Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 530586, 10 pages
http://dx.doi.org/10.1155/2015/530586

Hindawi

Research Article

An Algorithm for Generating Boolean Expressions in VHDL
Based on Ladder Diagrams

Hongxia Xie and Zheng-Yun Zhuang

School of Computer and Computing Science, City College, Zhejiang University, 51 Huzhou Street, Hangzhou, Zhejiang 310015, China
Correspondence should be addressed to Zheng-Yun Zhuang; waynemcgwire@yahoo.com

Received 29 September 2014; Revised 23 December 2014; Accepted 5 January 2015

Academic Editor: Ricardo Femat

Copyright © 2015 H. Xie and Z.-Y. Zhuang. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

This study proposes an algorithm for generating the associated Boolean expression in VHDL, given a ladder diagram (LD) as
the input. The purpose of the algorithm is to implement of field-programmable gate array- (FPGA-) based programmable logic
controllers (PLCs), where an effective conversion from an LD to its associated Boolean expressions seems rarely mentioned. Based
on this core thought, the conversion process of the algorithm first involves abstracting and expressing the encountered LD as an
activity-on-vertex (AOV) graph. Next, an AND-OR tree in which AND-nodes and OR-nodes connote the series and the parallel
relationships between the vertices of the AOV graph is constructed based on the AOV graph. Therefore, by a traversal to the AND-
OR tree, the associated Boolean expression, as the output of the algorithm, can be easily obtained in VHDL. The proposed algorithm

is then verified with an illustrative example, wherein a complicated LD is given as the input.

1. Introduction

11. Background. The emergence of programmable logic con-
troller (PLC) has played a key role in the automatic control
field (e.g., for industrial automation) since the 1970s. How-
ever, the efficiency of PLC usually relies on the CPU fre-
quency, due to the design of PLC used to adopt the sequential-
processor solution. This had limited the application of PLC.
For example, in the past, PLC did not serve some application
fields like semiconductor processing, laser-based precision
cutting, and fault detecting. Apparently, to fulfill the require-
ments from these fields, the traditional millisecond-level PLC
controller, in itself, must be improved to respond to the
peripherals rapidly, to have high-speed communications, and
to execute the control logics concurrently [1].

Fortunately, with rapid developments of programmable
logic device (PLD) and field-programmable gate array
(FPGA) nowadays, it is able to have high-speed PLCs which
are based on FPGA because of the concurrent execution
mechanism. In this manner, the efficiency of the controller
can be improved. Therefore, designing high-speed, FPGA-
based PLCs becomes a trend.

1.2. Literature Review. Magnussen [2] wrote the first study
that proposed the idea of translating PLC programs to VHDL
ones. Following the study, Miyazawa et al. [3] discussed
the relationships that can associate ladder diagrams (LDs)
with Boolean expressions and illustrated two implementation
methods of “PLC cyclic scan mechanism” in the VHDL
context. Ikeshita et al. [4] studied the mapping relationship
between the fundamental elements (i.e., steps, actions, and
transitions) in a sequential flow chart (SFC) and the Boolean
variables expressed in Verilog-HDL language. Adamski and
Monteiro [5] and A. Wegrzyn and M. Wegrzyn [6] discussed
the interpretational relationship from Petri-net-based speci-
fications to Boolean expressions in VHDL, but both studies
have not proposed a conversion algorithm. Ichikawa et al. [7]
summarized the three kinds of operational modes of a PLC
process when it is executed by the logic circuits inside the
FPGA module. C. Economakos and G. Economakos [8, 9]
proposed the idea of converting simple LDs to VHDL pro-
grams by the help of medium codes written in Clanguage. Du
et al. [10] explained the way to realize concurrent executions
of programs in FPGA modules that are LD-based, while
Alonso et al. [11] adopted the model-driven engineering

approach and have generated VHDL codes from traditional
LDs partially.

As can be reviewed from the literature, most of the
existing researches mainly focus either on studying the rela-
tionships between the ladder-logic programming language
(LAD) elements of PLC and the HDL elements or on propos-
ing the framework to implement and execute relevant PLC
processes on the FPGA platform. Nevertheless, a successful
translation among the different expressional languages is also
an important and fundamental topic for the utilization of
FPGA-based PLC.

