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This paper investigates a special single machine scheduling problem derived from practical industries, namely, the selective single
machine scheduling with sequence dependent setup costs and downstream demands. Different from traditional single machine
scheduling, this problem further takes into account the selection of jobs and the demands of downstream lines. This problem is
formulated as a mixed integer linear programmingmodel and an improved particle swarm optimization (PSO) is proposed to solve
it. To enhance the exploitation ability of the PSO, an adaptive neighborhood search with different search depth is developed based
on the decision characteristics of the problem. To improve the search diversity and make the proposed PSO algorithm capable
of getting out of local optimum, an elite solution pool is introduced into the PSO. Computational results based on extensive test
instances show that the proposed PSO can obtain optimal solutions for small size problems and outperform the CPLEX and some
other powerful algorithms for large size problems.

1. Introduction

The single machine scheduling problem (SMSP) is one of
the classical scheduling problems that have been widely
researched in the literature. For example, the survey made
by Koulamas [1] shows that a great deal of effort has
been devoted to the single machine total weighted tardiness
(SMTWT) problem. In this problem, there is a set of jobs that
have arrived at time zero (denoted as𝑁 = {1, 2, . . . , 𝑛}) and a
single machine to process these jobs. Each job 𝑖 has a positive
processing time 𝑝

𝑖
, a positive weight 𝑤

𝑖
, and a due date 𝑑

𝑖
. It

is assumed that the processing of a job cannot be interrupted
once it starts. If job 𝑖 is completed after its due date, then a
penalty of weighted tardiness𝑤

𝑖
𝑇
𝑖
(𝑇
𝑖
is the tardiness of job 𝑖)

will occur. The task of the SMTWT problem is to determine
a job sequence so that the total weighted tardiness of all
jobs can be minimized. Due to the fact that this problem
is strongly NP-hard (Lawler [2]), many kinds of algorithms
including both exact algorithms and meta-heuristics have
been proposed in the literature [3–8].

Due to the fact that setup times often need to be
considered in many practical industries (Yang and Liao [9]
and Allahverdi et al. [10]), many researchers incorporated
the sequence dependent setup time or setup cost 𝑠

𝑖𝑗
between

the processing of two adjacent jobs (namely, 𝑖 and 𝑗) into
the SMSP. For example, Das et al. [11] and França et al.
[12] derived the SMSP with sequence dependent setup times
from the plastic industry where a setup was required when
the type of plastic changed. Gravel et al. [13] derived a
similar problem from the aluminum industry where a setup
was needed between casting operations whenever the type
of alloys changed. Since then, the SMSP with sequence
dependent setup times has drawn a great deal of attention
from researchers and many kinds of algorithms have been
proposed in the literature [14–16]. In particular, if a job is
viewed as a customer and the sequence dependent setup time
between jobs is viewed as the traveling distance between
customers, then the SMSP with sequence dependent setup
times can be transformed into a classical traveling salesman
problem (Allahverdi et al. [17]). Recently, some researchers
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Figure 1: Illustration of this problem in iron and steel industry.

began to further consider more practical constraints into this
problem; for example, Jula and Rafiey [18] incorporated the
time window constraint on the start times of jobs into this
problem and presented a network-based algorithm to solve
it.

Although there have been many papers focusing on
the SMSP with sequence dependent setup times (or costs),
most of these researches assumed that all the jobs could be
completed within a time horizon and did not consider the
consistent production process in practical industries. That is,
they did not consider the selection of jobs caused by process-
ing capacity of machines within the time horizon and the
demands of downstream production lines. Although some
researchers have noticed the decision on job selection due to
the processing capacity of the singlemachine (Wang andTang
[19]), current researches still do not consider the demands
of downstream production lines. In practical production
scheduling, the demands of downstream production lines
are very important because the logistics quality of the entire
production shopmay be still inefficient even if the scheduling
quality of a single machine (or production line) is optimal
without considering the demands of downstream produc-
tion lines. In addition, the requirement for considering the
demands of downstream production lines is widespread
in practical manufacturing industries. For example, in the
equipment manufacturing industry jobs generally need a
preprocessing on a production line and subsequently the
completed jobs will be delivered to different downstream
lines for different kinds of further processing. Due to the
different dimensions of jobs, a sequence dependent setup
time (e.g., time for replacing processing tools) will be needed.
Because each job has been assigned to a specified down-
stream production line and the single machine has a limited
processing capacity within a given scheduling time horizon,
the schedulers in the preprocessing production line should

make two decisions: which jobs to be included in the schedule
and how to determine the processing sequence of jobs in the
schedule. The objective is to ensure that the total tardiness of
jobs can be minimized and at the same time the downstream
production lines can receive sufficient jobs so as to guarantee
a consistent production. Another typical example is the well-
known hot rolling production in the iron and steel industry
(Figure 1). In the hot rolling mill, slabs are delivered to the
frontwarehouse from the continuous casting production line,
and the coils rolled from slabs through the hot rolling line
will be then transferred to the downstream production lines
such as different cold rolling mills with different ranges of
coil width. Since the width of coils after the hot rolling has
been determined by contracts, the flow direction of each
coil has been also preassigned according to the processing
ability (i.e., the range of coil width) and the warehouse of the
downstream cold rolling lines. In addition, the transition of
different adjacent slabs will affect the coil quality and such a
transition cost can be viewed as a kind of sequence dependent
setup cost.When schedulers establish the hot rolling schedule
with a limited processing capacity, they should determine
which slabs to be included in the rolling schedule so as to
satisfy the demands of downstream cold rolling lines and the
processing sequence of selected slabs in the schedule so as to
minimize the total transition cost.

