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This paper raised a new four-parameter fitting model to describe bathtub curve, which is widely used in research on components’
life analysis, then gave explanation ofmodel parameters, and provided parameter estimationmethod as well as application examples
utilizing some well-known lifetime data. By comparative analysis between the new model and some existing bathtub curve fitting
model, we can find that the new fitting model is very convenient and its parameters are clear; moreover, this model is of universal
applicability which is not only suitable for bathtub-shaped failure rate curves but also applicable for the constant, increasing, and
decreasing failure rate curves.

1. Introduction

Typical failure rate curve is bathtub-shaped over product’s
lifetime and has been widely accepted in the field of reliability
andmedicine. Bathtub curve can be divided into three phases:
early failure, random failure, and wear-out failure phases.
However, it is rather difficult to describe the model because
the correlation between these three phases is not strong: both
duration and intensity may be different; there may be even
absence of one or two phases. In order to find a suitable
bathtub curve fitting model, researchers have worked for
decades. New bathtub curve fitting models were proposed
one by one since the 1980s [1]. Nadarajah [2] and Jiang [3]
had summarized some of these models, from which we can
see that somemodels are on finite intervals and others are not.
Models for finite interval have a good applicability which can
fit the rapid increasing failure rate phase in wear-out phases
well in short interval and can also fit the slowly increasing
failure rate phase in long interval. On the other hand, models
for infinite interval can be classified into addition type and
extension type. The addition type [4, 5] is inconvenient
in application because of its numerous parameters and
sometimes the maximum likelihood estimation may not
exist, while extension type [6–9] usually cannot fit the rapid
increasing failure rate in wear-out phases well.

Existing models for finite interval have two or three
parameters; one parameter determines the interval, while the
remaining one or two parameters describe the bathtub curve’s
shape. Existing models could not match the bathtub curve
very well because it has three phases which are generally not
strongly related. Until now, it is difficult to find a bathtub-
shaped model which can be widely accepted.

Therefore, this paper put forward a four-parameter fitting
model on finite interval for bathtub curve, gave explanation
of model parameters in Section 2, discussed parameter esti-
mation method in Section 3, and then provided application
examples utilizing this method in Section 4; in the end it
summarized the model characteristic and application range
in Section 5.

2. The Model

Both Beta distribution andMudholkar’s DTMmodel [10] can
be classified into bathtub model on finite interval, and failure
rate function of Beta distribution is given by

ℎ (𝑡) =
𝑡
𝑝−1

⋅ (1 − 𝑡)
𝑞−1

𝐵 (𝑝, 𝑞) − 𝐵𝑡 (𝑝, 𝑞)
. (1)
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Table 1

Number 1 2 3 4 5 6 7 8 9 10
𝛼 4 2 1.1 1 0.95 0.7 0.7 0.3 0.7 0.7
𝛽 0.1 0.1 0.1 0.1 0.1 0.4 0.1 0.1 0.002 0

Table 2

Type 𝛼 𝛽 Interval Failure rate Significance
1 (0, 1) (0, +∞) (0, 𝜂) +∞ → 𝐶 → +∞ Whole bathtub
2 1 (0, +∞) (0, 𝜂) Increase from 𝜆/𝜂 to +∞ No early failures
3 (1, +∞) (0, +∞) (0, 𝜂) Increase from 0 to +∞ Wear-out failures only
4 (0, 1) 0 (0, +∞) Decrease from +∞ to 0 Early failures only
5 1 0 (0, +∞) Identically 𝜆/𝜂 Random failures only
6 (1, +∞) 0 (0, +∞) Increase from 0 to +∞ Wear-out failures only

Ghitany [11] showed that ℎ(𝑡) is bathtub-shaped if 𝑝 < 1,
and failure rate function of DTM through data transforma-
tion is

ℎ (𝑡) =
𝛼

𝜎𝛼
⋅

𝑡
𝛼−1

(1 − 𝜃𝑡)
𝛼+1

. (2)

