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Abstract. 
A new spectral conjugate gradient method (SDYCG) is presented for solving unconstrained optimization problems in this paper. Our method provides a new expression of spectral parameter. This formula ensures that the sufficient descent condition holds. The search direction in the SDYCG can be viewed as a combination of the spectral gradient and the Dai-Yuan conjugate gradient. The global convergence of the SDYCG is also obtained. Numerical results show that the SDYCG may be capable of solving large-scale nonlinear unconstrained optimization problems.



1. Introduction
As well known, a great deal of issues, which are studied in scientific research fields, can be translated to unconstrained optimization problems. The spectral conjugate gradient (SCG) method does nice jobs among various algorithms for solving nonlinear optimization problems. The spectral conjugate gradient combines the spectral gradient and the conjugate gradient. To the SCG method, the choice of spectral parameter is crucially important. In this paper, we propose a new spectral conjugate gradient method based on the Dai-Yuan conjugate gradient method by providing a new spectral parameter. Our purpose is to obtain an efficient algorithm for the unconstrained optimization.
An unconstrained optimization problem is customarily expressed asThe nonlinear function  considered in this paper is continuously differentiable; the gradient of  is denoted by . We usually impose the following properties on function .(P 1)The function  is bounded below and is continuously differentiable in a neighbourhood  of the level set , where  is the starting point.(P2)The gradient  of  is Lipschitz continuous in ; that is, there exists a constant , such that  for all , .
Generally, a sequence  is obtained in an algorithm for solving (1) and has the following format:where  is a search direction and  is the step size. At each iterative point , we usually determine  firstly and then compute  by some principles.
There are different ways to determine the direction . In the classical steepest-descent method, . In the conjugate gradient (CG) method,  is of the form where  is a scalar parameter characterizing the conjugate gradient method. The best-known expressions of  are Hestenes-Stiefel (HS) [1], Fletcher-Reeves (FR) [2], Polak-Ribiere-Polyak (PRP) [3, 4], and Dai-Yuan (DY) [5] formulas. They are defined by respectively, where  denotes the Euclidean norm and .
There also are some approaches to determine the step size  in (2). Unfortunately, the steepest-descent method performs poorly. Barzilai and Borwein improved the steepest-descent method greatly by providing a spectral choice of step size in [6]. Their algorithm has the form where  or  with . Many algorithms are proved convergent under the Wolfe condition; that is, the step size  satisfieswith .
In recent years, some scholars developed a new method—spectral conjugate gradient (SCG) method—for solving (1). For example, Raydan introduced the spectral gradient method for large-scale unconstrained optimization in [7]. He combined a nonmonotone line search strategy that guarantees global convergence with the Barzilai and Borwein method. Utilizing spectral gradient and conjugate gradient ideas, Birgin and Martinez proposed a spectral conjugate gradient method in [8]. In their algorithm, the search direction has the formIn [8], the best combination of this formula, the scaling, and the initial choice of step-length is also studied. Following [8], some papers discussed the various choices of the spectral parameter  based on different . For example, Du and Chen [9] gave a modified spectral FR conjugate gradient method with Wolfe-type line search based on FR formula. Their spectral parameters  and  are expressed asYu et al. [10] presented a modification of spectral Perry’s conjugate gradient formula, which possessed the sufficient descent property independent of line search condition. Their search direction  is defined by (8) and  has the formwhereLiu and Li [11] proposed a spectral DY-type projection method for nonlinear monotone systems of equations. The direction  is also determined by (8) and the parameters are defined by
We will propose a new SCG method based on the Dai-Yuan-type conjugate gradient method in this paper. A new selection of  is introduced in our algorithm such that the sufficient descent condition holds. In addition, the global convergence of the new method is obtained.
The present paper is organized as follows. In Section 2, we outline our new method for unconstrained nonlinear optimization, and we show that the sufficient descent condition holds under mild assumptions. The global convergence is proved in Section 3, while the numerical results compared with CG-DESCENT are given in Section 4. At last section, we draw some conclusions about our new spectral conjugate gradient method.
2. Spectral Dai-Yuan-Type Conjugate Gradient Method
In this paper, we consider the spectral conjugate gradient method in which the search direction is of the formwhereand the scalar parameter  is defined by (4). This is a new spectral conjugate gradient method for solving problem (1) because the expression (14) of spectral parameter  is completely different from those in other papers. The search direction (13) is a combination of the spectral gradient and the Dai-Yuan conjugate gradient. We hope that (14) may be an efficient choice.
In order to obtain the global convergence of our method, we assume that the step size satisfies the strong Wolfe condition; that is, the step size  satisfies (6) andwith . It is easy to see that (7) holds if (15) holds.
The following is a detailed description of the spectral Dai-Yuan-type conjugate gradient (SDYCG) algorithm.
SDYCG Algorithm
Step 1 (initialization). Choose , set , and take .
Step 2 (check the convergence condition). Compute ; if , then stop.
Step 3 (form the search direction). If , then . Else, compute  and  by formulas (14) and (4), respectively; then compute  by (13) and (14).
Step 4 (line search). Find  which satisfies the strong Wolfe conditions (6) and (15).
Step 5 (compute the new point). Set  and  and go to Step 2.
The framework of the SDYCG algorithm is similar to other spectral conjugate gradient algorithms. However we choose a different spectral parameter  (see (14)) which is the main difference between SDYCG and the others.
The global convergence of SDYCG algorithm will be given in the next section. Before that, we will show that the search direction (13) can ensure the sufficient descent condition.
Lemma 1.  Suppose that the sequence  is generated by the SDYCG algorithm; then for all .
Proof. Since  is calculated by formula (13), we can get, if , that  whereas when , from (14), we find Furthermore,From the second formula of (13), we obtainThe proof is completed.
This lemma gives the fact that the direction  is a descent direction. Besides,  possesses the following property.
Lemma 2.  Suppose that the SDYCG algorithm is implemented with the step size  that satisfies the strong Wolfe conditions (6) and (15). If  for all , then 
Proof. By (14) and , we haveWith (15) and (21), we get Therefore, inequality (20) follows. This completes the proof.
Inequality (20) gives the close relationship of the inner product of gradient and direction between the adjacent two iterations. It will play an important role in our global convergence analysis.
3. Convergence Analysis
Dai and Yuan stated in [5] that the following result had been essentially proved by Zoutendijk and Wolfe.
Lemma 3.  Suppose that the function  has the properties  and . Assume that  is a descent direction and  is obtained by the Wolfe conditions (6) and (7). Then One customarily calls (23) the Zoutendijk condition.
Theorem 4.  Suppose that the function  has the properties  and . Sequences , , and  are generated by SDYCG algorithm. Then either  for some  or 
Proof. Suppose that  for all  and (24) is not true. Then there exists a constant , such thatfor all  of the iterations.
The second equality of (13) implieswe getDividing both sides by , we have Combining (20) in Lemma 2, we see the inequalitySumming both sides, we obtainSo, from (25) and (30), we getThis relation is equivalent toSumming over , we obtainFrom the SDYCG algorithm, the step size satisfies the strong Wolfe condition, so the Wolfe condition (7) holds. And the directions obtained by the algorithm are descent from Lemma 1. But the last equality contradicts the Zoutendijk condition (23). Hence, our original assertion (25) must be false, giving that either  for some  or (24) holds.
4. Numerical Results
In order to test the numerical performance of the SDYCG algorithm, we choose some unconstrained problems with the initial points from CUTEr library [12, 13]. They are listed in Table 1.
Table 1: Test problems.
	

