Research Article
Convergent Analysis of Energy Conservative Algorithm for the Nonlinear Schrödinger Equation

Lv Zhong-Quan,1,2,3 Gong Yue-Zheng,3 and Wang Yu-Shun 3

1 College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 College of Science, Nanjing Forestry University, Nanjing 210037, China
3 Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing 210097, China

Correspondence should be addressed to Gong Yue-Zheng; gyz8814@aliyun.com

Received 26 September 2014; Accepted 27 February 2015

Abstract
Using average vector field method in time and Fourier pseudospectral method in space, we obtain an energy-preserving scheme for the nonlinear Schrödinger equation. We prove that the proposed method conserves the discrete global energy exactly. A deduction argument is used to prove that the numerical solution is convergent to the exact solution in discrete L_2 norm. Some numerical results are reported to illustrate the efficiency of the numerical scheme in preserving the energy conservation law.

1. Introduction

The nonlinear Schrödinger (NLS) equation describes a wide range of physical phenomena, such as hydrodynamics, plasma physics, nonlinear optics, self-focusing in laser pulses, propagation of heat pulses in crystals, and description of the dynamics of Bose-Einstein condensate at extremely low temperature [1, 2]. It plays an essential role in mathematical and physical context, and more and more focus is concentrated upon its numerical solvers in recent years [3, 4]. For the NLS equation, construction and theoretical analysis of numerical algorithms have achieved fruitful results [5–14].

The general form of the NLS equation with the initial value and the periodic boundary condition is

\[i \psi_t + \psi_{xx} + a |\psi|^2 \psi = 0, \]
\[\psi(0, t) = \psi(2\pi, t), \] (1)

where a is a real parameter. Now using $\psi = p + iq$, we can rewrite (1) as a pair of real-valued equations as follows:

\[p_t + q_{xx} + a (p^2 + q^2) q = 0, \]
\[q_t - p_{xx} - a (p^2 + q^2) p = 0. \] (2)

Equations (2) can be expressed in the Hamiltonian form. Consider

\[\frac{dz}{dt} = J \frac{\delta H(z)}{\delta z}, \] (3)

where $z = (p, q)^T \in \mathbb{R}^2$ and the Hamiltonian function, which is system energy, is

\[H(z) = \int_0^{2\pi} \frac{1}{2} \left(p^2 + q^2 - \frac{a}{2} \left(p^2 + q^2 \right)^2 \right) dx, \] (4)

\[J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}. \]

The NLS equation (1) admits the energy conservation law. Consider

\[\varepsilon (t) = \int_0^{2\pi} \left(\frac{a}{4} |\psi|^4 - \frac{1}{2} |\psi_x|^2 \right) dx = \varepsilon (0). \] (5)

Quispel and McLaren [15] proposed the average vector field (AVF) method, which is a second-order energy-preserving method, and they also provided the corresponding high-order method which is of fourth-order accuracy. The second-order energy-preserving method has been applied
to solve the partial differential equation [16]. However, to our knowledge, the current papers are most concentrated on construction of energy-preserving scheme, and very few papers discussed convergent analysis of the energy-preserving scheme. In this paper, we develop an energy conservative algorithm for the NLS equation by using AVF method in time and Fourier pseudospectral method in space and analyze the proposed method.

The paper is organized as follows. In Section 2, a new conservative scheme is proposed for the NLS equation. We prove that the method preserves the energy conservation law. In Section 3, a deduction argument is used to prove that the numerical solution is convergent to the exact solution in law. In Section 4, a deduction argument is used to prove that the method preserves the energy conservation. In this section, we apply the Fourier pseudospectral method in space and the AVF method in time to construct an energy-conservative scheme. In this paper, we develop an energy preserving scheme.

2. Construction of Conservative Algorithm for the NLS Equation

In this section, we apply the Fourier pseudospectral method in space and the AVF method in time to construct an energy-preserving algorithm for the NLS equation.