When 𝛼 < 1, the failure rate curve is bathtub-shaped. It is
obvious that the core of these two models to obtain bathtub
failure rate curve is 𝑡𝑚 ⋅ (1 − 𝑡)𝑛. For Beta distribution, the
shape of bathtub curve can be regulated flexibly by choosing
suitable parameters, while the DTM model owns interval
parameters and does not contain any integral. Combining
the advantages of the two methods, we proposed a new four-
parameter fittingmodel whose reliability function and failure
rate function are

𝑅 (𝑡) = exp[−
𝜆 ⋅ (𝑡/𝜂)

𝛼

(1 − 𝑡/𝜂)
𝛽
] , (3)

ℎ (𝑡) =
𝜆 (𝑡/𝜂)

𝛼−1

𝜂 (1 − 𝑡/𝜂)
𝛽+1

⋅ [(𝛽 − 𝛼) ⋅
𝑡

𝜂
+ 𝛼] , (4)

where 𝛼 > 0, 𝛽 ≥ 0, 𝜂 > 0, and 𝜆 > 0; we call this “finite
interval distribution model used in reliability engineering,”
FIRE for short. FIRE is equivalent to DTM when 𝛼 = 𝛽, and
the three-parameter submodel when 𝜆 = 1 also has good
properties, which is called 3-FIRE.

For FIRE, 𝜆 is the multiplication factor for failure rate
function, which only influences the failure rate axis scale;
𝜂 is the interval and scale parameter; the model interval is
(0, 𝜂) when 𝛽 ̸= 0 and it influences the axis scale; 𝛼 and 𝛽
are both shape parameters; specifically, FIRE is equivalent to
Weibull distribution when 𝛽 = 0. Figure 1 shows ten failure
rate curves when 𝜆 = 𝜂 = 1, as 𝜂 = 1, so the range of 𝑡 is
from 0 to 1, and the shape parameters of each curve are listed
in Table 1.

Failure rate curves under different shape parameters
are summarized into 6 types as in Table 2; constant 𝐶
is the minimum failure rate in curve type 1. By making
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the derivative of the failure rate function equal to zero we can
get the time when failure rate is the smallest:

𝑡 =
𝜂 − 𝜂𝛼

2
𝛼 = 𝛽,

𝑡 =
𝜂

(𝛽 − 𝛼)
⋅ (√

𝛼𝛽

𝛽 − 𝛼 + 1
− 𝛼) 𝛼 ̸= 𝛽.

(5)

Substituting formula (5) into (4) we can get the constant
𝐶.

Both type 3 and type 6 curves can only describe wear-out
failure, the failure rate increases to infinite on a finite interval
for type 3 while type 6 does not. For some kind of special
bathtub curve, FIRE could not fit the situation without wear-
out failure, but we can use the curve when 𝛼 < 1, 𝛽 → 0

(such as curve 9 in Figure 1) to fit this situation approximately.
There is no clear demarcation point between random failure
phase from the other two phases, the time of duration for
random failure is mainly influenced by parameter 𝛽, the
random failure phase gets shorter as 𝛽 get bigger, and it can
be considered that there is no random failure phase when
parameter 𝛽 is very big.

Parameter 𝜆 is a multiplication factor for failure rate
function, but for reliability function, it is also a shape



Mathematical Problems in Engineering 3

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

t

R
(t
)

Figure 2

parameter just as𝛼 or𝛽.With regard tomodel with two shape
parameters, the reliability curves under different parameters
should have at most one intersection excluding the two
endpoints.With onemore shape parameter, FIRE could form
double intersection curve families as is shown in Figure 2.
Such curve families have similar failure rate in both ends but
are quite different in the middle part, which reflects FIRE’s
good applicability.

When only small data is provided, there is no need to
choose such complex model; people can use 3-FIRE model.

3. Parameter Estimation

3.1. Determination of Interval Parameter. Interval parameter
𝜂 means the product maximum life. Being affected by
working stress or environmental stress, the structure or
composition of products under specified conditions will be
changed inevitably, which means there is a life limit for any
product, and lifetime limit comes when failure rate increases
to +∞.