Therefore, in this paper we investigate a new variant of the
single machine scheduling problem by further considering
the sequence dependent setup costs and the demands of
downstream production lines. The two major characteristics
of this problem are as follows:

(1) The single machine can only process a subset of all
jobs because of its processing capacity within a given
time horizon.
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(2) Each job has been allocated to a downstream pro-
duction line and the total weights of jobs allocated
to a downstream production line should be within
the range defined by the demand of this production
line and the available storage capacity of warehouse
before it (please note that in practical production
the available storage capacity of warehouse before a
downstream production line is usually much larger
than the demand of this line with a given time
horizon).

This paper is organized as follows. In Section 2 we give
the description of our new variant and its mathematical
optimization model. Section 3 is devoted to describing the
proposed improved particle swarm optimization algorithm.
In Section 4 we will provide the results of computational
experiments and the corresponding analysis. Finally, this
paper is concluded in Section 5.

2. Problem Description and MIP Model

2.1. Problem Description. The selective SMSP with sequence
dependent setup costs and downstream demands can be
briefly described as follows. There is a set of jobs 𝑁 =

{1, 2, . . . , 𝑛} that have arrived at time zero, a single machine
with a maximum capacity of 𝑄 within a scheduling time
horizon 𝑇 to process these jobs (i.e., it is not possible for the
single machine to process all the jobs within the scheduling
time horizon 𝑇), and a set of downstream production lines
with different demands. Each job 𝑖 has a processing time 𝑝

𝑖

and a weight 𝑤
𝑖
, and the processing of a job cannot be inter-

rupted once it starts. In addition, each job has been allocated
to a specified downstream production line according to its
dimension. A positive setup time 𝑠

𝑖𝑗
is required between any

two adjacent jobs. The objective is to select a subset of jobs
to satisfy the demands of downstream lines and at the same
time determine their processing sequence so as to maximize
the utilization of themachine’s capacity within the given time
horizon.

2.2. Mathematical Model

2.2.1. Parameters

𝑖 and 𝑗: index of jobs.
𝑘: index of downstream production lines.
𝑁: the set of candidate jobs,𝑁 = {0, 1, 2, . . . , 𝑛}, where
0 denotes a dummy job that must be selected in the
schedule.
𝐾: the set of downstream production lines.
𝑇: a given scheduling time horizon.
𝑄: processing capacity of the machine within a given
time horizon 𝑇.
𝐷
𝑘
: demand of the downstream line 𝑘.

𝑈
𝑘
: available storage capacity of the warehouse before

the downstream line 𝑘.

𝑝
𝑖
: processing time of job 𝑖.
𝑤
𝑖
: weight of job 𝑖.
𝑠
𝑖𝑗
: the sequence dependent setup time between any

two adjacent jobs 𝑖 and 𝑗 (𝑖 ̸= 𝑗).
𝑀: a very big number that is set to be the total
processing time of all jobs.
𝑟
𝑖𝑘
= {1, if job 𝑖 is assigned to downstream production

line 𝑘; 0, otherwise}; please note that in our problem
𝑟
𝑖𝑘
is predetermined by the dimensions of job 𝑖 and

not a decision variable.

2.2.2. Decision Variables

𝑥
𝑖𝑗
= {1, if job 𝑗 is processed immediately after job 𝑖;

0, otherwise}, 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗.
𝐶
𝑖
: completion time of selected job 𝑖, 𝑖 ∈ 𝑁.

2.2.3. Model. With the above parameters and decision vari-
ables, we can present a mixed integer linear programming
model for this problem as follows:

Minimize 𝑄− ∑

𝑖∈𝑁

∑

𝑗∈𝑁

𝑗 ̸=𝑖

𝑤
𝑖
𝑥
𝑖𝑗
,

(1)

s.t.
𝑛

∑

𝑖=1
𝑥0𝑖 =

𝑛

∑

𝑖=1
𝑥
𝑖0 = 1, (2)

𝑛

∑

𝑗=0
𝑥
𝑖𝑗
≤ 1, 𝑖 ∈ 𝑁 \ {0} , (3)

𝑛

∑

𝑗=0
𝑥
𝑗𝑖
=

𝑛

∑

𝑗=0
𝑥
𝑖𝑗
, 𝑖 ∈ 𝑁 \ {0} , (4)

𝐶
𝑗
≥ 𝐶
𝑖
+ 𝑠
𝑖𝑗
+𝑝
𝑗
−𝑀(1−𝑥

𝑖𝑗
) ,

𝑖, 𝑗 ∈ 𝑁 \ {0} , 𝑖 ̸= 𝑗,

(5)

0 ≤ 𝐶
𝑖
≤ 𝑇, 𝑖 ∈ 𝑁 \ {0} , (6)

∑

𝑖∈𝑁

∑

𝑗∈𝑁

𝑗 ̸=𝑖

𝑤
𝑖
𝑥
𝑖𝑗
≤ 𝑄,

(7)

𝐷
𝑘
≤ ∑

𝑖∈𝑁

∑

𝑗∈𝑁

𝑗 ̸=𝑖

𝑤
𝑖
𝑟
𝑖𝑘
𝑥
𝑖𝑗
≤ 𝑈
𝑘
, 𝑘 ∈ 𝐾,

(8)

𝑥
𝑖𝑗
∈ {0, 1} , 𝑖, 𝑗 ∈ 𝑁, 𝑖 ̸= 𝑗, (9)

𝐶
𝑖
∈ R, 𝑖 ∈ 𝑁. (10)

Objective (1) is to maximize the utilization of the
machine’s capacity. Constraint (2) requires that the schedule
should start from the dummy job and end at it finally.
Constraints (3) ensure that each job can be selected and
processed at most once. Constraints (4) guarantee the flow
conservation of processing; that is, if job 𝑖 is selected then
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there must be a job before it and another job after it in the
schedule; on the contrary, if it is not selected, then there
are no jobs arranged before and after it. Constraints (5) give
the completion time relationship between any two adjacent
jobs. Constraints (6) require that the processing should be
completed within the given scheduling time horizon. Con-
straint (7) ensures that the total weight of selected jobs cannot
exceed themachine’s capacity. Constraints (8) are the demand
requirements of downstream production lines. Constraints
(9) and (10) specify the values of decision variables.