This study serves this purpose. Since LD language is one
major expressional language for PLC designing and VHDL
is a main HDL expressional language, the industry still lacks
an efficient and well-known algorithm that can convert the
LAD-based graphical LDs into Boolean expressions in VHDL
directly and completely.

Section 2 proposes the way to abstract the LDs using well-
known activity-on-vertex (AOV) graph and the ways and
rules to construct an AND-OR tree based on the AOV graph.
Section 3 introduces the body of the proposed algorithm in
pseudocodes with the traversal method to interpret the asso-
ciated AND-OR tree to Boolean expressions as the output for
VHDL programming. Section 4 illustrates the algorithm with
a complicated LD example, in which the applicability of the
algorithm is shown. In Section 5, concluding remarks are
given.

2. The Abstraction of Ladder Diagrams

The conversion of LDs to text-based descriptions is an impor-
tant issue for the use of VHDL, as addressed in Section 1.2.
LDs are unable to be implemented on or executed by FPGA
due to the fact that LAD is a graphical language.

In this section, in order to complete the conversion
process, the way to abstract an LD as its corresponding AOV
graph is introduced. Next, the way to construct an AND-OR
tree based on the AOV graph, while the AOV graph is gradu-
ally reduced to be a null graph, is described. To illustrate these
ways, an LD instance which is originally designed in LAD, as
shown in Figure 1, is used as an example input throughout
this section and Section 3.

2.1. The Abstraction of the AOV Graph from the LD. In this
study, the following acronyms are used to abstract the LDs.

(i) Symbol of circled-s represents the starting node of the
rungs inside an LD, which is drawn as a left-margin
connector component in LAD.

(ii) Symbol of circled-b represents the contact component
in LAD.

(iii) Symbol of circled- f represents the functional com-
ponents (e.g., functional blocks or timer modules) in
LAD.

(iv) Symbol of directed arrow — represents the connec-
tion between two components in LAD.

According to these definitions, the LD in Figure 1 can be
abstracted as an AOV graph [12], as shown in Figure 2.

Mathematical Problems in Engineering

| [N N [AD
| | | |] | Out —

Inl 1 —
% G 1o

In2
1 12

]

FIGURE 1: The LD instance designed in LAD.

FIGURE 2: The associated activity-of-vertex (AOV) graph of Figure 1.

2.2. Constructing the AND-OR Tree Based on the AOV Graph

2.2.1. The Definition of AND-OR Tree. An AND-OR tree is a
finite set T' that includes [(I > 0) nodes. When T is empty, it
is a null tree. Otherwise, it is not a null tree and the following
two conditions hold.

Condition (1). There is one and only one “root node”
Po-

Condition (2). Other nodes in T except p, can be
divided into m subsets (T}, T5, ..., T,,) which do not
intersect with each other, where each subset is an
AND-OR tree in itself; these subsets are named as the
subtrees of p,.

2.2.2. The Use of the AND-OR Tree in This Study. AND-OR
trees are often used to reduce the problems (or goals) to
conjunctions and disjunctions of subproblems (or subgoals).
Taking this feature, the definition of the AND-OR tree that
appropriates to the conversion problem encountered by this
study is extended as follows.

Condition (3). All the leaf nodes of the AND-OR tree
is from the vertices in the AOV graph. In addition,
all the nonleaf nodes of the AND-OR tree are nodes
which are called either AND-nodes or OR-nodes.
They will be defined in Condition (5) and Condition
(6).

Condition (4). If the root node, p,, of an AND-OR
tree has child nodes, then it must have 2 or more child
nodes. Note that this rule applies to every level of an
AND-OR tree till the leaf since, in fact, any leaf node
still holds AND-OR tree properties but they have no
child node. This further implies that each nonleaf
node must have 2 or more child nodes.

Condition (5). The child nodes (and not the grand-
children nodes) of an AND-node possess a “serial

Mathematical Problems in Engineering

relationship” This means that the function of an
AND-node in such a tree is to conjunct its child nodes
and all the child nodes are in a “serial relationship.”