The value of 𝜂 should be estimated in accordance with
components’ malfunction states considering that the maxi-
mum life is determined by 𝜂:

𝜂 = 𝑡𝑛 +
𝑡𝑛 − 𝑡𝑛−𝑘

𝑛𝑘
. (6)

In formula (6), 𝑛 is the sample size, 𝑡𝑛 is the failure time of
the 𝑛th sample, and 𝑘 is the failure sample number at 𝑡𝑛. This
formula has considered the following factors:

(a) ensuring that the maximum life is larger than the
existing maximum lifetime value by adding a positive
value to 𝑡𝑛;

(b) the larger failure gap between the last several samples
resulting in larger maximum life;

(c) the larger sample size resulting in larger maximum
life.

Because maximum life is an inherent nature of the
product, the interval parameter should only relate to failure
data but not to the model we select, so we choose the same

interval parameter for different finite interval models later
in this paper. It should be noted that formula (6) is just an
empirical formula from data analysis; how to better estimate
maximum life still needs to be further studied.

3.2. Maximum Likelihood Estimate. Standard statistical tech-
niques such as method of maximum likelihood can also
be used in this case. The likelihood equations, given the
complete or censored failure data set, can be written down
and solved which besides 𝑛 is equal to one.

Let 𝑥 = 𝑡/𝜂 after determination of interval parameter; the
failure rate function becomes

𝑓 (𝑡) = 𝑅 (𝑡) ⋅ ℎ (𝑡) =
𝜆 ⋅ 𝑥
𝛼−1

𝜂 ⋅ (1 − 𝑥)
𝛽+1

⋅ [(𝛽 − 𝛼) ⋅ 𝑥 + 𝛼] ⋅ exp[− 𝜆 ⋅ 𝑥
𝛼

(1 − 𝑥)
𝛽
] .

(7)

Taking logarithm of the likelihood function 𝐿 =

∏
𝑛

𝑖=1
𝑓(𝑡𝑖),

ln 𝐿 (𝛼, 𝛽, 𝜆) = 𝑛 ⋅ ln 𝜆 + (𝛼 − 1)

⋅

𝑛

∑

𝑖=1

ln𝑥𝑖 − (𝛽 + 1) ⋅
𝑛

∑

𝑖=1

ln (1 − 𝑥𝑖)

+

𝑛

∑

𝑖=1

ln [(𝛽 − 𝛼) 𝑥𝑖 + 𝛼]

− 𝜆 ⋅

𝑛

∑

𝑖=1

𝑥
𝛼

𝑖

(1 − 𝑥𝑖)
𝛽
− 𝑛 ⋅ ln 𝜂.

(8)

By taking the partial derivation of the above function we
can obtain

𝜕 ln 𝐿
𝜕𝜆

=
𝑛

𝜆
−

𝑛

∑

𝑖=1

𝑥
𝛼

𝑖

(1 − 𝑥𝑖)
𝛽
,

𝜕 ln 𝐿
𝜕𝛼

=

𝑛

∑

𝑖=1

[
1 − 𝑥𝑖

(𝛽 − 𝛼) 𝑥𝑖 + 𝛼
+ ln𝑥𝑖 −

𝜆 ⋅ 𝑥
𝛼

𝑖
⋅ ln𝑥𝑖

(1 − 𝑥𝑖)
𝛽
] ,

𝜕 ln 𝐿
𝜕𝛽

=

𝑛

∑

𝑖=1

[
𝑥𝑖

(𝛽 − 𝛼) 𝑥𝑖 + 𝛼

− ln (1 − 𝑥𝑖) +
𝜆 ⋅ 𝑥
𝛼

𝑖
⋅ ln (1 − 𝑥𝑖)

(1 − 𝑥𝑖)
𝛽

] .

(9)

When 𝑛 = 1, the equations have no solution.
When 𝑛 is not equal to one, it is difficult to solve

the parameters through the method of making the partial
derivative equal to zero directly; in this case numerical
methods could be used, such as finding combinations of
parameters which can get the maximum ln 𝐿 by searching
algorithm and then substituting it into the partial derivation
function to verify if the solution is correct.
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Table 3: Example 1.

