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A new mathematical model for locating a single semiobnoxious facility in the plane is proposed. Three objectives are taken into
consideration. The first one maximizes the efficiency of the service provided by the facility to some users, by minimizing the sum
of weighted distances between the facility and those users. The second one minimizes the social cost caused by the undesirable
effects produced by the facility, by minimizing the sum of the repulsions of the affected people (as they feel it). The third one aims
to distribute the repulsions fairly (as equal as possible) among the affected people. To prove that the new model can be tackled in
practice, two recent general-purpose multiobjective evolutionary algorithms, MOEA/D and FEMOEA, are suggested to obtain a
discrete approximation of its Pareto-front. A computational study shows that both algorithms are suitable to cope with the problem.

1. Introduction

Location Models. Location science deals with the location
of one or more facilities in a way that optimizes a cer-
tain objective, for example, minimization of transportation
costs [1], minimization of social costs [2], minimization
of the response time [3], and maximization of the profit
obtained [4]. See [5–7] for an introduction to the topic.
In fact, many location problems require taking more than
one objective into account. The literature on multiobjective
location problems is wide and varied (see, for instance, the
review papers [8, 9] and the references therein). In this work
we restrict ourselves to continuous problems, in which the
facility can be located in any place within a given subset of
the plane. Althoughmost multiobjective location papers deal
with discrete or network problems, we can find many papers
on continuous problems as well (see, for instance [10–12], to
name a few).

In particular, in this paper, we deal with the location of a
semiobnoxious or, in general, a semidesirable facility, that is,
a facility that is perceived as desirable by some users (it offers
a service to them) but undesirable by others (they receive

a negative effect). Garbage dump sites, airports, train stations,
chemical plants, and power plants are typical semidesirable
facilities. As the welfare of negatively affected users decreases
as the facility gets closer to them, they would like the facility
to be sited as far as possible. However, this is against the wish
of the positively affected users, who want the facility as close
to them as possible. Although this naturally leads to bi- (or
multi-) objective problems, some authors have afforded the
problem using single-objective models, either by combining
the negative and the positive objectives into a single one (as
a kind of weighting method; see, for instance [13]) or by
transforming one of the objectives into a constraint (as a kind
of constrained method; see, for instance [14]).

Concerning the multiobjective problems, more precisely
the biobjective ones, the pull objective considered in all
papers that we are aware of is the classical minisum objective,
that is, minimization of the sum of weighted distances
between the facility and the positively affected users. As for
the push objective, the minimization of the sum of negative
powers of distances, representing an aggregate undesirable
effect, is considered in [15], the minimization of the sum of
nonincreasing piecewise linear functions of the distance is
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employed in [16], and the maximization of the minimum
distance, to take care of the worst case, is used in [17].

Themodel introduced in this work also uses theminisum
objective as pull objective but differs from existing studies
in several aspects. Firstly, the push objective is given by
the minimization of the sum of the repulsions as felt by
the negatively affected people. To this aim, a nonlinear
multimodal objective function introduced in [2] is used.
Secondly, in addition to the pull andpush objectives, an equity
objective is also considered, which aims at distributing the
undesirable effects fairly among all the negatively affected
people. This is of special interest when locating public
facilities, as the authorities in charge of deciding the location
of the semidesirable facility may consider this third objective
as important as the pull and push ones. Thirdly, the equity
objective is new in literature, as it aims to equalize the
undesirable effects, and not the distances (as is usually done
in the literature dealing with the location of facilities with an
equity objective). As far as we know, this is the first three-
objective model for locating a semidesirable facility in the
plane proposed in literature.

Definitions. When dealing with multiobjective problems we
need to clarify what “solving” a problemmeans. Some widely
known definitions to explain the concept of optimality are
given next. The interested reader is referred to [18] for a
good introduction to (nonlinear) multiobjective optimiza-
tion, where these and other definitions, as well as properties
and some solution methods are detailed. The following
general nonlinear multiobjective optimization problem will
be considered:

min {𝑓1 (𝑦) , . . . , 𝑓𝑚 (𝑦)}

s.t. 𝑦 ∈ 𝑆 ⊆ R
𝑛,

(1)

where 𝑓1, . . . , 𝑓𝑚 : R𝑛 → R are 𝑚 real-valued func-
tions and 𝑆 is the feasible set. Let us denote by 𝑓(𝑦) =
(𝑓1(𝑦), . . . , 𝑓𝑚(𝑦)) the vector of objective functions and by
𝑍 = 𝑓(𝑆) the image of the feasible region.

Definition 1. A feasible vector 𝑦∗ ∈ 𝑆 is said to be efficient if
and only if there does not exist another feasible vector 𝑦 ∈ 𝑆
such that 𝑓

𝑙
(𝑦) ≤ 𝑓

𝑙
(𝑦∗) for all 𝑙 = 1, . . . , 𝑚, and 𝑓

𝑗
(𝑦) <

𝑓
𝑗
(𝑦∗) for at least one index 𝑗 (𝑗 ∈ {1, . . . , 𝑚}). The set 𝑆

𝐸
of

all the efficient points is called the efficient set or Pareto-set. If
𝑦1 and 𝑦2 are two feasible points and 𝑓

𝑙
(𝑦1) ≤ 𝑓

𝑙
(𝑦2) for all

𝑙 = 1, . . . , 𝑚, with at least one of the inequalities being strict,
then we say that 𝑦1 dominates 𝑦2.

Efficiency is defined in the decision space. The corre-
sponding definition in the criterion space is as follows.

Definition 2. An objective vector 𝑧∗ = 𝑓(𝑦∗) ∈ 𝑍 is said
to be nondominated if and only if 𝑦∗ is efficient. The set 𝑍

𝑁

of all nondominated vectors is called the nondominated set
or Pareto-front. If 𝑦1 and 𝑦2 are two feasible points and 𝑦1
dominates 𝑦2, then we say that 𝑓(𝑦1) dominates 𝑓(𝑦2).