One usually uses second-order Fourier spectral differentiation matrix D^2_j to approximate the second-order differential operator ∂^2_{xx}. For the ordinary differential equation $u_{xx} = f$, we set $u_x = v$ and $v_x = f$. Applying the Fourier pseudospectral method to the two equations leads to $D^2_1u = v$ and $D^2_1v = f$. Eliminating vector v gives $D^2_1u = f$. In this work, we use D^2_1u to approximate u_{xx} instead of D^2_1u and obtain the corresponding Fourier pseudospectral semidiscretization for the NLS equation (1) as follows:

$$i\frac{d}{dt}\Psi_j + \left(D^2_1\Psi \right)_j + a|\Psi_j|^2\Psi_j = 0, \quad j = 0, 1, 2, \ldots, N - 1,$$

where $\Psi = (\psi_0, \psi_1, \psi_2, \ldots, \psi_{N-1})^T$. Equations (6) can be rewritten as

$$\frac{d}{dt}p_j + \left(D^2_1q \right)_j + a\left(p_j^2 + q_j^2 \right)q_j = 0,$$

$$\frac{d}{dt}q_j - \left(D^2_1p \right)_j - a\left(p_j^2 + q_j^2 \right)p_j = 0,$$

where $p = (p_0, p_1, \ldots, p_{N-1})^T$ and $q = (q_0, q_1, \ldots, q_{N-1})^T$. Since D^2_1 is symmetric, (7) is regarded as a Hamiltonian system with Hamiltonian. Consider

$$H(p, q) = \frac{1}{2}\left(p^T D^2_1 p + q^T D^2_1 q \right) + a\sum_{j=0}^{N-1} \left(p_j^2 + q_j^2 \right)^2.$$

Now we discretize (6) with respect to time by the AVF method and obtain

$$i\delta_t \Psi_j^n + \left(D^2_1 A \Psi \right)_j^n + a\left(A \left(|\Psi_j|^2 \right) A \Psi_j \right)_j^n + \frac{1}{6} \left(\Psi_{j+1}^n - \Psi_j^n \right) \left(\Psi_{j+1}^{n+1} p_j^1 - \Psi_j^n p_j^{n+1} \right) = 0,$$

where $\delta_t \Psi_j^n = (\psi_j^{n+1} - \psi_j^n)/\tau$, $A \Psi_j^n = (\psi_j^{n+1} + \psi_j^n)/2$, and $p_j^n = \text{Re}(\psi_j^n)/(\psi_j^n + \psi_j^n)$. Obviously, scheme (9) can be reformed as a vector form. Consider

$$i\delta_t \Psi^n + D^2_1 A \Psi^n + a\left(A \left(|\Psi|^2 \right) \cdot A \Psi^n + \frac{1}{6} \left(\Psi^{n+1} - \Psi^n \right) \cdot \left(\Psi^{n+1} \cdot \psi^n - \psi^n \cdot \psi^{n+1} \right) \right) = 0,$$

where $|\Psi|^2 = |\psi| \cdot |\psi|$ and "·" denotes point multiplication between vectors; that is,

$$p^n \cdot q^n = (p_0^0 q_0^n, p_1^n q_1^n, p_2^n q_2^n, \ldots, p_{N-1}^n q_{N-1}^n)^T.$$

Equations (9) can also be rewritten as

$$\frac{q_j^{n+1} - q_j^n}{\tau} + \left(D^2_1 q^{n+1/2} \right)_j + a\left(\frac{1}{4} \left(q_j^{n+1} + q_j^n \right) \cdot \left((p_j^{n+1})^2 + (p_j^n)^2 + (q_j^{n+1})^2 + (q_j^n)^2 \right) \right) + \frac{1}{6} \left(p_j^{n+1} - p_j^n \right) \left(q_j^{n+1} \cdot p_j^n - q_j^n \cdot p_j^{n+1} \right) = 0,$$

$$\frac{q_j^{n+1} - q_j^n}{\tau} \cdot \left(D^2_1 p^{n+1/2} \right)_j - \left(D^2_1 p^{n+1/2} \right)_j + a\left(\frac{1}{4} p_j^{n+1} + p_j^n \right) \cdot \left((p_j^{n+1})^2 + (p_j^n)^2 + (q_j^{n+1})^2 + (q_j^n)^2 \right) + \frac{1}{6} \left(q_j^{n+1} - q_j^n \right) \left(p_j^{n+1} \cdot q_j^n - p_j^n \cdot q_j^{n+1} \right) = 0.$$