Model Parameter ln(𝐿) AIC 𝑃 value
FIRE 𝛼 = 0.5384, 𝛽 = 0.1967, 𝜆 = 0.8499, 𝜂 = 86.01 −202.18 412.36 0.79028
3-FIRE 𝛼 = 0.5709, 𝛽 = 0.1763, 𝜂 = 86.01 −202.49 410.99 0.8639
DTM 𝛼 = 0.2762, 𝜎 = 688.414, 𝜃 = 0.011627 −207.29 420.58 0.36173
FSM 𝛽 = 0.093, 𝛾 = 86.01, 𝜂 = 16.00 −221.93 449.85 0.03575
NMW 𝛼 = 0.071, 𝛽 = 7.015 × 10

−8
, 𝛾 = 0.016, 𝜃 = 0.595, 𝜆 = 0.197 −212.92 435.83 0.87463

MWE 𝛼 = 13.8597, 𝛽 = 0.5890, 𝜆 = 0.007557 −231.65 469.29 0.17501

ABXII 𝑐1 = 0.7016, 𝑠1 = 424555, 𝑘1 = 492.92

𝑐2 = 82.2343, 𝑠2 = 92.43, 𝑘2 = 1075.4
−206.10 424.20 0.79963

ENH 𝛼 = 0.8200, 𝛽 = 0.7966, 𝜆 = 0.0252 241.36 488.73 0.06385

4. Example and Analysis

For the sake of comparative analysis, somewell-known failure
data are fit both by FIRE and other models below:

(a) Mudholkar’s DTM model [10], which is three-
parameter model on finite interval is the submodel of
FIRE when 𝛼 = 𝛽;

(b) Jiang’s FSM model [3], which is a three-parameter
model on finite interval;

(c) Almalki’s NMWmodel [4], whose submodels include
additiveWeibull model, modifiedWeibull model, and
S–Z modified Weibull model; it is a five-parameter
model on infinite interval;

(d) Xie et al.’sMWEmodel [12], whose submodels include
Chen’s model; it is a three-parameter model on infi-
nite interval;

(e) Wang’s ABXII model [5], which is a six-parameter
model on infinite interval;

(f) Lemonte’s ENHmodel [7], which is a new three-para-
meter family of exponential-type distributions on
infinite interval.

Example 1. Aarset’s 50 failure data [13]: 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3,
6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60,
63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85, 85,
85, 85, 86, 86.

Interval parameter is obtained by formula (6):

𝜂 = 86 +
86 − 85

50 × 2
= 86.01. (10)

For DTM, 𝜃 = 1/𝜂 = 0.011627 and 𝛾 = 𝜂 = 86.01 for
FSM.

Other parameters are estimated by MLE, and ln(𝐿), AIC
value, and 𝑃 value are utilized to evaluate the fitting results as
in Table 3.

Example 2. Wang’s 18 data [5]: 5, 11, 21, 31, 46, 75, 98, 122, 145,
165, 195, 224, 245, 293, 321, 330, 350, 420. Consider

𝜂 = 420 +
420 − 350

18 × 1
= 423.8889. (11)

Example 3. Coetzee’s 127 data [14]: 0.01, 0.01, 0.01, 0.01, 0.01,
0.02, 0.02, 0.02, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, 0.1, 0.12, 0.12,
0.12, 0.13, 0.14, 0.15, 0.15, 0.15, 0.16, 0.16, 0.17, 0.18, 0.18, 0.19,
0.2, 0.21, 0.22, 0.23, 0.25, 0.26, 0.28, 0.28, 0.3, 0.32, 0.34, 0.36,
0.38, 0.39, 0.41, 0.41, 0.42, 0.43, 0.44, 0.44, 0.45, 0.45, 0.5, 0.53,
0.56, 0.58, 0.58, 0.61, 0.62, 0.62, 0.62, 0.64, 0.66, 0.7, 0.7, 0.7,
0.72, 0.77, 0.78, 0.78, 0.8, 0.82, 0.83, 0.85, 0.86, 0.96, 0.97, 0.98,
0.99, 1.05, 1.06, 1.07, 1.18, 1.35, 1.36, 1.42, 1.55, 1.59, 1.65, 1.73,
1.77, 1.79, 1.8, 1.91, 2.09, 2.14, 2.15, 2.15, 2.31, 2.33, 2.36, 2.43,
2.45, 2.5, 2.51, 2.58, 2.64, 2.68, 3.08, 3.94, 4.12, 4.33, 4.42, 4.53,
4.88, 4.97, 5.11, 5.32, 5.55, 6.63, 6.89, 7.62, 11.41, 11.76, 11.85,
12.36, 13.22. Consider