Ideally, solving (1)means obtaining thewhole efficient set,
that is, all the points which are efficient, and its corresponding
Pareto-front.

Multiobjective Algorithms. For a majority of multiobjective
problems, including location problems, it is not easy to
obtain an exact description of the efficient set or Pareto-
front, since those sets typically include an infinite number
of points (usually a continuum set). The methods proposed
in the literature with that purpose are specialized either in
particular problems or for a particular type of multiobjective
problems. To the extent of our knowledge, only two exact
general methods, namely, two interval branch-and-bound
methods (see [11, 19]) have been proposed in literature
which obtain an enclosure of those sets up to a prespecified
precision. Specifically, they offer a list of boxes (multidimen-
sional intervals) whose union contains the complete efficient
set (and their images the corresponding Pareto-front) as a
solution. However, they are time consuming. Furthermore,
they have large memory requirements, so that only small
instances can be solved with them. The reason for this lack
of methods is that even obtaining a single efficient point of a
nonlinear multiobjective problem can be a difficult task.That
is why some authors have proposed to present to the decision-
maker a good “representative set” of nondominated points
which suitably represents the whole Pareto-front. By a good
representative set we mean a discrete set of points covering
the complete Pareto-front and evenly distributed over it.

There is a plethora of metaheuristic methods with that
purpose in literature. These include extensions of simulated
annealing [20], tabu search [21], scatter search [22], ant
systems [23], or particle swarm optimization [24], among
others, to multiobjective programming. However, most of
them are designed to deal with combinatorial MOPs (some
exceptions are [21, 22]).

Nonetheless, the most common approaches utilized in
literature to cope with (1) is the use of multiobjective
evolutionary algorithms (MOEAs).This is due to their ability
to find multiple efficient solutions in one single simulation
run. The numerous proposed variants have been surveyed,
for instance, in [25]. Among them, the algorithms NSGA-II
[26] and SPEA2 [27] have been the reference algorithms in
the multiobjective evolutionary computation community for
years. However, during the last five years, the multiobjective
evolutionary algorithm based on decomposition MOEA/D
[28] has proved to be superior to other state-of-the-art algo-
rithms (including both NSGA-II and SPEA2) when applied
to a wide variety of multiobjective benchmark problems [29].
MOEA/D will be used in this paper to solve the triobjective
location model, and also the recently proposed FEMOEA
algorithm [30], which has been successfully applied to other
biobjective location problems (see, for instance [31]).

The rest of the paper is organized as follows. Our new
triobjective location model is introduced in the following
section, where special subsections are devoted to each of its
objectives. In order to show that the problem can be tackled
with the aforementioned algorithms, a computational study
is performed in Section 3. The quality of the approximation
sets offered by MOEA/D and FEMOEA is investigated with



Mathematical Problems in Engineering 3

the help of several quality indicators. In Section 4, our main
conclusions are summarized and the research issues that we
believe to be worth exploring in the future are highlighted.

2. The Model

A semiobnoxious or semidesirable facility is going to be
located in a region of the plane 𝐹 ⊆ R2, where there is a
set of points (cities, customers, demand points, etc.) that will
interact with it. Due to the characteristics of the facility, some
of those points perceive the facility as attractive, whereas
other points perceive it as undesirable. Let 𝐴+ be the set of
points for which the new facility is attractive and 𝐴− the set
of points for which the new facility is undesirable. Notice that
𝐴+ ∩ 𝐴− may be a nonempty set. Let 𝑤+

𝑎
be a weight related

to the importance of point 𝑎 ∈ 𝐴+, and, similarly, let 𝑤−
𝑎
be

a weight measuring the importance of point 𝑎 ∈ 𝐴−. For a
point 𝑎 ∈ 𝐴+ ∩ 𝐴−, the weights 𝑤+

𝑎
and 𝑤−

𝑎
may be equal or

different, depending on the problem.
Let us denote by 𝑥 = (𝑥1, 𝑥2) the location of the new

facility and by 𝑑+(𝑎, 𝑥) (resp., 𝑑−(𝑎, 𝑥)) the distance between
the facility and the point 𝑎 ∈ 𝐴+ (resp., 𝑎 ∈ 𝐴−). Function
𝑑+ measures the distances in accordance with the factors that
make the facility attractive, whereas 𝑑− does it in accordance
with the factors that make it undesirable. Again, for a point
𝑎 ∈ 𝐴+ ∩ 𝐴−, functions 𝑑+ and 𝑑− may be equal or different.
For instance, if the attraction that 𝑎 ∈ 𝐴+ feels for 𝑥 decreases
with the travel distance between them, then 𝑑+ may be a
distance predicting function (see [32]). On the other hand, if
the undesirability of the facility is due to the air pollution it
causes, then 𝑑− may be given by an elliptic distance metric to
reflect the impact of wind in the distribution of pollution (see
[33]).

In this paper we consider, in particular, the case of a
facility which has to provide a service to all the points in 𝑎 ∈
𝐴+, such that the cost of providing this service is mainly due
to the distance between the facility and the points. We also
assume that the disutility produced by the facility at the points
𝑎 ∈ 𝐴− is related to the distance and that its undesirable
effects do not endanger peoples’ lives. Some examples of
these kinds of facilities may be a garbage dump or a sewage
treatment plant.

2.1. Maximizing Efficiency. The first objective of the model is
aimed at maximizing the efficiency of the service provided by
the facility. If we assume that the cost of providing the service
to the points is given by the distance between the facility
and the points (or alternatively that the quality of the service
decreases as the distance increases), thenwe can consider that
the first objective of the problem is the classical minisum one,
where one seeks to minimize the sum of weighted distances
from the facility to the demand points that perceive it as
attractive. Mathematically, it is given by

min𝑓1 (𝑥) = ∑
𝑎∈𝐴
+

𝑤+
𝑎
𝑑+ (𝑎, 𝑥) , (2)

and it is the most widely used criterion in facility location. 𝑑+
should be given by a distance predicting function [32].

