} \right) \right]^2.
\]
(40)
Here $\alpha = 3/2$, $T = 3$, $\beta = 1/2$, $y(u) = |u^2 + 2|^{1/2}(\pi + u^2),$ $\gamma = 8/3$ and $g(t) = (12e + \sin t)^2,$ $\varphi(t - 1, s + \beta) = (t + 1)(s + 1/2)e^{-(s+1/2)^2}/(t + 1)(s + 1/2) - t|,$ and

$$f \left(t, u(t), \left(\psi^{1/2}u \right)(t) \right) = \frac{\sqrt{t} e^{-3t}}{1 + t} \left| 1 + \cos^2 (u + \pi) \right|$$

$$+ \frac{t^{-3/2}}{s-1} \left(t - 1 - \sigma(s) \right)^{-1/2} \varphi \left(t - 1, s + \frac{1}{2} \right)$$

$$\cdot u \left(s + \frac{1}{2} \right).$$

Clearly for $t \in [\frac{1}{2}, \frac{3}{2}],$ we have

$$q_0 < \frac{|(t + 1)(s + 1/2) - t| + t}{|t + 1)(s + 1/2) - t|} < 1 + \frac{1}{|s + 1/2| - 1} \leq 3,$$

$$\left| f \left(t, u(t), \left(\psi^{1/2}u \right)(t) \right) \right| \leq \frac{\sqrt{t}}{1 + t} + \frac{q_0 (9/2)^{-1/2}}{\Gamma (3/2)}$$

$$< 2.566 = L_1,$$

$$\left| y(u) \right| = \frac{\Gamma \left(\frac{1}{2} + \frac{1}{2} \right)}{\Gamma \left(2 \left(\frac{1}{2} + \frac{1}{2} \right) \right)} \frac{1}{\pi} = L_2,$$

$$12e^2 \leq g(t) \leq (12e + 1)^2 = K,$$

$$\frac{1}{6} (12e + 1)^2 - \frac{9}{2} \left(\frac{14}{3} \right) \Gamma (3) = 55.974 > 0.$$
Submit your manuscripts at
http://www.hindawi.com