𝜂 = 13.22 +
13.22 − 12.36

127 × 1
= 13.2268. (12)

Examples 1 and 2 are two sets of data which are most
widely used in the study of bathtub curve model. Wang [5]
has illustrated that the failure rate corresponding to these
two datasets is bathtub-shaped through TTT transforming.
The failure rate grows faster in wear-out phase in Example 1
while there is almost no wear failure in Example 3 (Table 5).
According to the fitting results, FIRE has greater advantages
for data in Example 1 and also works well for Examples 2 and
3.

As mentioned earlier, extension-type model on infinite
interval (e.g., MWE) is difficult to describe the rapid increase
(Example 1) failure rate, and themaximum likelihood estima-
tion of addition type model on finite interval may not neces-
sarily exist; NMW and ABXII are models acquired by adding
the failure rate function using this method. In Example 2, the
maximum likelihood estimates of both methods do not exist
because when the NMW’s 𝛽 → 0

+ and when the ABXII’s
𝑠2 → 420

+, the likelihood function 𝐿 → +∞.
According to the parameters in Table 4 we can get the

density curve in Figure 3; from its partial enlarged figure
(Figure 4) we can see that the density function of the fault
value exceeded 6000 similar to the NMW; a partial enlarged
figure (Figure 4) shows that the density function of the fault
value exceeds 6000; this estimation result is obviously point-
less. In contrast, by choosing the interval parameters, model
on finite interval has avoided the situation that maximum
likelihood estimationmay not exist, as the FIRE density curve
which is shown in Figure 3.
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Table 4: Example 2.

Model Parameter ln(𝐿) AIC 𝑃 value
FIRE 𝛼 = 0.8810, 𝛽 = 0.1999, 𝜆 = 1.6530, 𝜂 = 423.8889 −107.46 222.91 0.99970
3-FIRE 𝛼 = 0.7113, 𝛽 = 0.3179, 𝜂 = 423.8889 −108.24 222.49 0.7251
DTM 𝜎 = 465.5967, 𝜃 = 0.002359, 𝛼 = 0.4364 −110.15 226.29 0.99678
FSM 𝛽 = 0.1207, 𝛾 = 423.8889, 𝜂 = 20.4219 −107.43 220.87 0.999998
NMW 𝛼 = 0.0178, 𝛽 = 1 × 10

−200
, 𝛾 = 1.078, 𝜃 = 0.782, 𝜆 = 1.298 −107.38 224.76 —

MWE 𝛼 = 0.2148, 𝛽 = 0.2465, 𝜆 = 0.02180 −109.74 225.49 0.99345

ABXII 𝑐1 = 0.998, 𝑠1 = 4.599 × 10
9
, 𝑘1 = 2.28 × 10

7

𝑐2 = 6.1 × 10
7
, 𝑠2 = 420 + 9.54 × 10

−7
, 𝑘2 = 8.36 × 10

5 −94.66 201.33 —

ENH 𝛼 = 0.5575, 𝛽 = 1.3087, 𝜆 = 0.0191 111.8 229.60 0.96739
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Comparison of the four models on finite interval showed
that FIRE fit the 3 datasets the best judging by ln(𝐿), and the
AIC of FIRE is sometimes higher because of the one more
parameter.

The fitting results of the other models are not stable;
therefore, FIRE with 4 parameters has an advantage over the
other three methods considering model applicability.

Table 5: Example 3.

Model ln(𝐿) AIC
FIRE −173.62 355.23
3-FIRE −231.75 469.50
DTM −217.50 440.99
FSM −173.63 353.26

5. Conclusions

In this paper, we proposed a new four-parameter fitting
model on finite interval for bathtub curve, which can not
only fit bathtub-shaped failure rate curve well, but is also
applicable for the constant, increasing, and decreasing failure
rate curves. This model has good applicability in life data
fitting and has advantages of moderate parameters number,
clear parameters significance, and convenience parameters
estimation and is going to be widely used in reliability and
life analysis.
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