Condition (6). The child nodes (and not the grand-
children nodes) of an OR-node possess a “parallel
relationship.” This means that the function of an OR-
node in such a tree is to link its child nodes and all the
child nodes are in a “parallel relationship.”

2.2.3. Rules to Transform an AOV Graph to an AND-OR Tree.
For each vertex v; in the AOV graph, an “in-out-degrees pair”
(in(v;), out(v;)) is defined as a vector indicating the number
of directional edges entering (pointing inward to) v; and the
number of edges leaving (pointing outward from) v;. Based
on the properties of the AND-OR tree defined in Sections
2.2.1 and 2.2.2, the transformation rules to convert an LD-
based AOV graph into the AND-OR tree are as follows.

(i) The AND-transformation rule: given two vertices v,
and v in an AOV graph, T, and Sy is a subset of T
that has g (g > 0) vertices. If all the vertices in Sy
are reachable from v, and all of them can reach vy
though the directional edges and if v4, v, and Sy
satisty the following conditions, then an AND-node
is established (and an AND-subtree is constructed).

(i.1) The in-out-degrees pair (in(v,), out(v,)) satis-
fies in(v,) > 0 and out(v,) = 1.

(i.2) The pair (in(vg), out(vg)) satisfies in(vg) = 1
and out(vg) = 0.

(1.3) Vv, v; € Sy (in(v;), out(v;)) satisfies in(v;) = 1
and out(v;) = 1.

When the above conditions hold, an AND-node
is established with directional links (connoting the
parent-child relationships) pointing toward vertices
va, vg and Vv, v; € Sy, individually. This yields an
AND-tree with the established AND-node as the root
which has (g + 2) child nodes. In addition, the (g + 2)
vertices in the AOV graph that correspond to the
(g + 2) child nodes of this AND-subtree are replaced
by one single “&-vertex.”

(ii) The OR-transformation rule: if in the AOV graph
there exists a set, Sy, of h vertices, all of which have
a same antecedent vertex v, and a same descendant
vertex vy, an OR-node is established with directional
links pointing toward the [vertices in Sy individually.
This yields an OR-tree with the established OR-node
as the root which has 4 child nodes. Note that the OR-
tree is an AND-OR tree in itself. In addition, the h
vertices, and not v;; and vy, in the AOV graph which
correspond to the 4 child nodes of the OR-tree are
replaced by one single “|-vertex.”

2.2.4. A Short Example. By applying the rules defined in
Section 2.2.3, the AOV graph in Figure 2 can be stepwise
converted into an AND-OR tree. Such process is as shown
in Figure 3.

In the AOV graph shown in Figure 3(a), it is observed that
“in(v,) = 1 >= 0 and out(v,) = 0” and that “in(v,) = 1 and
out(v,) = 1 >= 0 And based on the observation that “v; can
reach v,,” “v5 can be reached by v,,” and “in(v;) = out(v;) =
1, all of the AND-transformation conditions (i.1), (i.2), and
(i.3) are held. This means that an AND-translation can be
applied to these nodes and an AND-tree can be constructed
by establishing an AND-node as the root with v,, v;, and v,
as its child nodes. In such a case, g = 1 (i.e., v3) and the
constructed AND-tree has (g + 3) = 4 nodes in total. In
addition, vertices v,, v3, and v, in the original AOV graph are
substituted by one single &-vertex, which is named as &;. The
above process is shown in Figure 3(b).

Similar transformation processes can be applied to
{vg» V5> 10} and {v;;, v;,}, as also shown in Figure 3(b). The
process for {vq,v,, vy} is analogical to that for {v,,vs,v,},
since these two subsets of vertices have a similar structure.
The process for {v,;,v,,} is also similar, but, for the reason
that g = 0 for this AND-transformation case (i.e., Sx = ¢),
the established AND-tree only has a total of 3 nodes. Note that
after these AND-transformations, the AOV graph is further
simplified by two additional &-vertices, that is, &, and &3,
as shown in Figure 3(b), wherein no more AND-translations
can be performed.