	Number 	 Function name 
	

	 1 	 ENGVAL1 
	2 	 FLETCBV2 
	3 	 TOINTGSS 
	4 	 COSINE 
	5 	 ARWHEAD 
	6 	 EDENSCH 
	7 	 EG2 
	8 	 GENROSE 
	9 	 LIARWHD 
	10	 Generalized White & Holst 
	11	 Extended Wood 
	12	 Extended quadratic penalty QP1 
	13	 BDEXP 
	14	 HIMMELBG 
	15	 Hager 
	16	 Extended TET 
	17	 Diagonal 5 
	18	 Extended Himmelblau 
	19	 Diagonal 6 
	20	 Extended DENSCHNF 
	21	 LIARWHD 
	22	 Extended BD1 
	23	 Extended Hiebert 
	24	 Extended Tridiagonal 2
	25	 QUARTC 
	26	 Extended DENSCHNB 
	27	 Extended Rosenbrock 
	28	 Raydan 2 
	 29 	 Diagonal 2
	 30 	 Diagonal 4
	 31 	 Extended Maratos
	 32 	 Quadratic QF1
	 33 	 Extended quadratic exponential EP1
	 34 	 DQDRTIC
	 35 	 NONSCOMP
	 36 	 Extended Freudenstein & Roth
	 37 	 Extended White & Holst
	38 	 Raydan 1
	39 	 Extended Tridiagonal 1
	40 	 Extended Cliff
	 41 	 Extended Trigonometric 
	 42 	 Extended Beale
	 43 	 Generalized Tridiagonal 1
	 44 	 Generalized PSC1
	 45 	 Extended PSC1
	 46 	 Extended Powell
	 47 	 BDQRTIC
	 48 	 FLETCBV3
	 49 	 FLETCHCR
	 50 	 FREUROTH
	 51 	 GENHUMPS
	 52 	 NONDIA
	 53 	 NONDQUAR
	 54 	 SROSENBR
	 55 	 TQUARTIC
	 56 	 Extended Penalty
	