2.2. Minimizing Social Cost. We can find several papers
dealing with the location of undesirable facilities in literature.
See, for instance, the review papers [8, 34] and the references
therein. Maximin models, whose objective is to maximize
the minimum distance between the points 𝑎 ∈ 𝐴− and the
facility, are the most studied. However, such an objective is
usually more suited for noxious facilities, which, in case of an
accident, may endanger people’s health or the environment
(such as a nuclear or a chemical plant).

In this paper we follow [2], where the case of the location
of a nonnoxious undesirable facility is considered. To model
the total repulsion of the inhabitants at a point 𝑎 ∈ 𝐴− against
the location of the facility at 𝑥 as they perceive it, the use of
the function,

trp (𝑎, 𝑥) = 𝑤−
𝑎

1
1 + exp (𝛼

𝑎
+ 𝛽
𝑎
𝑑− (𝑎, 𝑥))

, (3)

is proposed, where𝛼
𝑎
∈ R and𝛽

𝑎
∈ R+ are two parameters to

be estimated for every demand point 𝑎.The lower the value of
𝛼
𝑎
, the higher the repulsion of the inhabitants to the location

of the facility near their city or its outlying areas, and the
higher the value of 𝛽

𝑎
, the faster the change in opinion from

considering a distance nonacceptable to acceptable. So, many
types of repulsions can bemodelledwith the function trp, just
by choosing the right 𝛼

𝑎
and 𝛽

𝑎
values (see Figure 1). Observe

that when the facility is located far enough from the point 𝑎
the repulsion decreases to zero. In order to choose a distance
function 𝑑− we must bear in mind that what is wanted is to
measure the repulsion of the inhabitants to the facility as they
feel it. In this way the model should use a distance function
which measures distances as people perceive them. What
people usually know are the distances between some pairs of
cities which they have learnt either by their own experience
going from one city to another or by reading the kilometres
written on a road-sign or roadmap. Hence, the best choice is
to fit a distance predicting function again.

The second objective of our model is to minimize the
global repulsion of the inhabitants of the geographical region
𝐹 against the location of the facility as they feel it, as given by

min𝑓2 (𝑥) = ∑
𝑎∈𝐴
−

trp (𝑥, 𝑎) . (4)

Since it is assumed that the undesirable effects the facility
provokes do not endanger people’s lives, the minimization of
the sum of the total repulsions is better than theminimization
of theirmaximum.

Notice that if the feasible set was unbounded, the optimal
solution of a single-objective problem with a push objective
would be at infinity. That is why these types of problems
always assume a bounded feasible set or include constraints
that make it a bounded set.

2.3. Maximizing Equity. Since the facility is undesirable for
the points 𝑎 ∈ 𝐴−, its location may provoke a smaller
rejection if those points perceive that they are all equally
affected, that is, the fact that the relative distribution of the
undesirable effects is fair. In fact, this is on its own one of
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Figure 1: Shape of trp(𝑎, 𝑥) depending on the value of the parameters. 𝑤−
𝑎
= 1 in all the cases.

the objectives that authorities wish to achieve when locating
public facilities. This suggests including an equity objective
in the model. Equity is, essentially, an abstract concept that
implies fairness and justice. Although equity is a broader
concept than (in)equality (the latter refers to the state of
several measurements having the same value), equity is usu-
ally quantified with the so-called inequality measures, to be
minimized. Many and diverse measures have been proposed
in literature to gauge the level of inequality (as a proxy for
equity) in facility location alternatives. In their review, Marsh
and Schilling [35] analysed up to 20 different measures.

But whichmeasure is to be used? In order to try to answer
this question, some authors have mentioned criteria that
should be considered when selecting an inequality measure.
Among them, the Pigou-Dalton principle of transfers is the
most widely accepted one, and it is regarded by economists
as a mandatory requirement for adequate measures of equity
[36], a point of view we follow here. It establishes that the
value of the inequality measure decreases as the difference in
effects between any two points decreases. Another common
assumption is the scale invariance [37]. Interestingly, most
of the inequality measures used or proposed in locational
analysis literature do not satisfy those two criteria. Among the
ones that satisfy themwe have the coefficient of variation and
theGini index [38].The latter is themost commonly accepted
one by economists to describe income distributions, and it
has also been analysed in the location context [37], though
only in [39] in a continuous setting, as we do in this paper.

We also use the Gini index in this paper, but in a different
way. In locational analysis literature, when an inequality
measure is used, it is always with the aim of equalizing the
(maybe weighted) distances {𝑑+(𝑎, 𝑥) : 𝑎 ∈ 𝐴+}, as it is
assumed that the distances determine the desirability of the
facility. However, our aim is to equalize the total repulsions
{trp(𝑎, 𝑥) : 𝑎 ∈ 𝐴−} against the new facility, as we want a
fair distribution of the undesirable effects, and the degree of
the rejection varies with the distance as measured by the total
repulsion trp(𝑎, 𝑥). Hence, the third objective of the model is

min𝑓3 (𝑥) =
∑
𝑎∈𝐴
− ∑
𝑎
󸀠
∈𝐴
−

󵄨󵄨󵄨󵄨󵄨trp (𝑎, 𝑥) − trp (𝑎󸀠, 𝑥)󵄨󵄨󵄨󵄨󵄨
2 |𝐴−|2 trp

, (5)

where trp = (∑
𝑎∈𝐴
− trp(𝑥, 𝑎))/|𝐴−| is the mean of total

repulsions.
Aswith push objectives, the optimal solution of anuncon-

strained single-objective problem with an equity objective
would be at infinity. Hence, these types of problems also
include constraints to make the feasible set bounded.