Now the clues for the possible OR-transformations can be
searched. As one can observe in Figure 3(b), the &-vertices
in the AOV graph perfectly meet the conditions for an OR-
transformation. That is, Sy = {&;, &,, &3}, vy = vy, and vy, =
vs where h = 3. Then the OR-transformation rule is applied.
An OR-subtree which has 3 child nodes (i.e., does not count
the grandchildren) is constructed and the relevant &-vertices
of the AOV graph in Sy are replaced with one single |-vertex,
named “|,” The above process is illustrated in Figure 3(c).

In Figure 3(c), since no more OR-transformations can be
performed, it is the turnback to search for clues for the pos-
sible AND-transformations. As can be observed in the AOV
result graph in Figure 3(c), another AND-transformation can
be performed. Now by observing that Sy, = {v, |1, vs}, v4 = s,
vg = f,and g = 3,an AND-tree which has g+2 = 5 children
nodes (again without counting the roots grand- and grand-
grandchildren) is constructed in Figure 3(d). Since after such
process the AOV graph becomes empty, the whole conversion
algorithm ends here.

As a short summary, after the “abstraction subalgorithm”
and the “transformation subalgorithm” depicted in this sec-
tion, the final “interpretation subalgorithm” can be easily per-
formed by a traversal to the constructed AND-OR tree. These
subalgorithms constitute the proposed algorithm and the
bodies of them will be defined in Section 3.

3. The Body of the Algorithm

In this section, relevant data structures and methods are
introduced first, followed by the body of the proposed algo-
rithm, including the functions to construct the final AND-
OR tree and to obtain the Boolean interpretations by travers-
ing the tree. Note that, in this algorithm, because the final
AND-OR tree is to be constructed “on the fly” (which means

Constructed AND-OR tree(s): nil
The AOV graph

(a) The original AOV graph with null AND-OR tree(s)

Constructed AND-OR tree(s):
OR-subtree 1

The AOV graph

vi N Vs
S O—O—0—0

(c) Results of second stage OR-translation: the constructed OR-subtree and

the reduced AOV graph

Mathematical Problems in Engineering

Constructed AND-OR tree(s)
AND-subtree 1 AND-subtree 2 AND-subtree 3

Mo n 12

CYARC\ D, fs |17

The AOV graph

(b) Results of first stage AND-translation: the constructed AND-
subtrees and the reduced AOV graph

Constructed AND-OR tree(s):
Final AND-tree

The AOV graph: nil

(d) Results of third stage AND-translation: the constructed final AND-tree
and the reduced AOV graph

FIGURE 3: The transformation process from an AOV graph to an AND-OR tree.

public class Node {

string name; // stores the name of the node
List<Node> preNodes; // stores the predecessor nodes of this node
List<Node> postNodes; // stores the successor nodes of this node

ALGORITHM 1

the nodes in the AND-OR tree are constructed by relinking
the vertices in the AOV graph, using the same data structure)
on such a base, the term “node” is used to denote not only
AOV vertex in the AOV graph but also node in the AND-OR
tree. And since an original AOV graph fully describes an LD,
the input variable named “LD” is, in fact, some specific LD in
AOV-graph representation format.

3.1. Data Structure and AND-OR Tree Conversion Algorithms

3.1.1. Data Structure. The classes, in C#, are defined as shown
in Algorithm 1.

The classes for AND-nodes and OR-nodes are derived
from the Node class, which are defined as shown in
Algorithm 2.

Mathematical Problems in Engineering

public class AndNode: Node {

b
And,
public class OrNode: Node {

List<Node> children; // stores the child nodes of this AND-node

List<Node> children; // stores the child nodes of this OR-node

ALGORITHM 2

Function-1: ConvertRungsIntoAndOrTree

Input: a ladder diagram LD

Output: an AND-OR tree that corresponds to LD

for rung: LD.rungs
currentNode « rung.nodes[0]
currrentDic < new Dictionary<Node, List<Node>>()
ConstructAndOrTree(currentNode, currentDic)

end for

ALGORITHM 3: Function-1: main body of the algorithm.

