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Predicting IGS RTS Corrections Using ARMA Neural Networks

Mingyu Kim and Jeongrae Kim

School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-City 412-791, Republic of Korea

Correspondence should be addressed to Jeongrae Kim; jrkim@kau.ac.kr

Received 26 March 2015; Revised 4 June 2015; Accepted 7 June 2015

Academic Editor: Quanxin Zhu

Copyright © 2015 M. Kim and J. Kim. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An autoregressive moving average neural network (ARMANN) model is applied to predict IGS real time service corrections.
ARMA coefficients are determined by applying a neural network to IGS02 orbit/clock corrections. Other than the ARMANN,
the polynomial and ARMA models are tested for comparison. An optimal order of each model is determined by fitting the model
to the correction data.The data fitting period for training themodels is 60min. and the prediction period is 30min.The polynomial
model is good for the fitting but bad for the prediction. The ARMA and ARMANN have a similar level of accuracies, but the RMS
error of theARMANN is smaller than that of theARMA.TheRMS error of theARMANN is 0.046m for the 3D orbit correction and
0.070m for the clock correction. The difference between the ARMA and ARMANN models becomes significant as the prediction
time is increased.

1. Introduction

International GNSS Service (IGS) has been providing orbit
and clock corrections for global navigation satellite system
(GNSS) navigation messages. In April 2013, the IGS started
providing real-time corrections, called real time service
(RTS) [1]. RTS correction accuracy is competitive with the
IGS rapid correction accuracy, and RTS can be used for real-
time precise point positioning (PPP), time synchronization,
and so forth. In February 2015, the RTS for the global
positioning system (GPS) is provided as main stream data
and RTS global navigation satellite system (GLONASS) is
provided as the test data [2].

The IGS combines the intermediate solutions from sev-
eral analysis centers (ACs) to produce a final correction.
IGC01/IGS01 is a single epoch-combination solution and
IGS02 is a Kalman filter combination solution derived by
using BKG NTRIP Client (BNC) software (provided by
Germany’s BKG). Both solutions include GPS only, and
IGS03 is a Kalman filter combination solution for GPS and
GLONASS. Intermediate solutions include CLK10 by BKG,
CLK20 by DLR, and CLK53 by ESA/ESOC.

Discontinuities of the RTS can result from unintentional
interruptions of the RTS correction transfer caused by hard-
ware or software failure. A service discontinuity can be over-
come by applying the predictions of the RTS corrections.

Since an RTS correction is a function of time, it can be
modeled and predicted using an autoregressive moving
average (ARMA) model. The ARMAmodel is widely used to
model unknown physical plants when it is difficult to obtain
the exact model for the system [3]. In addition, the ARMA
is one of the most widely used prediction methods for time
series problems. ARMA is appropriate for a time series that
is a combined function of unobserved disturbances and its
own behavior. Devi et al. [4] applied the ARMA model to
predict stock trends, and Anderson et al. [5] also used a
periodic ARMA model to forecast river flows. Huang et al.
[6] predicted solar generation using the ARMAmodel.

A neural network (NN) can be also used for time series
prediction problems. An NN with at least one hidden layer
can approximate any continuous multivariate function [7].
Several studies have validated prediction problems based on
an NN for the linear and nonlinear modeling of time series.
An annual prediction of sunspot numbers was performed
by using the finite impulse response (FIR) network and
recurrent Elman network [8]. Sanchez and Villa applied the
autoregressive moving average neural network (ARMANN)
to predict theColombian exchange rate [9]. Li et al. applied an
ARMA based radial basis function (RBF) network to predict
wind power [10].

The use of a single prediction method such as the ARMA
or NN is not efficient in some cases [7]. Since an NN is
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primarily used to approximate a function, it can be used to
build an ARMA model function. Voyant et al. [7] demon-
strated that a hybrid ARMA/NN model showed a better
accuracy than either ARMA or NN in modeling global
radiation time series. The ARMANN has been applied to
GPS research as well. Jwo et al. [3] applied a back-propagation
neural network (BPNN) and a general regression neural
network (GRNN) to predict differential GPS (DGPS) pseu-
dorange corrections. Indriyatmoko et al. [11] applied AR
and ARMA based back-propagation neural network (BPNN)
to predict DGPS carrier phase corrections. Refan and
Dameshghi [12] applied ARMANN, recurrent neural net-
work (RNN), and evolutionary neural network (ENN) to
predict GPS ephemeris errors.