Next, we prove that scheme (10) conserves the discrete total energy. Let $X_N = \{u \mid u = (u_0, u_1, \ldots, u_{N-1}) \subseteq \mathbb{C}^N$ and define discrete inner product and discrete L_2 norm over X_N as

$$(u, v)_N^h = \sum_{j=0}^{N-1} u_j \overline{v_j}, \quad \|u\|_N = (u, u)^{1/2}_N.$$

Theorem 1. With periodic boundary condition \(\psi(0, t) = \psi(2\pi, t) \), scheme (10) possesses the discrete global energy conservation law: namely,

\[
E^{n+1} = e^n = \cdots = e^1 = e^0,
\]

where \(e^n = (a/4)\|\psi^n\|_{N, A}^4 - (1/2)\|D_1\psi^n\|_{N, A}^2 \) and \(\|\psi^n\|_{N, A}^4 = (|\psi^n|^2, |\psi^n|^2)_{N} \).

Proof. Taking the inner product of (10) with \(\psi^{n+1} - \psi^n \) yields

\[
(i\frac{\partial}{\tau} \psi^n, \psi^{n+1} - \psi^n)_{N} + (D_1^2 A_1 \psi^n, \psi^{n+1} - \psi^n)_{N}
+ a\left(A_1\left(|\psi^n|^2\right), A_1\psi^n + \frac{1}{6}(\psi^{n+1} - \psi^n)\right)
\cdot \left(\psi^{n+1} - p^n - \psi^n - p^{n+1}\right), \psi^{n+1} - \psi^n)_{N} = 0.
\]

The first term becomes

\[
-i\frac{\tau}{\tau} \left(\psi^{n+1} - \psi^n, \psi^{n+1} - \psi^n\right)_N = i\frac{\tau}{\tau} \left|\psi^{n+1} - \psi^n\right|^2_N,
\]

which is purely imaginary. The second term can be reduced to

\[
\frac{1}{2} \left(D_1^2 \left(\psi^{n+1} + \psi^n\right), \psi^{n+1} - \psi^n\right)_N
= -\frac{1}{2} \left(\left\|D_1 \psi^{n+1}\right\|_N^2 - \left\|D_1 \psi^n\right\|_N^2\right)
+ i \text{Im} \left(\left(\psi^{n+1} + D_1 \psi^n\right)\right)_N.
\]

Noticing that \(P^n = (\psi^n + \overline{\psi^n})/2 \), we have

\[
a\left(A_1\left(|\psi^n|^2\right), A_1\psi^n + \frac{1}{6}(\psi^{n+1} - \psi^n)\right)
\cdot \left(\psi^{n+1} - p^n - \psi^n - p^{n+1}\right), \psi^{n+1} - \psi^n)_{N}
= a\left(\frac{1}{4} \left(\left\|\psi^{n+1}\right\|_{N, A}^4 - \left\|\psi^n\right\|_{N, A}^4\right)
\right.
\left. - \frac{i}{2} \left(\left|\psi^{n+1}\right|^2 + |\psi^n|^2\right), \text{Im} \left(\psi^{n+1} + \overline{\psi^n}\right)\right)_N
+ \frac{i}{6} \left(\text{Im} \left(\psi^{n+1} + \overline{\psi^n}\right), \left|\psi^{n+1} - \psi^n\right|^2\right)_N\right).
\]

Therefore, the real part of (15) is

\[
-\frac{1}{2} \left(\left\|D_1 \psi^{n+1}\right\|_N^2 - \left\|D_1 \psi^n\right\|_N^2\right)
+ a\left(\frac{1}{4} \left(\left\|\psi^{n+1}\right\|_{N, A}^4 - \left\|\psi^n\right\|_{N, A}^4\right)\right) = 0.
\]

So (19) gives the energy conservation law (14).

3. Convergence Analysis

Let \(I = [0, 2\pi], L^2(I) \) with the inner product \((\cdot, \cdot)\) and the norm \(\| \cdot \| \). For any positive integer \(r \), the seminorm and the norm of \(H^r(I) \) are denoted by \(| \cdot |_r \) and \(\| \cdot \|_r \), respectively. Let \(C^\infty(I) \) be the set of infinitely differentiable functions with period \(2\pi \), defined on \(I \). \(H^r(I) \) is the closure of \(C^\infty(I) \) in \(H^r(I) \). In this section, let \(C \) be a generic positive constant which may be dependent on the regularity of exact solution and the initial data but independent of the time step \(\tau \) and the grid size \(h \).