3.1.2. Algorithm. The main algorithmic body to convert the
rungs in LD represented in an AOV graph to an AND-
OR tree, named “Function-1,” is shown in Algorithm 3. This
function utilizes the generic class Dictionary(K,V) in C#,
wherein K and V are a key-value pair and they can be differ-
ently typed. In Algorithm 3, K is defined as the type of a node
and V is defined as the list that stores the data of the node.

“Function-2” shown in Algorithm 4(a) lists the pseu-
docodes of a ConstructAndOrTree() function mentioned in
Algorithm 3. Its algorithm is done by calling another Con-
structAndOrTreeHelper() function, whose pseudocodes are
listed in Algorithm 4(b) as “Function-3,” after a children list
(i.e., “childrenList”) is created (i.e., newed). These two func-
tions, together, construct the AND-OR tree for one single
rung, given the first node of a stair rung of a ladder. As can be
seen, Function-2 mainly focuses on transforming the nodes
that meet the AND-transformation rule (in Section 2.2.3)
into an AND-subtree with an additional AND-node estab-
lished. Function-3 is in charge of converting the parallel
nodes that meet the OR-transformation rule into an OR-
subtree, wherein the additional OR-node is established and
the tree structure is organized by calling ConstructOrNode(),
whose algorithm is named as “Function-4” as shown in
Algorithm 4(c).

3.2. The Boolean Expression Interpretation Algorithm. As the
AND-OR tree construction algorithm shown in Algorithm 4,
after an AND-OR tree is constructed as an output, the tree can
be traversed to have the text-based Boolean expression inter-
pretations. “Function-5," as shown in Algorithm 5, traverses
the AND-OR tree in order and at the same time generates the
associated Boolean expression in VHDL code format.

By taking the AND-OR tree shown in Figure3 as an
example input, if Function-5 is called, the interpreted Bool-
ean expression, which is able to be coded directly in VHDL
programs, is as follows:

(1 AND X(1) AND ((X(2) AND X(3) AND X(4)) OR
(X(6) AND X(7) AND X(10)) OR (X(11) AND X(12)))
AND X(5)).

Note that the constant “1” represents the circled-s vertex
in the AOV graph, which is the left-margin connector in the
original LD.

4. Illustrative Example

This section offers a more complicated example to verify the
proposed conversion algorithm. Figure 4(a) shows the LD
designed in LAD originally, while Figure 4(b) is its corre-
sponding AOV graph, obtained according to the abstraction
subalgorithm introduced in Section 2.1.

Figure 5 illustrates the process of building the AND-
OR tree. With Figure 4(b) as its input, this is done by the
algorithm proposed in Section 3 which is designed according
to the conversion logics discussed in Section 2.2.

At first, by Function-3 and Function-4, the two rungs
which are attached to the left-margin connector (i.e., the ver-
tex “circled-s”) and are delimited by vertex v, rooted from the
contacts v;; and v,4, are converted and reorganized into an
OR-subtree, as shown in Figure 5(a). Next, the rungs which
are attached to v, in Figure 5(b) are converted and reorga-
nized into the other OR-subtree, as shown in Figure 5(c).
This yields an AOV graph in Figure 5(d).

As can be observed in Figure 5(d), no more OR-trans-
formations can be performed and the rest nodes (vertices)
satisfy the conditions for an AND-transformation. Therefore,
an AND-transformation is performed by Function-2. The
final AND-OR tree with an established AND-node as the root
is constructed, as shown in Figure 5(e).

Finally Function-5 takes place. It traverses the AND-
OR tree in Figure 5(e) and obtains the Boolean expression
interpretation in VHDL, which is as follows:

(1 AND ((X(1) AND ((X(2) AND X(3)) OR (X(11)
AND X(12)))) OR (X(16) AND X(17) AND X(20)))
AND X(4) AND ((X(21) AND X(22) AND X(23)
AND X(24)) OR (((X(5) AND X(6)) OR (X(13) AND
X(14))) AND X(7) AND (X(10) OR X(15))))).