Considering the proven usefulness of the ARMANN
in GPS applications, we select ARMANN to predict RTS
ephemeris and clock corrections. ARMA coefficients are
determined by applying NN to IGS02 corrections. Other
than the ARMANN, the polynomial and ARMA models are
tested for comparison. An optimal order of each model is
determined by fitting the model to the correction data.

2. IGS RTS Correction

IGS RTS corrections are transmitted to users by using
the “networked transport of RTCM via internet protocol”
(NTRIP). A user can select streams to download either IGS
combined data or AC data. The corrections have a form
of state space representation (SSR), which includes satellite
ephemeris, clock, and ionosphere corrections [13].The IGS02
stream consists of message numbers 1057, 1058, and 1059.
Message 1057 is for ephemeris correction, and message 1058
is for clock corrections.Message 1059 is for pseudorange code
biases. The ephemeris is updated every 60 s, but the clock is
updated every 10 s.The data unit is ameter.The rate of change
of the corrections is provided for short term extrapolation.

RTS orbit correction is provided in the form of radial,
along-track, and cross-track (RAC) elements. The reference
point of the corrections has two types: antenna phase center
(APC) or satellite center of mass (CoM). IGC01 adopts CoM,
but IGS02 and IGS03 adopt APC. Each AC adopts one of
the references or both of the references. For example, BKG
providesCLK00 forCoMandCLK10 forAPC.The correction
generation latency is different for ACs, ranging from 5 s to
15 s. The latency of the combined correction is longer, from
20 s to 25 s, because it takes approximately 10 s to combine
individual AC corrections [13].

The update of the GNSS broadcast message using the
IGS RTS correction data is described as follows. A broadcast
orbit can be corrected by using the RTS satellite position
correction, 𝛿𝑋⃗, as [14]

𝑋⃗orbit = 𝑋⃗broadcast − 𝛿𝑋⃗, (1)

where 𝑋⃗broadcast is the satellite position vector computed from
GNSS broadcast ephemeris and 𝑋⃗orbit is the satellite position
vector corrected by the RTS correction. 𝛿𝑋⃗ is the RTS satellite
position correction expressed in earth-centered earth-fixed
(ECEF) coordinates.Thebroadcast orbit is expressed in ECEF

coordinates while the raw RTS correction is expressed in
radial, along-track, and cross-track (RAC) coordinates. This
difference requires a coordinate transform of the correction
from RAC to ECEF. Unit vectors representing the RAC
components can be computed from the broadcast position ⃗𝑟

and velocity vectors ̇⃗𝑟 as

⃗𝑒along =
̇⃗𝑟

󵄨󵄨󵄨󵄨󵄨
̇⃗𝑟
󵄨󵄨󵄨󵄨󵄨

,

⃗𝑒cross =
⃗𝑟 × ̇⃗𝑟

󵄨󵄨󵄨󵄨󵄨
⃗𝑟 × ̇⃗𝑟

󵄨󵄨󵄨󵄨󵄨

,

⃗𝑒radial = ⃗𝑒along × ⃗𝑒cross,

𝛿𝑋⃗ (𝑡) = [ ⃗𝑒radial ⃗𝑒along ⃗𝑒cross] 𝛿𝑂⃗ (𝑡) ,

(2)

where ⃗𝑒radial, ⃗𝑒along, and ⃗𝑒cross are the unit vectors for radial,
along-track, and cross-track coordinates, respectively. 𝛿𝑂⃗(𝑡)
is the orbit correction represented in RAC coordinates.
Each correction component consists of transmitted orbit
correction, 𝛿𝑂

𝑖
, and its rate of change, 𝛿𝑂̇

𝑖
, as

𝛿𝑂
𝑖 (𝑡) = 𝛿𝑂

𝑖
+ 𝛿𝑂̇
𝑖
(𝑡 − 𝑡0)

𝑖 = radial, along-track, and cross-track,
(3)

where 𝑡 is the current time to compute the correction. 𝑡0 is the
time of applicability that is included in the RTS message. The
RTS clock correction, 𝛿𝐶(𝑡), is provided as a correction to the
broadcast clock offset. As with the orbit correction, the clock
correction consists of the transmitted correction and its rate
of change:

𝛿𝐶 (𝑡) = 𝐶0 +𝐶1 (𝑡 − 𝑡0) +𝐶2 (𝑡 − 𝑡0)
2
, (4)

where 𝐶0, 𝐶1, and 𝐶2 represent the transmitted clock cor-
rections. 𝛿𝐶(𝑡) is expressed as a correction-equivalent range
unit, and the clock offset can be obtained by dividing it by the
speed of light 𝑐:

𝛿𝑡 (𝑡) =
𝛿𝐶 (𝑡)

𝑐
. (5)

Each correction includes the issue of data (IOD). This
IOD has to correspond with the IOD ephemeris (IODE) of
the current GPS ephemeris for each satellite. If the IODE of
the GPS broadcast ephemeris data does not match the IOD
of the RTS transmission, it is an indication that the GPS
ephemeris data sets have changed.The user must continue to
use the old matched data from the previous broadcasts, until
a new correction with a matching IOD is broadcast for the
new GPS ephemeris data set. An individual IOD is assigned
for the clock correction, but the same IOD as the orbit is used
at this time.

RTS orbit/clock corrections consist of a header part and
a satellite specific part. The header part consists of an RTCM
version 3 message type (MT) number, SSR message update
interval indicator, GPS week, seconds in the GPS week, and
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GPS PRN. MT 1057 is for the orbit correction and MT 1058
is for the clock correction. An SSR message update interval
indicator represents the update interval. The orbit correction
has an update interval of 60 s, and the indicator is 6.The clock
correction has an update interval of 10 s, and the indicator is
3. The satellite specific part consists of the IOD, radial/along-
track/cross-track (RAC) correction, and the rate of change
of the corrections for the orbit correction. In case of a clock
correction, three polynomial coefficients, which are similar to
the GPS navigation message, are used.

3. Methodology

Prediction of the RTS corrections is performed by using three
models: polynomial, ARMA, andARMANN.Themathemat-
ical models on ARMA and ARMANN are discussed.

3.1. Autoregressive Moving Average (ARMA) Model. In the
ARMA model, a future value depends on the past value and
the error. ARMA is a combination of the autoregression (AR)
and moving average (MA) models. In the ARmodel, a future
value depends on the past value. In the MA model, a future
value depends on the error [15]. The order of AR represents
a time lag of past output, while the order of MA represents a
time lag of past error. If the AR order is 𝑝 and theMA order is
𝑞, then theARMAmodel can be represented byARMA (𝑝, 𝑞).
A linear ARMAmodel can be represented as

𝑦 (𝑡) =

𝑝

∑

𝑘=1
𝐴
𝑘
𝑦 (𝑡 − 𝑘𝑇) +

𝑞

∑

𝑘=1
𝐵
𝑘
𝑢 (𝑡 − 𝑘𝑇) + 𝑢 (𝑡) , (6)

where 𝐴
𝑘
and 𝐵

𝑘
are the coefficients of the AR and MA

models, respectively. The ARMA process 𝑦(𝑡) is a stationary
stochastic time series, and the input or error 𝑢(𝑡) is white
noise.𝑇 is the sampling time.𝑝 and 𝑞 are the orders of AR and
MA, respectively. 𝐴

𝑘
and 𝐵

𝑘
can be determined by various

methods, including the steepest descent gradient, Levenberg-
Marquardt, and Gauss-Newton [15]. We applied the Gauss-
Newton method to determine the ARMA parameters.

3.2. Back-Propagation Neural Network (BPNN). The BPNN
is a feed-forward, multilayer perceptron (MLP), supervised
learning network [3]. The feed-forward network maps input
vectors to output vectors and does not form a directed cycle.
MLP is a way to use a multilayer in which the current
output neuron becomes the input neuron of the next layer.
The supervised method uses the data to determine whether
the input-output relationships are known or predefined.
The back-propagation (BP) calculates a gradient vector in a
network structure in the opposite direction to the data flow.

The training process is a minimization of a cost function,
which can be the mean square error (MSE) between the
output and the target vectors. In order to determine the
output of the hidden layer and output layer, the values
obtained by multiplying the weight attached to the input
signals are applied to an activation function. There are many
types of activation functions including step, linear, sigmoid,
and hyperbolic tangent [16].
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Figure 1: Structure of back propagation neural network.

3.3. ARMANeural Network (ARMANN). TheRTS correction
time series is modeled as an ARMA. The ARMA output 𝑦(𝑡)
becomes the RTS correction.TheARMA residual error 𝑢(𝑡) is
computed as the error between the true RTS correction and
the AR model output. After constructing the ARMA input
and output, the coefficients of ARMA are computed by using
the NN.

Figure 1 represents the structure of the neural network
[3]. The network computes weighting factors in the training
process. Subsequently, the ARMA coefficients are computed
by using the network weighting factors. The IGS RTS correc-
tion is the input to the network, and the input to the hidden
neuron is calculated by using a weight 𝑤

𝑖𝑗
as follows:

V
𝑗
=

𝑝

∑

𝑖=1
𝑤
𝑖𝑗
𝑦 (𝑡 − 𝑖) +

𝑞

∑

𝑖=0
𝑤
𝑖𝑗
𝑢 (𝑡 − 𝑖) ,

ℎ
𝑗
= 𝑎11 + 𝑎12V𝑗,

(7)

where 𝑖 represents the 𝑖th node of the input neuron and 𝑗

represents the 𝑗th node of the hiddenneuron. V
𝑗
is the input of

the 𝑗th hidden neuron and ℎ
𝑗
is the output of the 𝑗th hidden

neuron. The linear activation function is used for ℎ
𝑗
, and 𝑎11

and 𝑎12 are tuning constants.
The output of the hidden neuron, 𝑟

𝑘
, is a weighted sum-

mation of ℎ
𝑗
as

𝑟
𝑘
=

𝐻

∑

𝑖=1
𝑤
𝑗𝑘
ℎ
𝑗
,

𝑦 (𝑡 + 1) = 𝑎21 + 𝑎22𝑟𝑘,

(8)

where 𝑦
𝑘
is the output of the network. The next procedure

is computing the variation of the weights and updating the
weights through iterations. The steepest descent method is
applied to update the weights, which utilizes the gradient of a
function for optimization.
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The error from the 𝑘th output neuron and the 𝑗th hidden
neuron is computed by the following equations:

𝛿
𝑘
= ̇𝑓 (𝑟

𝑘
) [𝑑 (𝑡 + 1) − 𝑦 (𝑡 + 1)]

= 𝑎22 [𝑑 (𝑡 + 1) − 𝑦 (𝑡 + 1)] ,

𝛿
𝑗
= ̇𝑓 (V

𝑗
)

𝑛

∑

𝑘=1
𝑤
𝑗𝑘
𝛿
𝑘
= 𝑎12

𝑛

∑

𝑘=1
𝑤
𝑗𝑘
𝛿
𝑘
,

(9)

where 𝛿
𝑘
is the 𝑘th output neuron error and 𝛿

𝑗
is the 𝑗th

hidden neuron error. ̇𝑓(𝑟
𝑘
) and ̇𝑓(V

𝑗
) are the activation

function derivative of the output neuron and hidden neuron,
respectively. Based on these errors, the rate of change of each
neuron weight is computed as

Δ𝑤
𝑗𝑘
= 𝛼Δ𝑤

𝑗𝑘
+ 𝜂𝛿
𝑘
ℎ
𝑗
,

𝑤
𝑗𝑘
= 𝑤
𝑗𝑘
+Δ𝑤
𝑗𝑘
,

(10)

where 𝛼 is the learning rate and 𝜂 is the momentum. Δ𝑤
𝑗𝑘
is

the rate of change of the weight from the 𝑗th hidden neuron
to the 𝑘th output neuron.

The rate of change of the weight from the input neuron to
the hidden neuron is computed as

Δ𝑤
𝑖𝑗
= 𝛼Δ𝑤

𝑖𝑗
+ 𝜂𝛿
𝑗
(

𝑝

∑

𝑖=1
𝑦 (𝑡 − 𝑖) +

𝑞

∑

𝑖=0
𝑢 (𝑡 − 𝑖)) ,

𝑤
𝑖𝑗
= 𝑤
𝑖𝑗
+Δ𝑤
𝑖𝑗
.

(11)

Δ𝑤
𝑖𝑗
is the rate of change of the weight from the 𝑖th input

neuron to the 𝑗th hidden neuron. A cost function to evaluate
convergence criteria is defined as

𝐸 =
1
2
[𝑑 (𝑡 + 1) − 𝑦 (𝑡 + 1)]2 . (12)

The iterations are performed until the cost function
becomes smaller than a specified value. After the conver-
gence, the ARMA coefficients are computed as

𝑎 (𝑖) = ∑𝑎12𝑎22𝑤𝑖𝑗𝑤𝑗𝑘, (13)

where 𝑎(𝑖) is the 𝑖th coefficient of the input node. The
prediction value is computed by using theARMAcoefficients.

To determine the appropriate network parameters, a
series of tests is performed by changing the parameters. The
learning rate 𝛼 is selected as 0.55 and the momentum 𝜂 is
set as a low value (0.3) in order to avoid overshooting and
local minima. To create a simple derivation of the function,
the coefficients of the activation function have no bias; that is,
both 𝑎11 and 𝑎21 are zero, while the tuning constants 𝑎12 and
𝑎22 are set as 0.20.

In general, the network data is divided into three subsets:
training, validation, and test data sets. The training data set
is used to compute the gradient and update the network
weights. The validation data set is used to compute the
network error during the training process. The training set
is used to test the final solution. The network is divided to
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Figure 2: RTS correction time series (IGS02, PRN 17, January 6,
2015).

reduce computation memory and to avoid the overfitting
problem. This approach is usually appropriate when a large
number of data is available. In the case of the RTS correction
data, the number of input RTS data is not sufficient for
the three data sets. The data intervals are divided by the
IOD changes, and the interval length is only two hours.
With the 60 s sampling time, only 120 data are available for
one satellite for two hours. For this reason, the network
data is not divided into the three data sets. During the
training/validation process, all input data is used for the
training, validation, and test processes. The number of data
and other parameters are discussed later with the description
of the experiment conditions.

4. Optimal Model Order Selection

The prediction accuracy depends on the order of the model.
In order to determine the optimal order for the prediction
process, data fitting accuracies with the IGS RTS correc-
tions are evaluated. Three models, polynomial, ARMA, and
ARMANN, are evaluated for different coefficient orders.

4.1. Correction Data Analysis. The RTS corrections on Jan-
uary 6, 2015, are analyzed. IGS02 corrections are processed to
evaluate the data fitting performance.

Figure 2 shows the orbit and clock corrections of PRN 12
on January 6, 2015. The vertical lines represent the moments
when the IOD is changed. The IOD changes usually occur
at an even UTC hour, for example, 2 hr, and 4 hr, and the
corrections are changed significantly at those moments. The
orbit correction has a smooth polynomial pattern between
the IOD changes. The variation of the orbit correction is
greater than 1mm/min, and the variation of radial direction
is smaller than the variation of the other directions.The clock
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correction has a significant high frequency variation, and the
polynomial pattern is not significant.

4.2. Fitting Results. In order to determine the optimal model
orders, data fittings, approximations of the correction data
with the models, are performed by varying the model orders.
Threemodels, polynomial, ARMA, andARMANN, are tested
for the following five criteria: radial, along-track, cross-track,
3D orbit, and clock. The 3D orbit represents the norm of the
three corrections, radial, along-track, and cross-track. The
data fitting interval begins at the time of the IOD change and
lasts until the next IOD change. The model order is set from
3 to 12. PRN 01 and PRN 24 do not have the correction data,
and these PRNs are excluded from the test.

Figure 3 shows the fitting error of the radial correction on
January 6, 2015. The errors of the three models, polynomial,
ARMA, and ARMANN, are presented for PRN 17. The
model order is 6 for the polynomial, 10 for ARMA, and
13 for ARMANN. The reason for using these orders will
be discussed in the next paragraph. The fitting root mean
square (RMS) error is 0.001m for the polynomial, 0.004m
for ARMA, and 0.002m for ARMANN. The polynomial
model yields the smallest error because the orbit correction
has a polynomial pattern and can be easily modeled by a
polynomial model. The mean of the fitting error is close to
zero. The largest RMS error of the ARMA is mainly due to
the large mean error. In the cases of the along-track and
cross-track corrections, the error pattern is similar to the
radial corrections; the polynomial has the smallest error and
the ARMA has the largest error. Among the three direction
components, the radial direction has the smallest error, while
the along-track has the largest error. This is because the
variation of the radial direction is the smallest.

The clock correction fitting error of PRN 17 is shown
in Figure 4. Unlike the orbit correction, the polynomial has
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the largest error and the ARMANN has the smallest error.
The clock correction has a high frequency variation, and the
polynomial model is not suitable for following this type of
variation. The error of the polynomial model is significant,
around 7200 s when an abrupt change of the correction
occurs. ARMA and ARMANN follow the variation with a
high accuracy, but the polynomial does not follow the vari-
ation around 7400 s and yields a large error.

Figure 5 compares the fitting RMS errors of different
orders by the polynomial model. In the case of the radial,
along-track, and cross-track corrections, the error becomes
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significantly low after the 4th order. The 3D orbit, the norm
of the three components, follows this trend as well. However,
the clock error decreases linearly as the order is increased. If
the error levels are almost the same, a lower order is preferred
because the number of estimation coefficients is reduced.
High order polynomials frequently caused a divergence
problem, and the estimation stability becomes reduced. This
type of divergence is more significant in the clock correction
than in the orbit correction. For this reason, the order of 5
is selected for the clock polynomial model. The order of 6 is
selected for the orbit model since the error level converges
at this order. The use of an individual order for each orbit
component can be considered, but the same order should be
used for all three orbit components since the error difference
is not significant.

Figure 6 compares the fitting RMS errors of different
orders by the ARMA model. Although the along-track and
cross-track errors show small error increases around orders
7 and 8, the overall trend shows that the error is decreased
as the order is increased. Order 10 is selected as the optimal
ARMA order for the orbit corrections.The fitting error of the
clock correction has a nearly constant level from order 9 to 12,
and the smaller one, order 9, is selected as the ARMAoptimal
order.

Figure 7 compares the fitting RMS errors of different
orders by the ARMANN model. The error reduction along
with the order is significant until order 13. This trend is the
same for both the orbit and clock corrections. Based on these
results, order 13 is selected as the ARMA optimal order for
the orbit and clock corrections.

Table 1 summarizes the selected optimal orders along
with the fitting errors. The relatively low orders are selected
for the polynomial model to reduce the divergence problem.
The orders of the orbit and clock corrections are almost

Table 1: Optimal orders and fitting RMS errors.

3D orbit (m) Order Clock (m) Order
Polynomial 0.003 6 0.042 5
ARMA 0.021 10 0.059 10
ARMANN 0.025 13 0.017 13
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Figure 7: Fitting RMS errors of different orders by the ARMANN
model.

the same for each model. In the case of the 3D orbit fitting
error, the polynomial model shows the smallest error while
the ARMANN model shows the largest error. This ranking
is reversed for the clock corrections, and the ARMANN
has a substantially smaller error than the two other models.
The clock fitting error is larger than the orbit error except
with the ARMANN. This implies that the polynomial and
ARMA models have a better fitting performance for smooth
time series, that is, the orbit time series, but have a worse
performance for fluctuated time series, that is, the clock time
series.

5. Prediction Results

The prediction accuracy for the RTS corrections is evaluated.
The three models are tested by using the optimal orders
determined from the fitting process.

5.1. Single PRN Analysis. Five epochs on January 6, 2014, are
selected for the prediction starting epoch: 10800 s, 27000 s,
54000 s, 61200 s, and 84000 s. The data fitting period for
training the models is 1 hour before the starting time and
the prediction period is 30min. These periods are selected
to meet a condition that no IOD changes happen during
the fitting and prediction periods for all satellites. For each
satellite during the two-hour interval, the number of data
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Figure 8: Prediction results of the along-track correction (PRN 17).

used for the fitting process is 60, and the number of predicted
data is 30.

Figure 8 shows the prediction results of the along-track
correction from 54000 s to 64000 s for PRN 17. Two pre-
diction periods exist starting from 54000 s and 61200 s. The
data fitting intervals are 60min. and 57min. A data gap of
3min. exists for the second fitting process, and the fitting
interval becomes 57min.The ARMA and ARMANN predict
the correction with a good accuracy, while the polynomial
prediction error grows significantly along with the time,
especially from 61200 s.

Figure 9 shows the prediction errors of the along-track
correction from 54000 s to 64000 s for PRN 17. The poly-
nomial error reaches 0.257m and 12.25m at the end of
the prediction intervals. This large error is opposite to the
small fitting error by the polynomial model. This implies
that the polynomial model is good for the fitting but bad for
the prediction. The RMS error of the ARMANN is slightly
smaller than that of ARMA: 0.042m for the ARMA and
0.035m for the ARMANN.

Figure 10 shows the clock correction prediction results
from 27000 s for PRN 28.The polynomial prediction diverges
rapidly just after the prediction starts. The fitting pattern
is different for the ARMA and ARMANN. The ARMANN
follows the variation, while the ARMA follows the mean
trend only.

Figure 11 shows the prediction RMS error of clock correc-
tion for PRN 28. Since both the ARMAandARMANN follow
the mean trend with high accuracy, the major component of
the error time series is the deviation from the mean trend.

The prediction accuracy depends on the length of the
prediction time. Figure 12 shows the orbit prediction accu-
racies for different time-intervals on January 6, 2015. The
norm of three direction components is presented. The mean
of the RMS errors from all satellites is presented. The 𝑥-axis
value 300 s represents the time interval from 60 s to 300 s,
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0.0

0.2

True
Polynomial

ARMA
ARMANN

Cl
oc

k 
co

rr
ec

tio
n 

fit
tin

g 
an

d 
pr

ed
ic

tio
n 

(m
)

Time (s)

Fitting Prediction

PRN 28

23000 24000 25000 26000 27000 28000 29000
−0.4

−0.2

Figure 10: Clock correction prediction results (PRN 28).

and the value 600 s represents the interval from 360 s to
600 s, and so forth. The error of the polynomial model grows
exponentially over that time, which demonstrates that the
polynomial model is not proper for the prediction, especially
for long intervals. The ARMA and ARMANN yield the
same level of error until 900 s. After 900 s, the ARMANN
yields a lower error. In the prediction process, the predicted
values become the input of the next epoch. Since the initial
prediction error of the ARMANN is small, the accumulated
error remains small along with time.

Figure 13 shows the clock prediction accuracies for differ-
ent time-intervals.Themean of the RMS errors of all satellites
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Figure 12: Prediction RMS error of 3D orbit for different prediction
intervals (PRN 28).

is presented. The clock prediction error is higher than the
orbit prediction error since the satellite clock variation has
a stochastic behavior. The time correlation of the clock time
series is much smaller than that of the orbit time series
[13]. The error of the polynomial model grows linearly until
1500 s, but it suddenly grows to 2.372m within the 1510 s∼
1800 s interval. As with the orbit error, the ARMANN has
a smaller error than the ARMA until 1500 s. This behavior
is reversed in the last interval, 1510 s∼1800 s. Investigation
of other days’ data concludes that this is a one-time event
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Figure 13: Prediction RMS error of clock correction for different
prediction intervals (PRN 28).
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and the ARMANN is always better than the ARMA in all
intervals.

Figure 14 represents the prediction RMS errors for all 30
PRNs on January 6, 2015. The RMS errors during the 30min.
prediction interval are presented for individual components,
radial, along-track, cross-track, and clock. The norm of the
orbit errors, 3D orbit, is presented as well. It is clear that the
polynomial model is not appropriate for the prediction. In
the case of the clock, the polynomial model error reaches
2.234m. The ARMANN is better than the ARMA, except
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the cross-track correction. The radial orbit error is smaller
than the other direction errors because the variation of the
radial correction is smaller than the others. The clock error
is substantially greater than the orbit error due to its high
frequency variation.

5.2. Multiple PRNAnalysis. Theprediction accuracy is evalu-
ated by using all 30 PRNs during one day.ThepredictionRMS
error during the 30min. interval is analyzed for the three
models.

Figure 15 shows the orbit/clock prediction errors by the
polynomial model on January 6, 2015. The clock error is
significantly larger than the 3D orbit error, and the clock
error variability among the PRNs is significantly larger than
the orbit error variability. The polynomial model frequently
causes a divergence problem, especially for the clock correc-
tion. If the actual data at the end of the fitting interval is very
different from the fitted data, then the prediction diverges in
many cases.

Figure 16 shows the orbit/clock prediction errors by the
ARMA model. The difference between the orbit and clock
errors is not as significant as that with the polynomial model.
The largest clock error is by PRN 10, where the prediction
value has an opposite trend against the actual value around
27000 s and 54000 s. The largest orbit error occurs by PRN
30, and it corresponds to the largest orbit error by the poly-
nomial.

Figure 17 shows the orbit/clock prediction errors by the
ARMANNmodel.The difference between the orbit and clock
errors is clearer than the ARMA model. The largest clock
error occurs for PRN 10, and it corresponds to the largest
orbit error by the ARMA. In half of the PRNs, the orbit error
is greater than the clock error, and this behavior is different
from the polynomial and ARMAmodels.
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Figure 16: Prediction RMS error of each PRN (ARMA).

0.0

0.1

0.2

0.3

0.4

3D orbit
Clock

Pr
ed

ic
tio

n 
RM

S 
er

ro
r (

m
)

PRN
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Figure 17: Prediction RMS error of each PRN (ARMANN).

5.3. Multiple Day Analysis. The prediction accuracy may
depend on the correction data characteristics, and it is rea-
sonable to analyze other days of data. Five days from January
6 to January 10 in 2015 are chosen to evaluate the accuracy. In
each day, five intervals are selected for the prediction: 60min.
training and 30min. prediction. Exceptions are January 7,
where prediction starts at 18000 s instead of 10800 s, and
January 8, with no prediction at 27000 s. These are due to the
lack of sufficient correction data inside the intervals.

Statistic values of five-day prediction errors are presented
in Table 2. For each day, the average of 30 satellites’ RMS
errors is computed. The mean value in the table represents
the five-day mean of the daily values. Similar to the one-day
results, the clock error is significantly larger than the 3D orbit
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Table 2: Prediction RMS errors for five days (January 6 to January 10, 2015).

Day number 3D orbit (m) Clock (m) Ap F10.7
Polynomial ARMA ARMANN Polynomial ARMA ARMANN

6 0.552 0.055 0.046 2.234 0.068 0.057 13 142
7 0.982 0.058 0.054 2.811 0.096 0.092 38 147
8 0.697 0.056 0.051 2.605 0.081 0.081 16 157
9 0.572 0.037 0.036 2.072 0.059 0.055 8 151
10 0.601 0.043 0.039 2.905 0.059 0.057 10 152
Mean 0.681 0.050 0.046 2.526 0.073 0.068 17 150
STD 0.177 0.009 0.008 0.362 0.016 0.017 12 6

error for all models. The polynomial error is higher than in
any other model. Both the ARMA and ARMANN prediction
errors are smaller than the RTS correction accuracies: 5 cm
for orbit and 8 cm for clock. This implies that the 30-minute
prediction results satisfy aminimumaccuracy condition; that
is, their accuracy is better than the RTS correction accuracy.
The daily variability of the error is less than 0.25m for the
orbit and 0.5m for the clock. The time correlation between
the orbit and clock errors is clear. The ARMANN error
levels are lower than the ARMAmodel.The ARMANN clock
prediction error is always smaller than ARMA error.

The daily variation of the error is similar to the ARMA
and ARMANN models; the maximum occurs on January 7
and the minimum occurs on January 9. This implies that
the condition of the input data (RTS corrections) is one
of the main factors to determine the prediction accuracy.
To examine the cause of the error variation, the solar and
geomagnetic indices, F10.7 andAp, are investigated.TheF10.7
index is the measurement of the noise level generated by
the Sun at a wavelength of 10.7 cm. The Ap index defines
the 8-point running average of the geomagnetic activity K-
index. The Ap index is at its maximum on January 7 and
at its minimum on January 9. It shows a high correlation
between the orbit prediction error and the Ap index; the orbit
prediction error increases along with the Ap index.There is a
low correlation between the orbit prediction error and F10.7.
The impact of the Ap variation is more significant on the
clock error.Theorbit and clockRTS corrections are computed
simultaneously, and they are highly correlated.The higher Ap
degrades both the orbit and clock RTS correction accuracy,
and the errors are propagated into the prediction process.
The stochastic nature of the clock correction magnifies the
degradation and causes a high clock prediction error during
the high Ap period.

6. Conclusions

AnARMANNmodel is applied to predict IGSRTS ephemeris
and clock corrections. ARMA coefficients are determined
by applying a neural network to IGS02 corrections. Other
than the ARMANN, the polynomial and ARMA models are
tested for comparison. An optimal order of each model is
determined by fitting the model to the correction data. Five
intervals are selected for the prediction tests. The data fitting

period for training the models is 60min. and the prediction
period is 30min.

The polynomial model is good for the fitting but bad for
the prediction. The ARMA and ARMANN have a similar
level of accuracy, but the RMS error of the ARMANN is
smaller than that of the ARMA. The 3D orbit RMS error is
0.699m for the polynomial model, 0.050m for the ARMA
model, and 0.046m for the ARMANN model. The clock
RMS error is 2.546m for the polynomial model, 0.074m for
the ARMA model, and 0.070m for the ARMANN model.
The difference between the ARMA and ARMANN models
becomes significant as the prediction time increases. The
accuracy of the ARMA model is similar to the ARMANN
until 15min., but it is worse than the ARMANN thereafter.
The prediction errors show ameaningful correlation with the
geomagnetic Ap index.
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