For every \(N \), set

\[
V_N = \left\{ u | \ u(x) = \sum_{|k| \leq N/2} \bar{u}_k e^{ikx}, \bar{u}_k = \bar{u}_{-k}, |k| \leq N/2 \right\},
\]

\[
V''_N = \left\{ u | \ u(x) = \sum_{|k| \leq N/2} u_k e^{ikx}, \bar{u}_k = \bar{u}_{-k}, |k| \leq N/2, \bar{u}_{N/2} = \bar{u}_{-N/2} \right\},
\]

where the summation \(\Sigma'' \) is defined by

\[
\sum_{|k| \leq N/2} u_k = \frac{1}{2} u^{N-2} + \sum_{|k| \leq N/2} u_k + \frac{1}{2} u^{N/2}.
\]

It is obviously that \(V''_N \subseteq V_N \). Let the orthogonal projection operator \(P_N : L^2(I) \rightarrow V_N \) and the interpolation operator \(I_N : L^2(I) \rightarrow V''_N \). Note that \(P_N \) and \(I_N \) are linear and the following properties:

\[
\begin{align*}
(1) & \quad P_N \partial_x u = \partial_x P_N u, \quad I_N \partial_x u = \partial_x I_N u; \\
(2) & \quad (P_N - u, v) = (P_N - u, v), \quad v \in V_N; \\
(3) & \quad P_N u = u, \quad u \in V_N; \quad I_N u = u, \quad u \in V''_N.
\end{align*}
\]

Lemma 2. For \(u \in V''_N \), \(\|u\| \leq \|u\|_N \leq \sqrt{2}\|u\|_N \).

Lemma 3 (see [17]). If \(0 \leq l \leq r \) and \(u \in H^r(I) \), then

\[
\begin{align*}
\|P_N u - u\| & \leq C N^{l-r} |u|_r, \\
\|P_N u\| & \leq C |u|_l,
\end{align*}
\]

and if \(r > 1/2 \), then

\[
\|I_N u - u\| \leq C N^{l-r} |u|_r, \quad \|I_N u\| \leq C |u|_l.
\]

Lemma 4. Suppose \(u^* = P_{N-2} u, u \in H^r(I) \), and \(r > 1/2 \); then \(\|u^* - u\|_N \leq C N^{-r} |u|_r \).

Proof. According to Lemmas 2 and 3, we have

\[
\begin{align*}
\|u^* - u\|_N & \leq \|I_N (u^* - u)\|_N \\
& = \|u^* - I_N u\|_N \\
& \leq \sqrt{2} \|u^* - I_N u\| \\
& \leq \sqrt{2} (\|u^* - u\| + \|u - I_N u\|) \\
& \leq C N^{-r} |u|_r.
\end{align*}
\]
Lemma 5 (Gronwall’s inequality [18]). Suppose that the discrete function \(|u^n| \) satisfies the following inequality:
\[
 u^n - u^{n-1} \leq A u^n + B u^{n-1} + C_n \tau ,
\]
where \(A, B, \) and \(C_n \) \((n = 0, 1, 2, \ldots, M; M \tau = T)\) are nonnegative constants. Then
\[
 \max_{1 \leq n \leq M} |w^n| \leq \left(w^0 + \sum_{i=1}^{M} C_i \right) e^{2(A+B)\tau},
\]
where \(\tau \) is sufficiently small, such that \((A + B)\tau \leq (M - 1)/2M, \) \((M > 1)\).