Mathematical Problems in Engineering

(a) Function-2: ConstructAndOrTree()
Function-2: ConstructAndOrTree
Input: first node of a rung named “nd” and a dictionary typed Dictionary<Node, List<Node>> named “dic”
Output: an And-Or tree
childrenList « new List<Node>()
ConstructAndOrTreeHelper(nd, dic, childrenList)
if (childrenList.Count > 1)
andNode < new AndNode();
andNode.preNodes « childrenList[0].preNodes
andNode.postNodes « childrenList[childrenList.Count — 1].postNodes
andNode.children.Add(childrenList)
Update postNodes list of node of which postNodes contains nd
Update preNodes list of node of which preNodes contains nd
Remove nodes included in childrenList in the rung
Update values which contain nd in the dic
end // if
(b) ConstructAndOrTreeHelper(), called by ConstructAndOrTree()
Function-3: ConstructAndOrTreeHelper
Input: a node typed Node named “node”, a dictionary typed Dictionary<Node, List<Node>> named “dic”, a list typed
List<Node> named “childrenList”
childrenList.add(node)
if (node.postNodes.count == 0)
Return
end // if
if (node.postNodes.count == 1)
postNode « node.postNodes[0]
if (postNode.preNodes.count == 1)
ConstructAndOrTreeHelper(postNode, dic, childrenList)
End
Else
insert node into dic[postNode]
end
else
subDic « new Dictionary<Node, List<Node>>()
for currentNode: node.postNodes
ConstructAndOrTree(currentNode, subDic)
end // for
while (subDic.Key.count > 1)
begin
for keyValuePair: subDic.keyValuePairs
begin
if (keyValuePair.Key.preNodes.count == keyValuePair.Value.count)
orNode « ConstructOrNode(keyValuePair, node)
remove keyValuePair in the subDic
ConstructAndOrTree(orNode, subDic)
end // for
end // while
orNode « ConstructOrNode(keyValuePair which is the only item in the subDic, node)
ConstructAndOrTreeHelper(orNode, dic, childrenList)
(c) ConstructOrNode(), called by ConstructAndOrTreeHelper()
Function-4: ConstructOrNode
Input: a key-value-pair named “kvp” of which key is the successor node of the constructed orNode and value is the children
of the orNode, the predecessor node named “nd” of the orNode
Output: an orNode
orNode < new OrNode()
orNode.children « kvp.value
orNode.preNodes « nd
orNode.postNodes « kvp.key
delete elements included in kvp.value in kvp.key.preNodes

ALGORITHM 4: Continued.

Mathematical Problems in Engineering

delet:

delet:

kvp.key.preNodes.Add(orNodes)

e elements included in kvp.value in nd.postNodes

nd.postNodes.append(orNode)
e elements includes in kvp.value in ladderdiagram and insert orNode into ladderdiagram
return orNode

ALGORITHM 4: The AND-OR tree construction algorithm.

Function-5: TranslateAndOrTreeIntoBooleanExpression
Input: the root node of the And-Or tree named “root”
Output: the Boolean expression of the And-Or Tree
expression « new string()
if (root.children.count == 0)
Return expression « root.toString()
end // if
if (the type of root is AND-Node)
for childNode: root.children
subExpression « TranslateAndOrTreeIntoBooleanExpression(childNode)
Expression « expression + “AND” + subExpression
end for
else
for childNode: root.children
subExpression « TranslateAndOrTreeIntoBooleanExpression(childNode)
Expression « expression + “OR” + subExpression
end // for
end // if
Expression « “(“+ expression +”)”
return expression

_|

ALGorITHM 5: The interpretation algorithm.

a Q (=) C4 G 3 ¢ €10
(=81 12 €3 Cl4 €5
Ci6 Gy Q0 Q1 22 Q3 Q4
I | | | | |
[I

(b) Associated AOV graph

FIGURE 4: A more complicated example: source LD and its AOV graph.

— (ST)

8 Mathematical Problems in Engineering

OR-subtree 1

(a) The constructed OR-subtree from Figure 4(b) (b) The reduced AOV graph of Figure 4(b) after the OR-subtree is constructed in
(a)
OR-subtree 3

Iy Vy 5
NN N)
O—O—O—0O—0
(c) The constructed OR-subtree from (b) (d) The reduced AOV graph of (b) after the OR-

subtree is constructed in (c)

Final AND-tree

(e) The final AND-tree (with a null AOV graph which is not shown)

FIGURE 5: AND-OR-tree construction for the complicated example: logics performed by the algorithm.