The experiments are run on a personal computer with a 64-bit processor, 2.5 GHz of CPU, and 4 GB of RAM memory. All the codes are written in MATLAB language and are compiled with this software.
We would like to compare the SDYCG with the CG-DESCENT. The CG-DESCENT is a conjugate gradient algorithm with guaranteed descent proposed by Hager and Zhang in [14]. It has been proven an excellent algorithm in recent years.
To make the comparison as fair as possible, we use the criterion  to terminate the executions and impose restriction on the number of iterations less than  in both algorithms. All the step sizes satisfy the strong Wolfe conditions (6) and (15).
We use the performance profiles proposed by Dolan and Moré [15] to show the efficiency of comparisons. Performance profiles can be used as a tool for benchmarking and comparing optimization software. The performance profile for a solver is the (cumulative) distribution function for a performance metric. For example, if computing time is chosen as a metric, then we compute the ratio of the computing time of the solver versus the best time of all of the solvers. That is, for each method, we plot the fraction (-axis) of problems for which the method is within a factor (-axis) of the best time. The curve of a solver being above others means that it has the highest probability of being the optimal solver. We use a  scale for  to capture the performance of all the solvers.
In order to observe the numerical results of the SDYCG and the CG-DESCENT, we choose three different dimensions of each test function. The dimensions are , , and , respectively. According to the numerical results obtained in every dimension, we plot two figures based on CPU time and iterations, respectively.
We can find from Figure 1 that the SDYCG is similar to the CG-DESCENT when  because their curves crosses each other. The predominance of the SDYCG appears in Figure 2 when . If the test dimension is chosen as , the SDYCG is better than the CG-DESCENT from the fact that its curve is almost completely above that of the CG-DESCENT in Figure 3.




	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
			
		


(a) Based on CPU time




	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		


(b) Based on iterations
Figure 1: Performance profiles in a  scale ().






	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
		
			
		
		


(a) Based on CPU time




	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		


(b) Based on iterations
Figure 2: Performance profiles in a  scale ().






	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
			
	


(a) Based on CPU time




	
	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		


(b) Based on iterations
Figure 3: Performance profiles in a  scale ().


Furthermore, we are interested in the robustness of our SDYCG algorithm. Ten problems are selected from CUTEr to be tested. The numerical results listed in Table 2 are obtained by changing the initial iteration point every time. “” represents the standard initial iteration point of the problem; “iter.” and “time(s)” indicate the iterative number and time (in seconds).
Table 2: Test of the robustness of SDYCG.
	

	Number 	Function name 			
	Iter. 	 Time(s) 	Iter. 	 Time(s)	Iter. 	 Time(s)
	

	1 	DQDRTIC 	245	0.3436 	290 	 0.3951 	 338 	 0.4567
	2 	QUARTC 	 1	 0.0012 	28 	 0.1273 	 27 	 0.1482
	3 	Diagonal 6	5	 0.0176 	8 	 0.0267 	 4 	 0.0153
	4 	Extended DENSCHNB 	 13 	 0.0110 	 18 	 0.0159 	 16 	 0.0177
	5 	Extended DENSCHNF 	22 	 0.0636 	 17 	 0.0519 	 24 	 0.0820
	6 	LIARWHD 	 12	 0.0186 	 11 	 0.0193 	 17 	 0.0320
	7 	EDENSCH 	30 	 0.1897 	 30 	 0.18753 	 30 	 0.1860
	8 	EG2 	9 	 0.0404 	 9 	 0.0392 	 9 	 0.0404
	9 	ENGVAL1 	 28	 0.0893 	 29 	 0.1064 	 31 	 0.1294
	10	FLETCBV2 	 53	 0.1080 	 53 	 0.1377 	 53 	 0.1355
	



The conclusion that can be drawn is that the SDYCG is a robust algorithm and it may be capable of solving large-scale nonlinear unconstrained optimization problem.
5. Conclusions
We propose a new spectral conjugate gradient method for nonlinear unconstrained optimization. This method, which we call the SDYCG, is built based on the Dai-Yuan conjugate gradient method. A new spectral choice is provided in the search direction. Numerical results show that the SDYCG is comparable with the CG-DESCENT. The SDYCG algorithm may be capable of solving large-scale nonlinear unconstrained optimization problems.
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