An equivalent form of full-discrete Fourier pseudospectral scheme (12) is to find \((p_n^*, q_n^*)^T \in (V_N')_2\), so that, for any \(\Phi^n = (\Phi_1^n, \Phi_2^n)^T \in (V_N')_2\), then
\[
\frac{q_n^{n+1} - q_n^n}{\tau} - \frac{p_n^*}{\tau} = -\partial_{xx} (p^*)^{n+1/2} - P_{N-2} \left[a \left(p^2 + q^2 \right) \right]^{n+1/2}
\]
\[
= \frac{q_n^{n+1} - q_n^n}{\tau} - \frac{q_n^n}{n_1},
\]
where \((p^*)^{n+1/2} = (p^n + p^{n+1})/2\) and so forth. Using Taylor's expansion, we obtain
\[
\|q_n^1\|_N \leq C r^2, \quad \|q_n^2\|_N \leq C r^2.
\]
For any \(\Phi^n = (\Phi_1^n, \Phi_2^n)^T \in (V_N')_2\), (32) are equivalent to the following equations:
\[
\left(\begin{array}{c}
\frac{p_n^{n+1} - p_n^n}{\tau}, \Phi_1^n \\
\frac{q_n^{n+1} - q_n^n}{\tau}, \Phi_2^n
\end{array} \right) = \left(\begin{array}{c}
\left(\begin{array}{c}
\frac{\partial}{\partial x} (q^*)^{n+1/2}, \Phi_1^n \\
\frac{\partial}{\partial x} (p^*)^{n+1/2}, \Phi_2^n
\end{array} \right)
\end{array} \right)
\]
\[
+ \left(P_{N-2} \left[a \left(p^2 + q^2 \right) \right]^{n+1/2}, \Phi_1^n \right)_N = (\xi_1^n, \Phi_1^n)_N,
\]
\[
\left(\begin{array}{c}
\frac{q_n^{n+1} - q_n^n}{\tau}, \Phi_2^n \\
\frac{p_n^{n+1} - p_n^n}{\tau}, \Phi_1^n
\end{array} \right) = \left(\begin{array}{c}
\left(\begin{array}{c}
\frac{\partial}{\partial x} (p^*)^{n+1/2}, \Phi_2^n \\
\frac{\partial}{\partial x} (q^*)^{n+1/2}, \Phi_1^n
\end{array} \right)
\end{array} \right)
\]
\[
+ \left(P_{N-2} \left[a \left(p^2 + q^2 \right) \right]^{n+1/2}, \Phi_2^n \right)_N = (\xi_2^n, \Phi_2^n)_N.
\]

According to \((p_{N-2} u, v)_N = (p_{N-2} u, v), \forall v \in V_N\) and \(p_N, \partial_x u = \partial_x p_{N-1} u\), we can deduce
\[
\left(\begin{array}{c}
\frac{p_n^{n+1} - p_n^n}{\tau}, \Phi_1^n \\
\frac{q_n^{n+1} - q_n^n}{\tau}, \Phi_2^n
\end{array} \right) = \left(\begin{array}{c}
\left(\begin{array}{c}
\frac{\partial}{\partial x} (q^*)^{n+1/2}, \Phi_1^n \\
\frac{\partial}{\partial x} (p^*)^{n+1/2}, \Phi_2^n
\end{array} \right)
\end{array} \right)
\]
\[
+ \left(P_{N-2} \left[a \left(p^2 + q^2 \right) \right]^{n+1/2}, \Phi_1^n \right)_N = (\xi_1^n, \Phi_1^n)_N,
\]
\[
\left(\begin{array}{c}
\frac{q_n^{n+1} - q_n^n}{\tau}, \Phi_2^n \\
\frac{p_n^{n+1} - p_n^n}{\tau}, \Phi_1^n
\end{array} \right) = \left(\begin{array}{c}
\left(\begin{array}{c}
\frac{\partial}{\partial x} (p^*)^{n+1/2}, \Phi_2^n \\
\frac{\partial}{\partial x} (q^*)^{n+1/2}, \Phi_1^n
\end{array} \right)
\end{array} \right)
\]
\[
+ \left(P_{N-2} \left[a \left(p^2 + q^2 \right) \right]^{n+1/2}, \Phi_2^n \right)_N = (\xi_2^n, \Phi_2^n)_N.
\]

Theorem 6. Suppose that the exact solutions \(p, q \in H^1(0, T; H^r_p(1)) \cap H^2(0, T; L^2(1)), \) \(r > 1/2, \) and \(\tau \) are small enough; then the solution of full-discrete Fourier pseudospectral scheme (12) converges to the solution of problem (3) with order \(O(N^{-r} + \tau^2) \) in discrete \(L_2 \) norm.

Proof. Let \(p^* = P_{N-2} p \) and \(q^* = P_{N-2} q; \) we have from (2)
\[
p_*^1 + q_*^1 + P_{N-2} \left[a \left(p^2 + q^2 \right) q \right] = 0,
\]
\[
q_*^1 - p_*^1 - P_{N-2} \left[a \left(p^2 + q^2 \right) p \right] = 0,
\]
and then
\[
\frac{p_n^{n+1} - p_n^n}{\tau} + \frac{q_n^{n+1} - q_n^n}{\tau} + P_{N-2} \left[a \left(p^2 + q^2 \right) \right]^{n+1/2}
\]
\[
= \frac{p_n^{n+1} - p_n^n}{\tau} - \left(p_1^* \right)^{n+1/2} \leq n_1.
\]
We take $\Phi^n_1 = \epsilon^{n+1/2}$ and $\Phi^n_2 = \eta^{n+1/2}$, and then
\[
\left(\frac{\epsilon^{n+1} - \epsilon^n}{\tau}, \frac{\epsilon^{n+1} + \epsilon^n}{2} \right)_N - \left(\partial_x \eta^{n+1/2}, \partial_x \epsilon^{n+1/2} \right)_N
+ (G_1, \epsilon^{n+1/2})_N = \left(\xi^n, \epsilon^{n+1/2} \right)_N,
\]
\[
\left(\frac{\eta^{n+1} - \eta^n}{\tau}, \frac{\eta^{n+1} + \eta^n}{2} \right)_N + \left(\partial_x \epsilon^{n+1/2}, \partial_x \eta^{n+1/2} \right)_N
- (G_2, \eta^{n+1/2})_N = \left(\xi^n, \eta^{n+1/2} \right)_N,
\]
where
\[
G_1 = P_{N-2} \left[a \left(p^2 + q^2 \right) q \right]^{n+1/2} - f \left(\phi_c^n, \phi_c^{n+1}, \phi_c^n, \phi_c^{n+1} \right),
\]
\[
G_2 = P_{N-2} \left[a \left(p^2 + q^2 \right) p \right]^{n+1/2} - f \left(\phi_c^n, \phi_c^{n+1}, \phi_c^n, \phi_c^{n+1} \right).
\]
Adding (38) and (39), we obtain
\[
\frac{1}{2\tau} \left(\|\epsilon^{n+1}\|^2_N + \|\eta^{n+1}\|^2_N - \|\epsilon^n\|^2_N - \|\eta^n\|^2_N \right)
= \left(\xi^n, \epsilon^{n+1/2} \right)_N + \left(\xi^n, \eta^{n+1/2} \right)_N
- (G_1, \epsilon^{n+1/2})_N + (G_2, \eta^{n+1/2})_N.
\]
Using Cauchy-Schwarz inequality, we have
\[
\left| \left(\xi^n, \epsilon^{n+1/2} \right)_N \right| \leq \|\xi^n\|_N \cdot \|\epsilon^{n+1/2}\|_N
\leq \frac{1}{2} \|\epsilon^n\|^2_N + \frac{1}{8} \|\epsilon^n + \epsilon^{n+1}\|^2_N
\leq C \tau^4 + \frac{1}{4} \left(\|\epsilon^n\|^2_N + \|\epsilon^{n+1}\|^2_N \right).
\]
Similarly, we have
\[
\left| \left(\xi^n, \eta^{n+1/2} \right)_N \right| \leq C \tau^4 + \frac{1}{4} \left(\|\eta^n\|^2_N + \|\eta^{n+1}\|^2_N \right),
\]
\[
\left| (G_1, \epsilon^{n+1/2})_N \right| \leq \frac{1}{2} \|G_1\|^2_N + \frac{1}{4} \left(\|\epsilon^n\|^2_N + \|\epsilon^{n+1}\|^2_N \right),
\]
\[
\left| (G_2, \eta^{n+1/2})_N \right| \leq \frac{1}{2} \|G_2\|^2_N + \frac{1}{4} \left(\|\eta^n\|^2_N + \|\eta^{n+1}\|^2_N \right).
\]
Using the triangle inequality, we obtain
\[
\|G_1\|^2_N
= P_{N-2} \left[a \left(p^2 + q^2 \right) q \right]^{n+1/2} - f \left(\phi_c^n, \phi_c^{n+1}, \phi_c^n, \phi_c^{n+1} \right)_N
\leq P_{N-2} \left[a \left(p^2 + q^2 \right) q \right]^{n+1/2} - a \left(p^2 + q^2 \right) q \right]^{n+1/2} \leq C(\eta - 2r + \tau^4) (52)
\]
According to Lemma 4, $I \leq CN^{-r}$. Using Taylor’s expansion, $II \leq C\tau^2$. Using the inequality
\[
|u \cdot v - \bar{u} \cdot \bar{v}| \leq |u - \bar{u}| \cdot |v| + |\bar{u}| \cdot |v - \bar{v}|
\]
and Lemma 4, $III \leq CN^{-r}$. According to inequality (45) and the boundedness of numerical solution (30), $IV \leq C(\|a^n\|_N + \|\eta^n\|_N + \|\eta^{n+1}\|_N)$.
Therefore, we can deduce
\[
\|G_1\|^2_N \leq C \left(N^{-2r} + \tau^4 \right)
+ C \left(\|a^n\|^2_N + \|\eta^n\|^2_N + \|\eta^{n+1}\|^2_N \right).
\]
Similarly, we have
\[
\|G_2\|^2_N \leq C \left(N^{-2r} + \tau^4 \right)
+ C \left(\|a^n\|^2_N + \|\eta^n\|^2_N + \|\eta^{n+1}\|^2_N \right).
\]
Thus, we obtain
\[
\frac{1}{2\tau} \left(\|\epsilon^{n+1}\|^2_N + \|\eta^{n+1}\|^2_N - \|\epsilon^n\|^2_N - \|\eta^n\|^2_N \right)
\leq C \left(N^{-2r} + \tau^4 \right)
+ C \left(\|\eta^n\|^2_N + \|\eta^{n+1}\|^2_N \right).
\]
Let $\omega^n = \|\eta^n\|^2_N + \|\eta^{n+1}\|^2_N$, and (48) can be rewritten as
\[
\omega^{n+1} - \omega^n \leq C\tau \left(\omega^{n+1} + \omega^n \right) + C\tau \left(N^{-2r} + \tau^4 \right).
\]
According to Lemma 5, we have
\[
\omega^n \leq \left(\omega^0 + \tau \sum_{l=1}^M C \left(N^{-2r} + \tau^4 \right) \right) e^{\lambda CT}.
\]
According to Lemma 4 and noticing $p_c^0 = p^0$ and $q_c^0 = q^0$, we have
\[
\omega^0 = \|\epsilon^0\|^2_N + \|\eta^0\|^2_N = \|p^0 - p^0\|^2_N + \|q^0 - q^0\|^2_N \leq CN^{-2r}.
\]
Therefore, we get
\[
\omega^n \leq C \left(N^{-2r} + \tau^4 \right).
\]
Moreover, we have
\[
\| p^n - p^n_c \|_N \leq C (N^{-r} + r^2) ,
\]
\[
\| q^n - q^n_c \|_N \leq C (N^{-r} + r^2) .
\]
(53)

Using the triangle inequality and Lemma 4, we obtain
\[
\| p^n - p^n_c \|_N \leq \| p^n - p^n \|_N + \| p^n - p^n_c \|_N \leq C (N^{-r} + r^2) ,
\]
\[
\| q^n - q^n_c \|_N \leq \| q^n - q^n \|_N + \| q^n - q^n_c \|_N \leq C (N^{-r} + r^2) .
\]
(54)
This completes the proof.

4. Numerical Experiments

In this section, we conduct some tentative numerical experiments for this new scheme (10) to verify the theoretical conclusions, including the accuracy, the ability to preserve the first integrals of the nonlinear Schrödinger equation for long-time integration.

First we take the parameter \(a = 2 \). Then, we get the following:
\[
i \psi_t + \psi_{xx} + 2 | \psi |^2 \psi = 0 . \tag{55}
\]

We consider nonlinear Schrödinger equation (55) with the one-soliton solution as follows:
\[
\psi(x, t) = \text{sech} (x - 4t) \exp \left(2i \left(x - \frac{3}{2} t \right) \right) . \tag{56}
\]

In order to analyze new scheme (10), the problem is solved in \([-15, 15]\) with the initial condition
\[
u(x, 0) = \text{sech} (x) \exp (2xi) . \tag{57}
\]

We take \(N = 200 \) and the time step \(\tau = 10^{-3} \) for the new scheme (10). We check the ability of this new scheme preserving the first integral which is one of the important criteria to judge numerical schemes. The nonlinear Schrödinger equation with periodic boundary condition has the energy conservation law:
\[
F(\psi) = \int_0^L \left[\frac{a}{4} | \psi |^4 - \frac{1}{2} | \psi_x |^2 \right] dx . \tag{58}
\]

If the approximate solution of \(\psi(x, t) = j\tau \) is \(\psi^j = (\psi_0, \psi_1, \ldots, \psi_N)^T \), then the discrete conservation law \(F \) is
\[
F^h(\psi) = \sum_{j=1}^N \frac{1}{2} \left(| \psi_j^h |^4 - | D_j \psi_j^h |^2 \right) h . \tag{59}
\]

We define the errors of the discrete conservation law on the \(j \)th time level as
\[
\text{Err}_F(j\tau) = F^h(\psi^j) - F^h(\psi^0) , \tag{60}
\]

<table>
<thead>
<tr>
<th>(\tau)</th>
<th>(L^2) error</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.004</td>
<td>1.1351e–004</td>
<td>—</td>
</tr>
<tr>
<td>0.002</td>
<td>2.8338e–005</td>
<td>2.0020</td>
</tr>
<tr>
<td>0.001</td>
<td>7.0510e–006</td>
<td>2.0068</td>
</tr>
<tr>
<td>0.0005</td>
<td>1.7305e–006</td>
<td>2.0266</td>
</tr>
<tr>
<td>0.00025</td>
<td>4.0445e–007</td>
<td>2.0972</td>
</tr>
<tr>
<td>0.000125</td>
<td>9.4398e–008</td>
<td>2.0991</td>
</tr>
</tbody>
</table>

We consider that the problem is solved in \([-15, 15]\) till time \(t = 1 \) for accuracy test. Note that in Table 1 the spatial error \((N = 100) \) is negligible and the error is dominated by the time discretization error. It shows that accuracy of space is very large. Table 1 clearly indicates that new scheme (10) is of second order in time.

We also test our new scheme on the following initial condition \(\psi(x, 0) = 0.5 + 0.025 \cos(\mu x) \) with the periodic boundary condition \(\psi(0, t) = \psi(4\sqrt{2\pi}/L, t) \). We take \(L = 4\sqrt{2\pi}, \mu = 2\pi/L \). The initial condition is in the vicinity of the homoclinic orbit in [19].

In this case, we also take \(N = 200 \) and the time step \(\tau = 10^{-3} \) for new scheme (10). The corresponding waveforms at different time levels and the changes of errors of discrete conservation law \(F \) with time are showed in Figure 2. We find that the numerical results we presented in the paper show that the new scheme is very robust and stable. Thus, our new scheme provides a new choice for solving the nonlinear Schrödinger equation.

5. Conclusions

In this paper, we derive a new method for the nonlinear Schrödinger system. We prove the proposed method preserves the energy conservation law exactly. A deduction argument is used to prove that the numerical solution is second-order convergent to the exact solutions in \(\| \cdot \|_2 \) norm. Some numerical results are reported to illustrate the efficiency of the numerical scheme in preserving the energy conservation laws. Therefore, it will be a good choice for solving the nonlinear Schrödinger equation computation.
Figure 1: Continued.
Figure 1: The numerical solutions and the exact solutions at $t = 1, 10, 14, 50$ and the changes of the errors between the exact solutions and the numerical solutions and Err_F with time.
Figure 2: Continued.

(a) $t = 1$

(b) $t = 10$

(c) $t = 14$

(d) $t = 50$

(e) $0 \leq t \leq 1$

(f) $0 \leq t \leq 10$

Errors of the discrete energy conservation law with time
Errors of the discrete energy conservation law with time

\[
\log_{10}|\text{Err}_F|(g) \quad 0 \leq t \leq 14
\]

\[
\log_{10}|\text{Err}_F|(h) \quad 0 \leq t \leq 50
\]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{error_plot}
\caption{The numerical solutions at $t = 1, 10, 14, 50$ and the changes of Err_F with time.}
\end{figure}

Conflicts of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grants nos. 11271195, 41231173, and 11201169), the Postdoctoral Foundation of Jiangsu Province of China under Grant no. 1301030B, Open Fund Project of Jiangsu Key Laboratory for NSLSCS under Grant no. 201301, Fund Project for Highly Educated Talents of Nanjing Forestry University under Grant no. GXL201320, and the Project of Graduate Education Innovation of Jiangsu Province (Grant no. KYLX_0691).

References

Submit your manuscripts at http://www.hindawi.com