Then, the triobjective problem is given by

min 𝑓 (𝑥) = (𝑓1 (𝑥) , 𝑓2 (𝑥) , 𝑓3 (𝑥))

s.t. 𝑥 ∈ 𝐹,
(6)

where 𝐹 ⊂ R2 is a bounded set. As far as we know, this
is the first triobjective optimization model for locating a
semidesirable facility in the plane proposed in literature.
This lack of models (even biobjective models are rather
scarce) is in part due to the difficulty of designing specialized
algorithms for obtaining (an approximation of) its efficient
set and its corresponding Pareto-front. However, as it will
be shown in the next section, existing meta-heuristics, in
particular multiobjective evolutionary algorithms, can do the
job quite efficiently.

2.4. A Numerical Example. In order to show how our model
works, next we apply it to a quasi-real example dealing with
the location of a big landfill around the city of Murcia, in
South-Eastern Spain. The city of Murcia is the capital of the
Autonomous Region of Murcia (A.R.M.), a province with
11314 km2 and over one million inhabitants. More than half
of the inhabitants of A.R.M. live in the city of Murcia or in
the villages close to it. A square centred in Murcia with an
edge 45 km long was considered as the feasible set in this
example. This choice was motivated by two concerns. On the
one hand, as all the cities will have to carry their garbage to
the landfill (maybe through transfer stations), a bigger region
would increase the transportation costs too much. On the
other hand, in the region at hand, increasing the length of
the edge to 55 km increases the number of covered inhab-
itants only slightly, whereas reducing the length to 35 km
decreases it considerably. But other feasible sets could have
been considered as well. 557746 inhabitants of A.R.M. and
74812 inhabitants from the neighbouring province of Alicante
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live within the considered square. These 632558 inhabitants
form our set of people concerned with the location of the
landfill. They are distributed over 71 population centres, with
population varying between 1138 and 178013 inhabitants. In
this study we have considered each population centre 𝑎 to
belong both to 𝐴− (as nobody wants the landfill close to it)
and to𝐴+ (as nobody wants the landfill too far away, in order
not to have to pay too much due to the transportation costs),
with 𝑤−

𝑎
= 𝑤+
𝑎
proportional to the population of 𝑎 (one unit

per 17800 inhabitants). Their position and population can be
seen in Figure 2: each demand point is shown as a yellow
circle whose radius is proportional to the population. In fact,
those circles are forbidden zones where the location of the
new facility is not allowed, as the location of the new facility
too close to a population centre will provoke the reaction of
its inhabitants against the facility.

Approximate values for the parameters 𝛼
𝑎
and 𝛽

𝑎
(the

same pair of values has been used for all the cities) were
obtained through a small survey carried out via e-mail among
teachers and students of the University of Murcia. People
were asked about theminimum distance from home at which
they would like the landfill to be sited, and also the minimum
distance fromhome at which they would allow the location of
the landfill (as it is a facility needed for the community).Using
192 answers received, some mathematical transformations,
and statistical regression, the following values were obtained:
𝛼
𝑎
= −2.91972 and 𝛽

𝑎
= 0.30146 (for more details the

interested reader is referred to [40]). As for the function used
to measure distances, the same distance predicting function
ℓ
𝑏1 ,𝑏2

(𝑥, 𝑎) = √𝑏1(𝑥1 − 𝑎1)
2 + 𝑏2(𝑥2 − 𝑎2)

2 was used for both
𝑑−(𝑥, 𝑎) and 𝑑+(𝑥, 𝑎), with parameters 𝑏1 = 1.760 and 𝑏2 =
1.373 and axes rotated 75∘ with regard to the true North-
South-East-West (see [32]).

In Figure 2 the results for the problem, as obtained using
the FEMOEAalgorithm (see Section 3.1), are depicted. In first
row we can see, from left to right, the efficient set when only
two objectives,𝑓1 and𝑓2, are considered, PS12; then the corre-
sponding Pareto-front, PF12; and, finally, the projection onto
the 𝑓1𝑓2-image space of the three-dimensional Pareto-front
obtained when considering the three objectives, Proj12(PF).
The second rowgives similar pictures, butwhen the objectives
𝑓1 and 𝑓3 are considered. The third row corresponds to the
objectives 𝑓2 and 𝑓3. The gray scale used to draw both PS

𝑎𝑏

and PF
𝑎𝑏

(the same scale for both pictures) allow us to see
the part of the efficient set where a better 𝑓

𝑎
value is obtained

(in light grey) as well as the part where a better 𝑓
𝑏
value is

obtained (in dark gray), when the objectives 𝑓
𝑎
and 𝑓

𝑏
are

considered, as well as the trade-off between both objectives.
In the fourth row of Figure 2 the efficient set PS123 of problem
(6), that is, considering the three objectives simultaneously, is
shown.

As we can see, PS123 strictly contains the union of
the other Pareto-sets; thus, considering the three objectives
provides other efficient regions not covered by the biobjec-
tive problems. Accordingly, we can see that the projection
Proj
𝑎𝑏
(PF) always contains the Pareto-front PF

𝑎𝑏
of the

corresponding biobjective problem.This clearly confirms that
the triobjective problem (6) differs from the three biobjective

problems that can be generated by choosing two of the
three objective functions. Notice that although some of the
points in Proj

𝑎𝑏
(PF) are dominated when considering the

problem with two objectives, those points are efficient when
considering the three objectives simultaneously.

Notice also that the efficient set and the Pareto-front
of both the biobjective and triobjective problems may have
an arbitrary shape, they can be even disconnected (see, for
instance, PS12 and PF12). This clearly shows the difficulty of
the problem we are dealing with.

In order to show that our model captures the semiobnox-
iousness of the facility differently from other existingmodels,
as an example, we have solved the same problem using two
models suggested in the literature: in [15] the social cost to
be minimized is given by the sum of negative powers of
distances (in our computations we have assumed the negative
power to be equal to 2), whereas in [17] the maximization of
the minimum distance is employed. In both models the pull
objective is the classical minisum one, as in our model. In
Figure 3 we can see the corresponding efficient sets, which
have also been obtained using FEMOEA. As can be seen, the
efficient sets obtained by those models differ clearly from the
one provided by ourmodel. In fact, none of those efficient sets
is contained in the efficient set provided by the triobjective
model (see the bottom picture of Figure 2).

3. Computational Studies

Any good mathematical model that cannot be solved in
practice is a useless model. In this section we show that
the model introduced in the previous section can indeed be
solved via multiobjective evolutionary algorithms.

3.1. Algorithms. MOEA/D is a generic, evolutionary multi-
objective optimization algorithm based on decomposition.
It first uses a decomposition method to decompose a mul-
tiobjective optimization problem into a number of scalar
optimization problems. Then, an evolutionary algorithm is
employed to optimize these subproblems simultaneously.
Each individual solution in the population of MOEA/D is
associated to a subproblem. A neighbourhood relationship
among all the subproblems is defined based on the distances
of their weight vectors. In MOEA/D, optimization of a
subproblem uses the current information of its neighbouring
subproblems since two neighbouring subproblems should
have close optimal solutions. See [28, 29] for more details on
the algorithm. It will be one of the algorithms used in our
study.

The other one is FEMOEA. It is also a generic, mul-
tiobjective evolutionary algorithm, but based on species. A
species is mainly defined by a centre and a radius. The centre
is a solution and the radius is a positive number which
determines the subregion of the search space covered by that
species. The main aim of the radius is to focus the searching
operators on the corresponding subregions. At each stage of
the algorithm, several species with different radii can coexist
simultaneously. The use of different radii throughout the
optimization process allows, on the one hand, identifying
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Figure 2: Efficient sets and Pareto-fronts of biobjective problems and efficient set and projections of the Pareto-front of the triobjective
problem.
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(a) (b)

Figure 3: Efficient sets of the biobjective problems in [15] (a) and [17] (b).

regions in the search space with high quality solutions and,
on the other hand, to not waste too much time on regions
of the search space which are either already explored or do
not provide high quality solutions. Additionally, FEMOEA
includes a local method which accelerates the convergence
of the population towards the optimal Pareto-front. Basically,
this method is an extension of the local optimizer SASS [41]
and improves a given solution along a search direction (no
gradient information is used). Finally, unlike the termination
criteria of most MOEAs in literature, which is usually based
on a number of function evaluations, FEMOEA incorporates
a stopping rule which establishes that the algorithm will
finish if during three consecutive iterations, the changes
experimented in the candidate Pareto-front are negligible (in
terms of the objective function values), for a given tolerance.
To know how far two sets are from each other, a modified
Hausdorff distance is proposed.

The version of MOEA/D used in the studies, obtained
from jMetal [42], is coded in Java, while the algorithm
FEMOEA has been implemented in C++. The parameters
used for MOEA/D are those proposed in [29], while the ones
considered by FEMOEA are those recommended in [31]. For
both algorithms and all the instances, the number𝑀 of points
in the set approximating the Pareto-front has been set to 300.
Notice that this is also the number of points in the population
set for both algorithms.

Since the analyzed algorithms are stochastic heuristics,
every particular instance has been run five times by each
algorithm.The value of the quality indicator considered for a
given problem is the average over the five runs. Additionally,
notice that due to the termination criteria of FEMOEA, each
particular instance may require a different number of func-
tion evaluations. Then, in order to carry out the comparison
as fair as possible, the number of function evaluations used
by MOEA/D has been modified for each particular problem

by fixing it to the average number of evaluations performed
by FEMOEA in the five runs.

3.2. Problems. In order to have an overall view of the
performance of the algorithms, different types of problems
have been generated, varying the total number of demand
points, |𝐴+ ∪ 𝐴−|, the number of demand points which feel
repulsion, |𝐴−|, and the number of demand points which feel
attraction, |𝐴+|. More precisely, three different values of |𝐴+∪
𝐴−|were considered; that is, |𝐴+∪𝐴−| = 25, 100, 500. For each
value, 10 instances were generated by randomly choosing
the parameters of the problems uniformly within predefined
intervals: 𝑎 ∈ ([0, 10], [0, 10]), 𝑤+

𝑎
, 𝑤−
𝑎

∈ [1, 10], 𝛼
𝑎

∈
[−5, 1], 𝛽

𝑎
∈ [1, 6], and 𝑑+(𝑎, 𝑥) = 𝑑−(𝑎, 𝑥) = (𝑏𝑎1 (𝑥1 −

𝑎1)
2 + 𝑏𝑎2 (𝑥2 − 𝑎2)

2)1/2 with 𝑏𝑎1 , 𝑏
𝑎

2 ∈ [1, 2.5] (see [43]).
The searching space proposed was ([0, 10], [0, 10]) for all
the problems. Besides, for each instance, both |𝐴−| and |𝐴+|
values were also randomly computed, so that 𝐴+ ∩ 𝐴−

includes at least 65% of the points of 𝐴+ ∪ 𝐴− and at most
85% of them. Each particular instance will be represented by
(|𝐴+ ∪ 𝐴−|, |𝐴−|, |𝐴+|) throughout this work.

3.3. Quality Indicators. To measure the quality of the sets
offered by the algorithms at approximating the Pareto-front,
several quality indicators from literature have been utilized.
They map each Pareto-front approximation to a number,
which can then be easily compared. Three quality indicators
have been considered in this study, namely, the hypervolume,
the additive epsilon indicator, and the spread, that will be
explained later.

Lets assume that we want to compare the quality of the
outcomes generated by 𝑄 stochastic algorithms (𝑄 = 2
in our study). For each algorithm 𝑞, 𝑞 ∈ {1, . . . , 𝑄}, 𝑒

𝑞

runs are performed (𝑒
𝑞
= 5 in our study), generating the

approximation sets PS𝑞1, . . . ,PS
𝑞

𝑒
𝑞

(in the decision space). Let
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us denote by SPS the set of all the approximation sets of the
Pareto-set, SPS = {PS11, . . . ,PS

1
𝑒1
, . . . ,PS𝑄1 , . . . ,PS

𝑄

𝑒
𝑄

}.
In some of the indicators listed below the approximation

sets of the Pareto-front need to be compared to the true
Pareto-front. However, the true Pareto-front is not usually
known or cannot be completely obtained.Then, a reference set
RS which approximates the true Pareto-front is used instead.
In our studies, the reference set RS has been obtained as
follows. All the approximation sets in SPS are combined, and
then the dominated points are removed from this union.The
image of the remaining points forms the reference set.

Furthermore, normalized objective values are used to
allowdifferent objectives to contribute equally to comparative
indicator values. The standard normalization is

𝑓
𝑙
(𝑦)
󸀠

=
𝑓
𝑙
(𝑦) − 𝑓(min)

𝑙

𝑓(max)
𝑙

− 𝑓(min)
𝑙

, (7)

where 𝑓(min)
𝑙

(resp., 𝑓(max)
𝑙

) denotes the minimum (resp.,
maximum) value of 𝑓

𝑙
when considering all the solutions in

SPS.
The most commonly used quality indicator in literature

is hypervolume [44], which measures the hypervolume of
the portion of the criterion space that is weakly dominated
by the approximation set. The higher the hypervolume, the
better the approximation. In order to measure this quantity,
a reference point that is dominated by all points is needed.
For a given problem, the same reference point has to be used
for all the algorithms and all the runs. In our computational
studies, the point whose 𝑙th component is themaximumof all
the 𝑙th components of points in 𝑓(SPS) is considered. It is an
approximation of the Nadir point obtained when considering
all the approximations of the Pareto-front together. The
computation of the hypervolumemetric has been depicted in
Figure 4, although, for the sake of simplicity, the biobjective
case has been represented.

Hypervolume can be thought of as a global quality
indicator, in the sense that it assesses the approximation set
as a whole. On the other hand, proximity indicators somehow
measure the distance between the approximation set and the
reference set. In this paper, we have used the unary additive
epsilon indicator [45]. For an approximation of a Pareto-set,
PS, it is computed as

𝐼
𝜖+
(𝑓 (PS)) = min

𝜖∈R
{∀𝑧 ∈RS ∃𝑎

∈PS :
𝑓
𝑙
(𝑎) − 𝑓(min)

𝑙

𝑓(max)
𝑙

− 𝑓(min)
𝑙

− 𝜖 ≤
𝑧
𝑙
− 𝑓(min)
𝑙

𝑓(max)
𝑙

− 𝑓(min)
𝑙

∀𝑙

∈ {1, . . . , 𝑚}}

(8)

and gives the minimum distance by which 𝑓(PS) needs to
be translated in each dimension in objective space such that
RS is weakly dominated by it. See Figure 5 for a graphic

Hyper

f2

f1

(f(max)
1 , f(max)

2 )
f(max)
2

f(max)
1

f (SPS)

Figure 4: Computation of the hypervolume value for an approxi-
mation set with two objectives.

f2

𝜖

f1f(max)
1

f(max)
2

RS
f (PS)

f (SPS)

(f(max)
1 , f(max)

2 )

I𝜖+(f (PS)) = 𝜖

Figure 5: Computation of the epsilon indicator for an approxima-
tion set with two objectives.

representation about the computation of the 𝐼
𝜖+

indicator
(again for the biobjective case).

Besides, an evenness/diversity indicator, the well-known
spread [22, 26], is used in the studies. It is computed as

Δ (𝑓 (PS))

=
∑𝑚
𝑙=1 𝑑 (𝑓

(min)
𝑙

, 𝑓 (PS)) + ∑sp∈PS
󵄨󵄨󵄨󵄨󵄨𝑑 (𝑓 (sp) , 𝑓 (PS)) − 𝑑

󵄨󵄨󵄨󵄨󵄨
∑𝑚
𝑙=1 𝑑 (𝑓

(min)
𝑙

, 𝑓 (PS)) + |PS| ⋅ 𝑑
,

(9)
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(a)
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Figure 6: Representation of two approximation sets for a biobjective
problem.ThePareto-front on the left is better distributed and, hence,
it will have a smaller spread value than the one on the right.

where

𝑑 (𝑓 (sp) , 𝑓 (PS))

= min
sp∗∈PS,sp∗ ̸=sp

󵄩󵄩󵄩󵄩󵄩𝑓 (sp)
󸀠

−𝑓 (sp∗)󸀠󵄩󵄩󵄩󵄩󵄩2 ,

𝑑 =
1
|PS|

∑
sp∈PS

𝑑 (𝑓 (sp) , 𝑓 (PS)) .

(10)

‖ ⋅ ‖2 denotes the Euclidean distance and 𝑓(𝑦)󸀠 = (𝑓1(𝑦)
󸀠,

. . . , 𝑓
𝑚
(𝑦)󸀠). If the solutions in the approximation set PS

are well distributed and include the extreme solutions,
Δ(𝑓(PS)) = 0. Figure 6 depicts two approximation sets for
a biobjective problem. The figure on the left hand depicts a
better distributed Pareto-front as compared to the one on the

Table 1: Average hypervolume values and average computing time
(in seconds). MOEA/D was run with the same number of functions
evaluations as FEMOEA.

Problem FEMOEA MOEA/D FEMOEA MOEA/D
Av. (hyper) Av. (hyper) Av. (time) Av. (time)

(25, 24, 18) 0.91196 0.78084 76 52
(25, 21, 24) 1.15776 1.06012 115 97
(25, 21, 23) 1.22557 1.04957 98 64
(25, 22, 20) 0.99244 0.67305 103 71
(25, 22, 21) 1.16561 1.07470 98 63
(25, 21, 20) 1.26344 1.26117 105 79
(25, 23, 20) 1.27525 1.26033 79 56
(25, 24, 18) 1.05399 0.98118 116 76
(25, 17, 24) 0.98886 0.85612 65 38
(25, 24, 20) 1.08105 1.03254 73 58
(100, 75, 93) 0.90985 0.74924 845 629
(100, 90, 92) 0.97463 0.81445 1020 786
(100, 94, 84) 0.98315 0.82334 1321 813
(100, 96, 75) 1.04997 0.81953 1562 1330
(100, 82, 92) 0.82064 0.63769 789 699
(100, 75, 92) 1.12490 0.83296 658 544
(100, 85, 90) 1.13659 1.08949 958 749
(100, 75, 93) 1.11774 1.04373 712 541
(100, 67, 98) 1.00772 0.51032 456 374
(100, 90, 87) 0.83631 0.70375 954 769
(500, 347, 493) 0.99370 0.70744 24617 20514
(500, 436, 474) 0.85810 0.69633 35326 31285
(500, 406, 484) 0.46998 0.43240 33409 32257
(500, 438, 417) 0.80063 0.68276 34606 31438
(500, 482, 388) 0.84188 0.63235 41099 36998
(500, 343, 492) 0.93035 0.75761 23613 19660
(500, 435, 440) 0.98743 0.79883 34189 30465
(500, 347, 493) 0.77210 0.44679 23131 19350
(500, 327, 498) 0.80318 0.63370 22272 19773
(500, 467, 418) 0.73983 0.46125 38725 35532
Average 0.97582 0.81012 10706 9505

right side. Therefore, the spread measure will be smaller for
the Pareto-front on the left.

3.4. Comparative Study. All the computational studies in
this paper have been run in the supercomputer Bullxual at
the University of Almeŕıa, Spain, which is a cluster with
18 nodes. Each node has 16 cores (Intel Xeon E5 2650)
and 64GB of memory and 128GB of solid-state drive. The
whole supercomputer has 288 cores, 1151 GB of memory and
2304GB of SSD. In our computational studies, each problem
was run in one of the cores of the nodes (one problem at a
time).

Table 1 summarizes the hypervolume average results
obtained by both FEMOEA andMOEA/D for each particular
instance.Thefinal row refers to the average value, considering
all the problems. As can be seen, FEMOEA obtains the
highest hypervolume (highlighted with a bold font) for all
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Table 2: Average 𝐼1
𝜖+

values. MOEA/D was run with the same
number of function evaluations as FEMOEA.

Problem FEMOEA MOEA/D
(25, 24, 18) 0.00068 0.00035
(25, 21, 24) 0.21509 0.00143
(25, 21, 23) 0.00266 0.00090
(25, 22, 20) 0.00912 0.00019
(25, 22, 21) 0.00403 0.00080
(25, 21, 20) 0.04324 0.03989
(25, 23, 20) 0.43792 0.21885
(25, 24, 18) 0.00034 0.00008
(25, 17, 24) 0.00246 0.00253
(25, 24, 20) 0.07457 0.00176
(100, 75, 93) 0.00037 0.00012
(100, 90, 92) 0.00209 0.00002
(100, 94, 84) 0.00130 0.00053
(100, 96, 75) 0.00196 0.00569
(100, 82, 92) 0.00132 0.00033
(100, 75, 92) 0.00349 0.00007
(100, 85, 90) 0.00069 0.00007
(100, 75, 93) 0.04547 0.02274
(100, 67, 98) 0.00229 0.00067
(100, 90, 87) 0.00185 0.00009
(500, 347, 493) 0.00044 0.00024
(500, 436, 474) 0.01485 0.00004
(500, 406, 484) 0.00038 0.00002
(500, 438, 417) 0.00058 0.00006
(500, 482, 388) 0.00065 0.00003
(500, 343, 492) 0.00045 0.00002
(500, 435, 440) 0.00111 0.00018
(500, 347, 493) 0.00083 0.00001
(500, 327, 498) 0.00092 0.00004
(500, 467, 418) 0.00091 0.00005
Average 0.02907 0.00993

the problems. Notice, however, that the results obtained by
MOEA/D are also competitive (in average, the hypervolume
values are 16.98% smaller). In the same table the CPU times
employed by both algorithms, in seconds, are reported. As
we can see, in average, MOEA/D is 11.21% quicker than
FEMOEA.

Table 2 shows the average results for the additive epsilon
indicator. FEMOEA obtains the best result in just 2 out of the
30 problems, while MOEA/D achieves it in 28 instances. For
this indicator, MOEA/D is clearly the best algorithm.

Table 3 shows the results for the spread indicator.
FEMOEA obtains the best result in 23 out of the 30 problems,
while MOEA/D achieves it in 7 instances. Besides, note that
FEMOEA performs better as the total number of demand
points increases, that is, the number of problems for which
FEMOEA achieves the best value rises as |𝐴+ ∪𝐴−| increases,
as compared to MOEA/D. In average, when considering all
the problems, FEMOEA is superior to MOEA/D for this
quality indicator.

Table 3: Average spread values. MOEA/D was run with the same
number of function evaluations as FEMOEA.

Problem FEMOEA MOEA/D
(25, 24, 18) 1.12956 1.28165
(25, 21, 24) 1.04294 1.12417
(25, 21, 23) 0.99491 1.08773
(25, 22, 20) 1.05180 0.87930
(25, 22, 21) 0.98264 1.09932
(25, 21, 20) 1.02766 0.15614
(25, 23, 20) 1.02432 0.89417
(25, 24, 18) 0.99967 1.17793
(25, 17, 24) 1.00648 0.83419
(25, 24, 20) 1.05036 1.62452
(100, 75, 93) 0.95021 1.29786
(100, 90, 92) 1.10039 0.92509
(100, 94, 84) 0.87594 1.17988
(100, 96, 75) 1.04167 1.35587
(100, 82, 92) 1.07414 1.24912
(100, 75, 92) 1.03605 1.28197
(100, 85, 90) 1.00849 0.93924
(100, 75, 93) 0.97911 1.28423
(100, 67, 98) 1.05109 1.20700
(100, 90, 87) 0.92771 1.06084
(500, 347, 493) 1.10840 1.38154
(500, 436, 474) 1.19189 1.17312
(500, 406, 484) 0.89934 1.62259
(500, 438, 417) 1.08120 1.30452
(500, 482, 388) 1.14914 1.36793
(500, 343, 492) 1.14351 1.16944
(500, 435, 440) 1.11731 1.36507
(500, 347, 493) 1.18428 1.35763
(500, 327, 498) 1.10058 1.13559
(500, 467, 418) 1.14600 1.24795
Average 1.04923 1.16885

The computational study suggests that both FEMOEA
and MOEA/D are competitive multiobjective evolutionary
algorithms, able to deal with the hard-to-solve triobjective
location model presented in this paper. Furthermore, taking
all the quality indicators into account, it could be inferred
that FEMOEAperforms slightly better thanMOEA/D, for the
considered settings.

4. Conclusions and Future Research

In this work, a new model for locating a single semidesirable
facility in the plane is presented. Three objectives are consid-
ered for the first time in literature: (i) the minimization of the
sum of weighted distances between the facility and the users
to which it provides a service (to maximize its efficiency); (ii)
the minimization of the sum of the repulsions of the people
affected by the undesirable effects produced by the facility (to
minimize the social cost); and (iii) the minimization of the
Gini index applied to the repulsions felt by the affected people
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(to distribute the repulsions fairly among the affected people).
Whereas in previous studies dealing with the location of
facilities with an equity objective, the aim has always been to
equalize the distances, notice that, for the problem at hand,
the equity objective is aimed at equalizing the undesirable
effects.

This hard-to-solve triobjective location model has been
tackled by means of two multiobjective evolutionary opti-
mization methods, namely, MOEA/D and FEMOEA. Results
convey that both FEMOEA and MOEA/D are suitable and
competitive algorithms. As they are general purpose algo-
rithms, they both could also handle other similar realistic bi-
and triobjective location models.

In the future, we plan to develop new multiobjective
methods for solving some of the most successful existing
multiobjective location models, as well as proposing new,
more realisticmodels for the location of both undesirable and
semidesirable facilities.
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[19] J. Fernández and B. Tóth, “Obtaining an outer approximation
of the efficient set of nonlinear biobjective problems,” Journal of
Global Optimization, vol. 38, no. 2, pp. 315–331, 2007.

[20] P. Czyzak and A. Jaszkiewicz, “Pareto simulated annealing—
a metaheuristic technique for multiple-objective combinatorial
optimization,” Journal of Multi-Criteria Decision Analysis, vol. 7,
no. 1, pp. 34–47, 1998.

[21] D. Jaeggi, G. Parks, T. Kipouros, and J. Clarkson, “A multi-
objective tabu search algorithm for constrained optimisation
problems,” in Proceedings of the 3rd International Conference
on Evolutionary Multi-Criterion Optimization (EMO ’05), C. A.
C. Coello, A. H. Aguirre, and E. Zitzler, Eds., pp. 490–504,
Springer, March 2005.

[22] A. J. Nebro, F. Luna, E. Alba, B. Dorronsoro, J. J. Durillo, and
A. Beham, “AbYSS: adapting scatter search to multiobjective
optimization,” IEEE Transactions on Evolutionary Computation,
vol. 12, no. 4, pp. 439–457, 2008.



12 Mathematical Problems in Engineering

[23] K. Doerner, W. J. Gutjahr, R. F. Hartl, C. Strauss, and C. Stum-
mer, “Pareto ant colony optimization: a metaheuristic approach
to multiobjective portfolio selection,” Annals of Operations
Research, vol. 131, no. 1–4, pp. 79–99, 2004.

[24] C. A. Coello Coello, G. T. Pulido, andM. S. Lechuga, “Handling
multiple objectives with particle swarm optimization,” IEEE
Transactions on Evolutionary Computation, vol. 8, no. 3, pp.
256–279, 2004.

[25] C. A. C. Coello, “Evolutionary multi-objective optimization:
a historical view of the field,” IEEE Computational Intelligence
Magazine, vol. 1, no. 1, pp. 28–36, 2006.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, 2002.

[27] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving
the strength Pareto evolutionary algorithm for multiobjective
optimization,” in Evolutionary Methods for Design Optimization
and Control with Applications to Industrial Problems, K. C.
Giannakoglou, D. T. Tsahalis, J. Périaux, K. D. Papailiou, and T.
Fogarty, Eds., pp. 95–100, International Center for Numerical
Methods in Engineering (CIMNE), Athens, Greece, 2002.

[28] Q. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

[29] Q. Zhang and H. Li, “Multiobjective optimization problems
with complicated Pareto sets, MOEA/D and NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 13, no. 2, pp.
284–302, 2009.

[30] A. G. Arrondo, J. L. Redondo, J. Fernández, and P. M. Ortigosa,
“Parallelization of a non-linear multi-objective optimization
algorithm: application to a location problem,” Applied Mathe-
matics and Computation, vol. 255, pp. 114–124, 2015.

[31] J. L. Redondo, J. Fernández, J. D. ÁlvarezHervás, A. G. Arrondo,
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