The above expression is equivalent to the AND-OR tree graph, the LD is abstracted as an AOV graph at first and next it

itself and is ready to be programmed. is transformed to the associated AND-OR tree. Then, the final

Boolean expression in VHDL is interpreted by AND-OR tree

traversal. The algorithm is helpful to VHDL programming

5. Conclusion in dealing with the logics behind an LD drawn in the LAD

language. This is a possible contribution of this study in that

This study proposes an algorithm to convert LDs into its the algorithm supports the development of next-generation
associated VHDL Boolean expressions. With the helpof AOV high-speed PLCs based on FPGA.

Mathematical Problems in Engineering

PACKAGE VHDLFUNPACKAGE IS
PROCEDURE MOVB(CONSTANT CI: IN INTEGER RANGE 255 DOWNTO 0;
SIGNAL SOUT: OUT STD_-LOGIC_VECTOR(7 DOWNTO 0));
PROCEDURE ADDB(SIGNAL SI: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL S2: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL SOUT: OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END VHDLFUNPACKAGE;
PACKAGE BODY VHDLFUNPACKAGE IS
PROCEDURE MOVB(CONSTANT CI: IN INTEGER RANGE 255 DOWNTO 0;
SIGNAL SOUT: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)) IS

BEGIN

END PROCEDURE MOVB;

BEGIN
SOUT <= S1+ S2;
END PROCEDURE ADDB;
END VHDLFUNPACKAGE;

SOUT <= CONV_STD_LOGIC_VECTOR(CL, 8);

PROCEDURE ADDB(SIGNAL S1: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL S2: IN STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL SOUT: OUT STD_LOGIC_VECTOR(7 DOWNTO 0)) is

ALGORITHM 6

In addition, the proposed algorithm is verified with a
complicated LD. In fact, in this study, two LDs, a simpler
one and a more complicated one, serve as the inputs of the
algorithm. The results of both of which are correct. This lends
support to the efficacy of the proposed algorithm. However,
for illustration simplicity, the example only demonstrates the
cases of normally open and normally closed contacts. About
the transformation of special functional blocks, please refer
to Appendix.

Thirdly, as an extra function, the algorithm is able to
scrutinize the validity of any of an LD instance. This is based
on the claim of a previous study [12]: if any rung in an LD
instance cannot be successfully converted to an AND-OR
tree, the LD is invalid. The algorithm proposed by this study
can also well serve such examination purpose.

Finally, future works can involve the practical and eco-
nomical interests pertaining to the algorithm. Demonstrating
the example applications of the algorithm is a future work.
An IDE tool for visually designing the LDs and for trans-
forming the LD programs into VHDL programs directly is an
implementation issue. As can be imagined, this will involves
a data structure that is to save and load the LDs, as well as to
organize the LD in another graph data structure to store the
AOV graph, so that the subsequent conversion process based
on the proposed algorithm can follow. More critically, with
one such IDE tool, a new developer can easily develop VHDL
programs to run on the FPGAs. In the meanwhile, he/she
just needs to concentrate on writing a correct LD program,
instead of any new tool or new language, leave the rest jobs for
the IDE tool that converts the LD program into a VHDL one,
and leave the remaining jobs for the other tool that compiles
the VHDL program (e.g., Quartus) as FPGA executables. This
is, exactly, the major motivation of this study to design the
algorithm, which can serve as a key part of the IDE tool

and can be used to convert different LD diagrams to their
associated logical expressions.

Appendix

For the special functional blocks, for example, ADD, MUL,
and MOV, or other functional blocks, no matter which, the
translation processes are identical. The procedure of such a
process is described as follows.

(1) Use VHDL to realize the function that is associated
with the mentioned instruction (functional block).
That is, it is to write the codes for the relevant library
functions in VHDL.

(2) When there is any such instruction in the LD dia-
gram, just invoke the associated library function.