The abovemathematicalmodel is similar to that proposed
by Wang and Tang [19], in which the authors illustrated
the difference of single machine scheduling with selective
jobs from the other relative problems such as the selective
traveling salesman problem (Gendreau et al. [20]) and the
prize collecting traveling salesman problem (Dell’amico et
al. [21]). However, in our model we further consider the
demands of downstream production lines (constraints (8))
and themachine’ capacity (constraint (7)).The incorporation
of demands of downstream production lines makes the
decision of selecting jobs quite different from that in [19].
In the problem considered in [19], the jobs have no flow
directions and only the time horizon limitation is considered,
and consequently the selection of jobs is only affected by the
available time horizon; however, the selection of jobs in our
problem is affected by three factors: one is the available time
horizon, another is the capacity of the singlemachine, and the
last one is the demand of each downstream production line.
The different combinations of these three factors will make
the search spacemuch bigger than that in [19]. Due to the fact
that the problem considered in [19] is NP-hard, the problem
investigated in this paper is also NP-hard.

3. Improved Particle Swarm
Optimization Algorithm

In recent years, evolutionary algorithms have been widely
adopted to solve both the continuous optimization prob-
lems ([22–24]) and the combinatorial optimization problems
derived in iron and steel industry ([25–27]). The particle
swarm optimization (PSO) algorithm is a kind of evolution-
ary algorithm proposed by Kennedy and Eberhart [28].

The main idea of the PSO simulates the social behavior
of bird flocking or fish schooling and their information
exchange method. In the PSO, each solution is denoted as a
particle and there is a swarm of particles flying and searching
the solution space. During the search process, each particle
updates itself under the guidance of the direction of its
original flying track, the personal best solution it has found
(𝑝best), and the global best solution found by thewhole swarm
(𝑔best). Let 𝑥

𝑡

𝑖𝑗
denote the 𝑗th dimension of the position value

of particle 𝑖 in current generation 𝑡, then the position update
equation of each particle can be given as follows:

V𝑡+1
𝑖𝑗
= 𝑤 ⋅ V𝑡

𝑖𝑗
+ 𝑐1𝑟1 ⋅ (𝑝

𝑡

𝑖𝑗
−𝑥
𝑡

𝑖𝑗
) + 𝑐2𝑟2 ⋅ (𝑔

𝑡

𝑗
−𝑥
𝑡

𝑖𝑗
) ,

𝑥
𝑡+1
𝑖𝑗
= 𝑥
𝑡

𝑖𝑗
+ V𝑡+1
𝑖𝑗
,

(11)

where 𝑤, 𝑐
1
, and 𝑐

2
are parameters and 𝑟

1
and 𝑟
2
are random

numbers between (0, 1).
Since proposed, PSO has been successfully applied to

solve many kinds of complicated combinatorial optimization
problems, especially the scheduling problems (Nanvala [29]).
The PSO hybrid with variable neighborhood search (VNS)
proposed by Tasgetiren et al. [30] for permutation flow
shop scheduling problem also illustrated its efficiency for
scheduling problems. Therefore, in this paper we also prefer
to adopt PSO to solve our problem. Although the PSO
algorithm developed in this paper is inspired by the one
proposed in Tasgetiren et al. [30], they are quite different in
the following three aspects:

(i) First, a special decoding method based on the char-
acteristics of our problem is presented and adopted
in our algorithm.

(ii) Second, we develop an adaptive VNS in which the
neighborhood is adaptively selected based on the
analysis of their search result, while the VNS in
Tasgetiren et al. [30] used a traditional predetermined
neighborhood sequence.

(iii) Third, an elite pool strategy was developed to improve
the search diversity while the local search in Tasge-
tiren et al. ismainly applied on the global best solution
found so far at each generation.

3.1. Solution Representation and Repair Method in Our PSO.
Due to the fact that classical PSO can only be used to solve
optimization problems in continuous space, researchers have
designed some decoding method to transform a solution
from a continuous space to a discrete space. In our algorithm,
we prefer to adopt the smallest position value (SPV) rule
proposed in Tasgetiren et al. [30] in which this decoding rule
had been proven to be very effective for scheduling problems.
Taking into account that only a subset of all candidate jobs
can be selected in the schedule, we develop the following
encoding and decoding methods, as well as a repair method,
used in our algorithm by extending the SPV rule.

Step 1 (encoding). In our algorithm, a solution is represented
by a particle consisting of 𝑛 dimensions; that is, 𝑋 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) in which 𝑥

𝑖
is the continuous position value

of job 𝑖. The domain for each 𝑥
𝑖
is [−10.0, 10.0].

Step 2 (decoding). Since we should decide which job should
be selected and at the same time determine the processing
sequence of selected jobs, we extended the SPV rule to
transform a solution in continuous space to a feasible solution
in discrete space. In the decoding rule, we first use the SPV
rule to obtain a sequence of all jobs, and then from the first
job in the sequence we iteratively select jobs until constraints
(6) and (7) are not satisfied.

Step 3 (repair). Since constraints (8) are not considered in the
decoding procedure, a solution obtained by the decodingmay
not be feasible. So we propose a repair method to restore the
feasibility of the obtained solution. If a solution after decoding
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Table 1: Job information and the decoding method based on SPV
rule.

Job 1 2 3 4 5 6 7 8 9 10
𝑝
𝑖

3 5 3 2 7 4 2 1 8 5
𝑤
𝑖

12 14 8 7 16 10 3 8 18 12
𝑟
𝑖𝑘

1 2 1 1 2 1 2 2 2 1
𝑥
𝑖

0.7 1.5 0.1 −0.2 0.9 0.3 0.8 −0.7 −0.4 1.2
Permutation 8 9 4 3 6 1 7 5 10 2

is infeasible, the repair method consisting of the following
steps will be applied to restore its feasibility.

Step 3.1. Calculate the total weights of jobs assigned to each
downstream line and denote it as𝑊

𝑘
.

Step 3.2. For each downstream line, if𝑊
𝑘
> 𝑈
𝑘
, then remove

the job that is assigned to line 𝑘 and has the largest value of
𝑝
𝑖
/𝑤
𝑖
. Repeat this process until 𝑊

𝑘
is not more than 𝑈

𝑘
for

each downstream production line.

Step 3.3. For each downstream line, if𝑊
𝑘
< 𝐷
𝑘
, then we will

add a job that is assigned to line 𝑘 and can bring the least
value of 𝑝

𝑖
/𝑤
𝑖
to the end of the sequence, and if the resulting

solution violates constraints (6) or (7), then we will select
a line 𝑘 for which the total weight of assigned jobs in the
sequence is the largest and subsequently we will remove a job
that is assigned to it and has the largest value of 𝑝

𝑖
/𝑤
𝑖
. Repeat

this process until𝑊
𝑘
is not less than𝐷

𝑘
for each downstream

production line.

Based on the above method, a solution consisting of all
candidate jobs can be transformed into a feasible solution
for our problem. In the experiment, the computational
results show that feasible solutions always exist for each
problem. This is also true in practical production because
there are a large number of candidate jobs and the number
of downstream lines is relatively very small.

An example including 10 jobs for the problem can be
given as follows. The job information is given in Table 1, the
demands of downstream lines are 25 and 30, respectively, and
the available capacities are 35 and 50, respectively.

First, the representation of the solution 𝑋 =

(0.7, 1.5, 0.1, −0.2, 0.9, 0.3, 0.8, −0.7, −0.4, 1.2) is transformed
into a discrete job sequence𝑋󸀠 = (8, 9, 4, 3, 6, 1, 7, 5, 10, 2) by
the SPV rule that always assigns a job with a smaller position
value to the front of a job with a larger position value.
Subsequently we select jobs from this sequence until the time
horizon or the machine’s capacity is reached. For simplicity,
we assume the obtained job sequence is (8, 9, 4, 3, 6, 1, 7).
Then the total weight of jobs for downstream lines 1 and
2 is 37 and 29, respectively; that is, we have 𝑊

1
> 𝑈
1
and

𝑊
2
< 𝐷
2
which make the solution infeasible. So we first deal

with the condition 𝑊
1
> 𝑈
1
by removing job 6 because it

has the largest value of 𝑝
𝑖
/𝑤
𝑖
and then this infeasibility is

restored. Then we turn to deal with the condition𝑊
2
< 𝐷
2

by inserting job 2 into the end of the sequence because it has
the least value of 𝑝

𝑖
/𝑤
𝑖
. At last, we obtain a feasible solution

(8, 9, 4, 3, 1, 7, 2) whose 𝑊
1
= 27 and 𝑊

2
= 43. Please note

that in this example we assume that insertion of a job does
not violate constraints (6) and (7) so that the explanation can
be simple and clear.

3.2. Population Initialization. The initial population whose
size is 𝑁 is created with two methods: (1) 𝑁 − 1 random
solutions are generated according to 𝑥

𝑖𝑗
= 𝑥min + rand(0, 1) ×

(𝑥max − 𝑥min), in which rand(0, 1) is a random number
uniformly generated in [0, 1] and we use 𝑥min = −10.0 and
𝑥max = 10.0 and (2) one solution is generated based on a
heuristic by extending the famous NEH method (Nawaz et
al. [31]). The extended NEH method used in our algorithm
consists of three steps: first sequence all the candidate jobs
using the classical NEH method with the modified objective
of minimizing the total setup times; then use the feasibility
repair method described in the above Section 3.1 to obtain a
feasible solution; and at last code this solution in a continuous
space by uniformly assigning the nondescending order of
positions values for jobs in the sequence in [𝑥min, 𝑥max]. In
addition, the velocity of each particle is randomly generated
through the same way; that is, V

𝑖𝑗
= Vmin+ rand(0, 1)× (Vmax−

Vmin), in which we set Vmin = −2.0 and Vmax = 2.0.

3.3. Adaptive Variable Neighborhood Search. To improve the
search efficiency and diversity, we present two kinds of
improvement strategies: (1) an adaptive variable neighbor-
hood search (AVNS) based on the job-block based neigh-
borhood that can dynamically adjust the search depth is
designed and (2) an elite solution pool is adopted to store
good quality solutions (e.g., the best ten solutions found so
far) and an adaptive strategy is used to select an appropriate
solution for the local search by AVNS. In the following, we
first describe the elite pool strategy, the neighborhood used
in the algorithm, and at last the AVNS algorithm.

3.3.1. Elite Solution Pool. Asmentioned above, we use an elite
solution pool 𝐸 consisting of the best ten solutions found so
far by the algorithm. Then at each generation, we apply the
AVNS to further improve a solution randomly selected from
𝐸 instead of the best solution found so far. Such a strategy can
help to improve the search diversity and at the same time can
maintain a good probability of finding new better solutions
through local search because the selected solution has similar
quality to the best solution.

3.3.2. Job-Block BasedNeighborhood andLocal SearchMethod.
In the single machine scheduling or the permutation flow
shop scheduling problems, traditional neighborhoods are
based on the insertion move that removes a job from its
current position and then inserts it into another position and
the swap move that swaps two different jobs in the sequence
(Tasgetiren et al. [30]). Since the compoundmoves have been
proven to be more effective than a single move (Bozejko et al.
[5]), we design for the VNS a job-block based neighborhood,
which is a compound-move based neighborhood.

If the size of the job-block is 𝑏, then the job-block move
will remove the successive 𝑏 jobs from the job sequence and
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Let 𝑠 be the input initial solution and NH
𝑏
(𝑏 = 1, . . . , 𝑏max) the candidate neighborhoods.

𝑙 := 1

while 𝑙 ≤ 𝑙max do
𝑏 := AdaptiveSelection (s) //adaptively select a neighborhood
𝑠
󸀠
:= Shaking (s, b) //generate a random new solution in NH

𝑏

𝑠
󸀠󸀠
:= LocalSearch (𝑠󸀠,𝑁

𝑏
) //perform local search on 𝑠󸀠 in neighbourhood NH

𝑏

if 𝐶max(𝑠
󸀠󸀠
) < 𝐶max(𝑠) //neighborhood change checking

𝑠 := 𝑠
󸀠󸀠

end if
UpdateProbability (NH

𝑏
) //update the selection probability of NH

𝑏

end while

Algorithm 1: Main procedure of the AVNS.

then reinsert them into the job sequence according to their
original sequence (note that if 𝑏 = 1, then the neighborhood
becomes the classical insertion neighborhood). For a given
solution 𝑠 = (𝑠(1), . . . , 𝑠(𝑛)), let the size of the job-block be
𝑏 and the corresponding neighborhood NH

𝑏
, then the local

search procedure in neighborhood NH
𝑏
can be described as

follows.

Step 1. Set the iteration index 𝑟 = 1 and the best solution to
be 𝑠
𝑏
= 𝑠.

Step 2. Randomly remove 𝑏 adjacent jobs from 𝑠 and denote
this job-block as 𝑠(𝑑

1
), 𝑠(𝑑
2
), . . . , 𝑠(𝑑

𝑏
) and the left partial

solution as 𝑠󸀠.

Step 3. Set 𝑗 = 1.

Step 4. Insert 𝑠(𝑑
𝑗
) into the best position in 𝑠󸀠.

Step 5. Set 𝑗 = 𝑗 + 1. If 𝑗 ≤ 𝑏, go to Step 4; otherwise, obtain
a new solution 𝑠󸀠.

Step 6. If 𝐶max(𝑠
󸀠
) < 𝐶max(𝑠𝑏), then set 𝑠 = 𝑠

𝑏
= 𝑠
󸀠.

Step 7. Set 𝑟 = 𝑟 + 1. If 𝑟 ≤ 𝑟max (maximum iteration), go to
Step 2; otherwise, terminate and output 𝑠

𝑏
.

In our problem, the selection of jobs should be con-
sidered. From the description of the decoding method in
Section 3.1, it is clear that the decoding procedure can help
change the selection of jobs. So we prefer to set the focus
of the local search on the improvement of the sequence
of selected jobs, that is, to reduce the total setup times of
selected jobs. Therefore, in the above search procedure in
neighborhood NH

𝑏
, the objective is the makespan (denoted

as 𝐶max) of the selected jobs. In addition, it is clear that the
local search is not performed on the entire neighborhood but
only a number of 𝑟max random searches. Such a strategy can
help save computational time while maintaining the solution
quality.

3.3.3. AVNS Algorithm. For a given solution 𝑠 =

(𝑠(1), . . . , 𝑠(𝑛
󸀠
)), 𝑛󸀠 < 𝑛, let the size of the job-block be

𝑏 and the corresponding neighborhood is dented as NH
𝑏
,

then the AVNS procedure can be described in Algorithm 1,
in which the LocalSearch method is the one described in
Section 3.3.2 and the shaking function is used to generate a
new random solution based on a random insertion move.
The AVNS is applied to a solution 𝑠 selected from 𝐸 at each
generation of PSO. Whenever 𝑠 is improved, we will update
the global best solution with it.

In traditional VNS, the sequence of neighborhood used
is predetermined, that is, from the first one to the last
one. However, in the AVNS the sequence of neighborhoods
is not predetermined but dynamically changed based on
the search results of each neighborhood. The reason we
adopt such a strategy is that we want to allocate more local
search chances to more promising neighborhoods within the
limited computational time. In addition, the AVNS shown
in Algorithm 1 is simpler than the traditional VNS because
whenever a better solution is found the AVNS does not go
back to the first neighborhood.

To define the selection probability of each neighborhood,
we introduce the concept of success and failure of a neigh-
borhood search. The application of a neighborhood search
is considered as successful only if it can result in a better
solution 𝑠󸀠󸀠with comparison to the input solution 𝑠; otherwise
it is viewed as unsuccessful.

In the implementation, the selection probability of each
neighborhood is set to be equal at the beginning, that is, 1/𝐵
(𝐵 = 4 in our algorithm). In our algorithm, we memorize
the successful count succ

𝑏
and the unsuccessful count fail

𝑏

of each neighborhood NH
𝑏
. After the evaluation of 𝑠󸀠󸀠, the

selection probability of the selected neighborhood NH
𝑏
(𝑃
𝑏
)

will be updated by

𝑃
𝑏
=

𝑆
𝑏

∑
𝐵

𝑖=1 𝑆𝑏
, 𝑔 = 1, 2, . . . , 𝑏max, (12)

where 𝑆
𝑏
= succ

𝑏
/(succ

𝑏
+ fail
𝑏
) + 0.01 is called the success

ratio. We add 0.01 to each 𝑆
𝑏
in order to avoid the condition

that some neighborhoods may have a selection probability of
zero if they cannot bring better solutions than 𝑠. Based on
this calculationmethod, it is clear that the neighborhoodwith
a larger number of successful applications will have a larger
selection probability of applying it to generate new solutions.
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4. Computational Experiments and Results

4.1. Test Problems and Parameter Setting. To test the perfor-
mance of the method, computational experiment has been
carried out on a set of randomly generated instances. The
generation process is based on the practical hot rolling
production and can be described as follows: the number of
jobs 𝑛 is selected from {50, 80, 100, 120, 150, 200}, the number
of downstream lines is selected from {3, 5, 7}, the processing
time and weight of each job are randomly generated in [1, 20]
and [5, 20], respectively, the sequence dependent setup times
between two jobs are randomly generated in [1, 10], the
capacity of the single machine is set to be 60 percent of the
total weight of all jobs, the time horizon is set to be 0.6 ×
(∑
𝑖∈𝑁
𝑝
𝑖
+ (𝑛 − 1) × 𝑠), where 𝑠 is the average setup time

between adjacent jobs, the jobs are randomly assigned to each
downstream line according to a uniform distribution, and the
demand and available storage capacity of each downstream
line are then generated as 40 percent and 80 percent of the
total weights of jobs assigned to this downstream production
line, respectively. Based on these settings, there is 6 × 3 = 18
scenarios and for each scenario we generated 10 instances;
consequently there is a total of 180 instances generated for
the experiment. Please note that when the capacity of the
single machine increases (at the same time the demands of
downstream lines remains unchanged), the problem tends to
be simple because more feasible solutions can be found since
with more selected jobs constraint (8) will become loose.

The proposed PSO algorithm was implemented in C++
language and tested on a personal computer with Intel Core
i5-3.2 GHz CPU and 4GBmemory.Through experiment, the
following setting of algorithm parameters is adopted: the size
of swarm is set to 50, the maximum iteration of AVNS is set
to 𝑙max = 20, the maximum iteration of the neighborhood
search 𝑟max is set to 5, and the stopping criterion is set to
the maximum computational time of 𝑚 × 𝑛/2 seconds (𝑚
is the number of downstream lines). However, whenever an
optimal solution is obtained for small size problems, the
algorithm also terminates (please note that optimal solutions
can be obtained by CPLEX for small size problems and these
optimal solutions can be used to terminate the algorithm
before the stopping criterion is reached). The maximum size
of job-block is set to 5 (i.e., 𝑏max = 5) and the impact of
𝑏 on the performance of our algorithm is analyzed in the
following Section 4.2.1. Please note that all the test algorithms
in the following sections share the same stopping criterion.
That is, we run each algorithm with the stopping criterion
that is the maximum computational time of𝑚×𝑛/2 seconds.
In the implementation, we will check the computational time
elapsed until now whenever the function of evaluating a
solution (i.e., calculating the objective value of a solution)
is called. During experiment, it is found that the testing
algorithms can terminate once this stopping criterion is
reached for most instances and that the difference of used
computational times between different algorithms is rather
small (the difference is often within 0.05 seconds).Therefore,
in the following sections the used computational time is given
as 𝑚 × 𝑛/2 seconds for medium and large size instances for
simplicity.

4.2. Computational Results and Analysis. To evaluate the
performance of our algorithm, the CPLEX 12.4 was adopted
to solve the random instances. For small size problems,
CPLEX can obtain optimal solutions based on the MILP
models (1)–(10). Although for large size problems, CPLEX
cannot provide optimal solutions with a maximum runtime
of 1600 seconds, it can provide a lower bound for each
problem instance. So use the gap between a solution obtained
by an algorithm and the corresponding lower bound obtained
by CPLEX 12.4 to act as the evaluation metric; that is,
Gap(%) = 100× [𝑓(𝑠)−LB]/LB in which 𝑓(𝑠) is the objective
value of a solution 𝑠 obtained by an algorithm and LB is the
corresponding lower bound for a given problem instance.

In the following sections, we first carried out experiments
to analyze the impact of the maximum neighborhood size
𝑏max on the performance of AVNS and then illustrate the
effectiveness of proposed improvement strategies. At last we
will compare our improved PSO algorithm with the PSOVNS
algorithm.

4.2.1. Impact of 𝑏max on the Performance of AVNS. As
described in Section 3.3.2, the job-block size 𝑏 determines
the complexity of local search and thus 𝑏max has a significant
impact on the performance of AVNS. So in this section
an experiment was carried out to analyze its impact and
subsequently an appropriate value can be determined.

In this experiment, the candidate values of 𝑏max are
selected from {2, 3, 4, 5, 6}. The computational results are
presented in Table 2, in which the results for an instance
scenario are the average of 10 instances and a better result
is shown in a bold style (please note that in the following
experiments we always use this setting). In this table, Gap(%)
means the gap between the solution obtained by an algorithm
and the corresponding lower bound obtained by CPLEX 12.4.

From the comparison results, it can be found that for
most of the large size problems the solution quality first
improves but then deteriorates quickly as 𝑏max increases.
The main reason behind this phenomenon is that for small
size problems the larger values of 𝑏max can provide larger
neighborhoods that can help reach the optimal solutions
more quickly. But for large size problems, as 𝑏max increases
the size of neighborhood will become too large, which in
turn reduces the number of practical evolution generations
of PSO within a given computational time and consequently
deteriorates its performance. So there is a tradeoff between
the solution quality and computational time, though larger
value of 𝑏max can generally achieve better solutions if enough
computational time is available. Based on the results shown
in Table 2, it is clear that 𝑏max = 4 is an appropriate choice.

4.2.2. Effective Analysis of Adaptive Strategy Used in AVNS.
To show the effectiveness of the adaptive strategy of neigh-
borhood selection used in the AVNS, we compared our PSO
algorithm (PSOadaptiveVNS) with a simplified version of it by
using a random selection strategy. That is, in the simplified
PSO algorithm (PSOrandomVNS) a neighborhood is randomly
selected instead of selection based onits selection probability.

The computational results are given in Table 3. From the
comparison results, it can be seen that the adaptive strategy
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Table 2: Impacts of different values of 𝑏max on the performance of the proposed PSO algorithm.

𝑚 𝑛
𝑏max = 2 𝑏max = 3 𝑏max = 4 𝑏max = 5 𝑏max = 6

Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s)

3

50 0.02 24 0.02 17 0.00 12 0.00 11 0.00 11
80 0.11 96 0.08 80 0.06 71 0.06 65 0.06 70
100 0.62 150 0.50 150 0.46 150 0.44 150 0.46 150
120 0.58 180 0.45 180 0.41 180 0.41 180 0.45 180
150 1.47 225 1.38 225 1.34 225 1.34 225 1.36 225
200 2.81 300 2.72 300 2.69 300 2.71 300 2.75 300

5

50 0.00 43 0.00 26 0.00 22 0.00 18 0.00 19
80 0.19 200 0.17 200 0.17 200 0.17 200 0.19 200
100 0.77 250 0.65 250 0.62 250 0.62 250 0.64 250
120 1.21 300 1.15 300 1.15 300 1.15 300 1.15 300
150 1.78 375 1.69 375 1.66 375 1.69 375 1.72 375
200 3.63 500 3.42 500 3.34 500 3.40 500 3.47 500

7

50 0.05 36 0.02 29 0.02 24 0.00 21 0.02 23
80 0.97 280 0.86 280 0.86 280 0.86 280 0.86 280
100 1.44 350 1.38 350 1.34 350 1.34 350 1.41 350
120 1.35 420 1.31 420 1.31 420 1.31 420 1.31 420
150 2.26 525 2.09 525 1.97 525 2.06 525 2.14 525
200 4.53 700 4.25 700 4.18 700 4.33 700 4.45 700

Average 1.32 275 1.23 273 1.20 271 1.22 271 1.25 271

Table 3: Comparison results for the effectiveness of adaptive
strategy in VNS.

𝑚 𝑛
PSOrandomVNS PSOadaptiveVNS

Gap (%) CPU (s) Gap (%) CPU (s)

3

50 0.00 17.21 0.00 12.74
80 0.06 83.67 0.06 71.35
100 0.54 150.00 0.46 150.00
120 0.52 180.00 0.41 180.00
150 1.43 225.00 1.34 225.00
200 2.85 300.00 2.69 300.00

5

50 0.00 38.92 0.00 22.06
80 0.17 200.00 0.17 200.00
100 0.69 250.00 0.62 250.00
120 1.24 300.00 1.15 300.00
150 1.71 375.00 1.66 375.00
200 3.58 500.00 3.34 500.00

7

50 0.02 29.05 0.02 24.86
80 0.86 280.00 0.86 280.00
100 1.39 350.00 1.34 350.00
120 1.37 420.00 1.31 420.00
150 2.14 525.00 1.97 525.00
200 4.42 700.00 4.18 700.00

can further improve the performance of VNS. More specifi-
cally, it appears that for small size problems the PSOadaptiveVNS
can obtain the optimal solutions with a shorter runtime. The
main reason is that the adaptive strategy can help select the
neighborhoods that have a higher probability of finding better

solutions, which in turn helps improve the search efficiency
within limited computational time.

4.2.3. Effective Analysis of Elite Solution Pool. To show the
effectiveness of the incorporation of elite solution pool used
in the PSO, we compared our PSO algorithmwith a version in
which the AVNS is always applied to the global best solution
(PSOglobalbest).

The computational results are given in Table 4, from
which it can be found that the elite solution pool can
help improve the performance of PSO for 7 out of the 18
instance scenarios and that these 7 instance scenarios are all
large size instances. For the small size instances, PSOglobalbest
can obtain the optimal solutions faster than PSOadaptiveVNS
because the local search is performed on the global best solu-
tion. However, for large size instance scenarios PSOglobalbest
algorithm shows an inferior performance compared to the
PSOadaptiveVNS. The main reason is that the incorporation of
elite solution pool can provide different start points with
similar quality to the global best solution but with better
diversity for the AVNS and consequently the PSO can achieve
a better ability of getting out of local optimum.

4.2.4. Comparison with the Other Powerful Algorithms. To
evaluate the performance of our algorithm, we compare it
with the CPLEX 12.4 and another powerful algorithm named
PSOVNS proposed by Tasgetiren [30]. The PSOVNS was pro-
posed to solve the permutation flow shop scheduling prob-
lem, whose solution is also represented by a job sequence. So
we modified this algorithm to solve our problem: first, the
solution decoding method described in Section 3.1 is incor-
porated into PSOVNS; second, the neighborhood search used
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Table 4: Comparison results for the effectiveness of elite solution
pool in PSO.

𝑚 𝑛
PSOglobalbest PSOadaptiveVNS

Gap (%) CPU (s) Gap (%) CPU (s)

3

50 0.00 10.16 0.00 12.74
80 0.06 63.54 0.06 71.35
100 0.46 150.00 0.46 150.00
120 0.41 180.00 0.41 180.00
150 1.37 225.00 1.34 225.00
200 2.73 300.00 2.69 300.00

5

50 0.00 19.05 0.00 22.06
80 0.17 200.00 0.17 200.00
100 0.62 250.00 0.62 250.00
120 1.19 300.00 1.15 300.00
150 1.66 375.00 1.66 375.00
200 3.42 500.00 3.34 500.00

7

50 0.02 21.97 0.02 24.86
80 0.86 280.00 0.86 280.00
100 1.34 350.00 1.34 350.00
120 1.33 420.00 1.31 420.00
150 2.07 525.00 1.97 525.00
200 4.27 700.00 4.18 700.00

in the VNS of PSOVNS is the one described in Section 3.3.2,
and the neighborhoods used are also the job-block based
neighborhood NH

𝑏
and the neighborhood sequence is from

𝑏 = 1 to 𝑏 = 4. In the experiment, the PSOVNS algorithm
shares the same stopping criterionwith our algorithm and the
CPLEX has a maximum runtime of 1600 seconds. However,
it should be noted that these three algorithms will terminate
whenever an optimal solution is found.

In addition, although Wang and Tang [19] dealt with
a similar problem and proposed a scatter search algorithm
hybrid with VNS (SSVNS); we did not compare our algorithm
with theirs based on the following reason: in theVNSmethod
used in SSVNS, the neighborhood moves are mainly focused
on the change of selection of jobs. When applied in our
problem, a large proportion of new solutions generated by
these moves may be infeasible since they may not satisfy
constraints (7) and (8). The repair of these infeasible solu-
tions during neighborhood search will need a great deal of
computational efforts and repaired solution may not have a
good enough quality. On the contrary, in our algorithm the
local search is just focused on the change of job sequence
that will not result in infeasible solutions and the repair of
infeasible solutions is just applied for population update (i.e.,
the number of infeasible solutions to be repaired is far less
than that in SSVNS). So the SSVNS algorithm will suffer from
low search efficiency during local search and the comparison
with it seems unfair.

The computational results of our algorithm with compar-
ison to CPLEX and PSOVNS are given in Table 5, in which
the superscript “∗” denotes that the performance difference

between PSOadaptiveVNS and PSOVNS is significantly for a
certain problem size based on the Pairwise-Samples t Test
with a confidence level of 95%. In addition, the column
Gains% denotes the average improvement of the results
obtained by our algorithm over that obtained by PSOVNS and
it is calculated as

Gains (%)

= 100

×

[Gap (PSOadaptiveVNS)% − Gap (PSOVNS)%]
Gap (PSOVNS)%

(13)

in which Gap(𝐴)% means the value of Gap(%) obtained by
a certain testing algorithm denoted by 𝐴 (e.g., 𝐴 can be
PSOadaptiveVNS or PSOVNS).

Based on these results, we can obtain the following
observations:

(1) With the increase of instance size, the performance of
all of the three algorithms tends to deteriorate because
the problems becomemore andmore difficult as their
sizes increase.

(2) CPLEX 12.4 can obtain optimal solutions for small
size instances, but for large size instances its per-
formance deteriorates quickly. The main reason is
that for large size problems the search space (i.e., the
number of branching nodes) becomes too large for
CPLEX to search and consequently its performance
becomes much worse within the given computational
time.

(3) The PSOVNS algorithm shows much better results
than CPLEX within a much shorter computational
time, and it can achieve the best results for 3 out of
the 18 instance scenarios.

(4) The proposed PSOadaptiveVNS algorithm obtains the
best average results and it can provide 15 out of the
18 instance scenarios. In addition, the performance
difference between our algorithm and the PSOVNS
algorithm is significant for 6 large size problems. For
medium and large size instances (e.g., 𝑚 = 3 and
𝑛 ≥ 120, 𝑚 = 5 and 𝑛 ≥ 100, and 𝑚 = 7

and 𝑛 ≥ 80), the improvement of our algorithm
over the PSOVNS varies from 5.63% to 16.53% and
the average improvement for all test instances is
about 5.61%. Therefore, it can be concluded that the
proposed PSOadaptiveVNS algorithm is very effective for
this problem.

5. Conclusions

Unlike previous literatures dealing with the single machine
scheduling problem, this paper further incorporates two
constraints derived from practical manufacturing industries,
that is, the capacity of machine within a given scheduling
timehorizon and the demands of the downstreamproduction
lines, to ensure the consistent production. For the new variant
of single machine scheduling problem, a mixed integer linear
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Table 5: Comparison results for different kinds of PSO algorithms.

𝑚 𝑛
CPLEX PSOVNS PSOadaptiveVNS

Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) Gains% CPU (s)

3

50 0.00 32.54 0.00 17.01 0.00 0.00 12.74
80 0.00 48.75 0.06 87.35 0.06 0.00 71.35
100 1.14 1637.63 0.46 150.00 0.46 0.00 150.00
120 0.95 1615.27 0.45 180.00 0.41 8.89 180.00
150 2.56 1608.52 1.42 225.00 1.34 5.63 225.00
200 5.39 1605.28 2.86 300.00 2.69∗ 5.94 300.00

5

50 0.00 74.07 0.00 27.76 0.00 0.00 22.06
80 0.09 581.50 0.17 200.00 0.17 0.00 200.00
100 1.68 1617.86 0.68 250.00 0.62 8.82 250.00
120 2.36 1612.21 1.24 300.00 1.15 7.26 300.00
150 2.81 1607.12 1.79 375.00 1.66∗ 7.26 375.00
200 6.86 1603.56 3.66 500.00 3.34∗ 8.74 500.00

7

50 0.00 71.64 0.02 26.54 0.02 0.00 24.86
80 1.04 1606.09 0.94 280.00 0.86 8.51 280.00
100 2.77 1624.07 1.47 350.00 1.34∗ 8.84 350.00
120 2.51 1602.53 1.39 420.00 1.31 5.76 420.00
150 4.36 1609.16 2.36 525.00 1.97∗ 16.53 525.00
200 8.42 1615.82 4.58 700.00 4.18∗ 8.73 700.00

∗Denotes that the performance difference between PSOadaptiveVNS and PSOVNS is significantly for a certain problem size based on the Pairwise-Samples 𝑡 Test
with a confidence level of 95%.

programming model is presented and an improved particle
swarm optimization algorithm is developed. The proposed
PSO algorithmhas twomain improvement strategies: the first
one is the elite solution pool used to improve the search diver-
sity and the second one is the adaptive variable neighborhood
search based on a job-block neighborhood used to improve
the search intensification. In addition, an adaptive strategy is
used in the AVNS to select neighborhoods that have higher
probability of finding better solutions. Extensive experiments
have been carried out to illustrate the effectiveness of the
proposed improvement strategies and computational results
show that the proposed PSO algorithm is able to achieve
solutions whose average gap over the lower bound is about
1.2% for all 180 test instances. Future research can be the
application of this algorithm to some practical scheduling
problems in some manufacturing industries.
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