For example, for the 8-bit adder block and the 8-
bit MOV instruction, we can firstly compose the
library functions for them in VHDL as shown in
Algorithm 6.

Then when there is the 8-bit adder block or the 8-bit
MOV instruction required in the LD program, the translation
process just needs to invoke these library functions.

Conflict of Interests
The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] M. M. Patil, S. Subbaraman, and P. S. Nilkund, “IEC control
specification to HDL synthesis: considerations for implement-
ing PLC on FPGA and scope for research,” in Proceedings of the

10

[8

[10

J

]

International Conference on Control, Automation and Systems
(ICCAS ’10), pp. 2170-2174, October 2010.

B. Magnussen, “A parallel control computer structure for com-
plex high speed applications,” in Proceedings of Ist IEEE Interna-
tional Conference on Engineering of Complex Computer Systems
(Held jointly with 5th CSESAW, 3rd IEEE RTAW and 20th
IFAC/IFIP WRTP), pp. 385-388, Ft. Lauderdale, Fla, USA,
November 1995.

I. Miyazawa, T. Nagao, M. Fukagawa, Y. Itoh, T. Mizuya, and
T. Sekiguchi, “Implementation of ladder diagram for program-
mable controller using FPGA,” in Proceedings of the 7th IEEE
International Conference on Emerging Technologies and Factory
Automation (ETFA *99), vol. 2, pp. 1381-1385, 1999.

M. Ikeshita, Y. Takeda, H. Murakoshi, N. Funakubo, and 1.
Miyazawa, “An application of FPGA to high-speed program-
mable controller: development of the conversion program from
SEC to Verilog,” in Proceedings of the 7th IEEE International
Conference on Emerging Technologies and Factory Automation
(ETFA °99), vol. 2, pp. 1386-1390, Barcelona, Spain, October
1999.

M. Adamski and J. L. Monteiro, “From interpreted Petri net
specification to reprogrammable logic controller design,” in
Proceedings of the IEEE International Symposium on Industrial
Electronics (ISIE °00), pp. 13-19, December 2000.

A. Wegrzyn and M. Wegrzyn, “Petri net-based specification,
analysis and synthesis of logic controllers,” in Proceedings of the
IEEE International Symposium on Industrial Electronics (ISIE
’00), pp. 20-26, December 2000.

S. Ichikawa, M. Akinaka, R. Ikeda, and H. Yamamoto, “Con-
verting PLC instruction sequence into logic circuit: a prelim-
inary study,” in Proceedings of the International Symposium on
Industrial Electronics (ISIE *06), pp. 2930-2935, July 2006.

C. Economakos and G. Economakos, “Optimized FPGA imple-
mentations of demanding PLC programs based on hardware
high-level synthesis,” in Proceedings of the 13th IEEE Interna-
tional Conference on Emerging Technologies and Factory Auto-
mation (ETFA °08), pp. 1002-1009, September 2008.

C. Economakos and G. Economakos, “An architectural explo-
ration framework for efficient FPGA implementation of PLC
programs,” in Proceedings of the 17th Mediterranean Conference
on Control and Automation (MED °09), pp. 1172-1177, Thessa-
loniki, Greece, June 20009.

D.Du, Y. Liu, X. Guo, K. Yamazaki, and M. Fujishima, “Study on
LD-VHDL conversion for FPGA-based PLC implementation,”
International Journal of Advanced Manufacturing Technology,
vol. 40, no. 11-12, pp. 1181-1190, 2009.

D. Alonso, J. Suardiaz, P.]J. Navarro, P. M. Alcover, and J.
A. Lépez, “Automatic generation of VHDL code from tradi-
tional ladder diagrams applying a model-driven engineering
approach,” in Proceedings of the 35th Annual Conference of the
IEEE Industrial Electronics Society (IECON "09), pp. 2416-2421,
Porto, Portugal, November 2009.

Y. Yan and H. Zhang, “Compiling Ladder Diagram into Instruc-
tion List to comply with IEC 61131-3,” Computers in Industry, vol.
61, no. 5, pp. 448-462, 2010.

Mathematical Problems in Engineering

Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo

