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Drivers’ route choice behavior is usually personalized and multicriteria in practice. Therefore, the urban shortest path problem is
the personalized urbanmulticriteria shortest path (PUMSP) problem.However, the solutions of the PUMSP problem are difficult to
meet the drivers’ travel habits in the state of the art. To solve this problem, first, a new stochastic optimization algorithmbased on the
iterative calculation of a valid route set is proposed in this paper.The effective and reasonable path searchingmechanism is designed
based on drivers’ route choice habits. Then, the evaluation method of calculation results is given. The comparative experimental
results with the genetic algorithm show that the proposed algorithm has reached better results in the evaluation parameters and
computing time. The experimental results also demonstrate that it is meaningful to consider drivers’ travel law in the personalized
urban multicriteria shortest path algorithm design for avoiding obtaining impractical routes solutions.

1. Introduction

The personalized urban multicriteria shortest path (PUMSP)
problem is classified as a NP-hard problem and a significant
branch of the urban multicriteria shortest path (UMSP)
problem, in which two or more criteria and other constraints
are considered, and finding the optimum path based on the
importance-value of each criterion from the driver’s opinion
in the route choice is the main goal. For example, given an
origin-destination, help a driver to find the optimum path
with theminimumweighted sum of travel time, travel length,
and road grade whose weights separately are 0.4, 0.3, and 0.3.
Because of the wide application prospect of the PUMSP, it has
generated great interest among researches and lots of solution
algorithms exist in the literatures [1, 2].

The personalized urban multicriteria shortest path opti-
mization is a complex problem. The multicriteria shortest
path optimization is the core. The existing algorithms are
mainly deterministic and stochastic. Early on, some classic
deterministic algorithms of the single-criterion shortest path
(SSP) problem are used to solve the multicriteria shortest

path (MSP) problem. One representative idea is presented by
Sadeghi, Kim, and Nadi. In their research, the MSP problem
is transformed into the SSP problem by constructing an
integrated impedance function regarding themulticriteria for
each arc in the network [3, 4]. And based on this processing,
all the deterministic algorithms for the SSP problem can be
used to solve the MSP problem. However, it is unreasonable
as pointed byMooney and Liu [5, 6]. In theMSP problem, the
statistical unit of all the criteria should be the route, and not
the arc.

Martins and Guerriero analyzed the distinction and
relation between the SSP problem and the MSP problem in
detail [7, 8]. And theMSPproblem is regarded as an extension
of the SSP problem in their research. And the traditional
label algorithm is improved. In the improved label algorithm,
the label and its update mechanism had been redesigned.
For example, instead of one state label, a vector is used to
label the states of all the criteria. But the time complexity
of the improved label algorithm is rather high. Set 𝑁 to be
the number of all the nodes in the network; the label’s setting
number of one node is up to ∑|𝑁|−2

𝑘=0
(|𝑁| − 2)!/(|𝑁| − 2 − 𝑘)!
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[9, 10]. And in recent years, these algorithms are usually used
to compare with other algorithms in experiments. Caramia
and Kang proposed some approximation approaches to find
the optimum solutions by cyclically constructing the set
of k shortest paths based on each criterion and Dijkstra
algorithm.The approximate optimum solutions are obtained
by intersecting the sets. And the experiment showed that it is
efficient for less criteria and small networks.

Recently, with the rapid development of intelligent opti-
mization algorithms, lots of stochastic optimization algo-
rithms for solving theMSP problemhave emerged. Especially
for the flexible form of the optimization function, lots of the
intelligent optimization algorithms are improved to solve the
MSP problem. Keivan and Fang improved the ant colony
algorithm to solve the MSP problem and compared with
the label algorithm by simulation tests [11, 12]. Bezerra et
al. compared the properties of the single-ant-colony algo-
rithm and multi-ant-colony algorithm in different networks
through a series of experiment tests [13]. Chiang and Siddiqi
improved the evolutionary algorithm to solve the MSP prob-
lem with time window and random demand [14, 15]. Osman
and Ji improved the genetic algorithm to solve the MSP
problem in the general network and the stochastic network
[16, 17].

The strong robustness, flexibility, and adaptation of
stochastic optimization algorithms attract an extensive atten-
tion from researchers. However, existing algorithms still have
a number of limitations, such as the lack of effective strategies
for generating all the valid routes, determining the best
compromising solution from the driver’s point of view when
more than one possible solution simultaneously exists, which
seriously affect their performance. The newer and better
algorithms are required in reality.

The main aim of this paper is to report a new stochastic
optimization algorithm for solving the PUMSP problem and
to assess its performance. Unlike most of existing algorithms
for the PUMSPproblem, the proposed algorithmuses drivers’
daily travel routes as the initial routes instead of the random
routes used inmost of the stochastic optimization algorithms.
In addition, the proposed algorithm iteratively updates the
initial routes with the consideration of the common law of
drivers’ route adjusting in travel which is little considered in
existing algorithms.

The rest of the paper is arranged as follows. In Section 2,
some notations and definitions about an urban road net-
work, the driver’s travel preferences, and the valid route are
defined, based on which the personalized urbanmulticriteria
shortest path is determined, and the personalized urban
multicriteria shortest path optimization model is provided.
In Section 3, a new stochastic optimization algorithm for
the PUMSP problem and its evaluation parameter is pro-
posed, in which the effective and reasonable operators on
the initialization and iterative update of the valid route set
are designed combining with three criteria chosen by a
driver. In Section 4, the comparative experiment between the
proposed algorithm and the genetic algorithm for solving
the PUMSP problem is carried out, and the experimental
results are analyzed and discussed. In Section 5, conclusion is
considered.

2. Personalized Urban Multicriteria Shortest
Path Optimization Model

According to the graph theory, if the intersection is abstracted
as a node and one driving direction of the road between the
adjacent intersections is abstracted as a directed arc, then an
urban road network can be abstracted as a directed graph𝐺 =

(𝑉, 𝐸), in which 𝑉 is the set of nodes with 𝑁 = |𝑉| and 𝐸 is
the set of arcs with𝑀 = |𝐸|. Each arc 𝑒 ∈ 𝐸 is corresponding
with an ordered pair of nodes, in the form from the node 𝜉
to the node 𝜁. And the arc 𝑒 simultaneously has an associated
set 𝑋𝑒 of its criteria-costs with 𝐶 = |𝑋𝑒|, in which 𝐶 is the
total number of the criteria chosen by the driver. And each
route 𝑅 in 𝐺 has an associated set 𝐵𝑅 of the criteria values
with 𝐶 = |𝐵𝑅|. Set 𝑤𝑐 (𝑐 = 1, 2, . . . , 𝐶) is the importance-
value of the 𝑐th criterion, and ∑

𝐶

𝑐=1 𝑤𝑐 = 1. Obviously, there
is 𝑏𝑐,𝑅 = ∑𝜂∈𝑅,𝑥

𝑐,𝜂
∈𝑋
𝑅

𝑥𝑐,𝜂, in which 𝑏𝑐,𝑅 is the value of the 𝑐th
criterion of the route 𝑅 and 𝑥𝑐,𝜂 is the 𝑐th criterion-cost of the
arc 𝜂.

Definition 1. In 𝐺, a connection route 𝑙 between a given
origin-destination 𝑂,𝐷 ∈ 𝑉 without any loops or repeated
arcs and conforming to the urban traffic regulations is a valid
route.

Definition 2. The route 𝑙
∗ which has the minimum linear-

weighted sum of all the criteria chosen by the driver among
all the valid routes between 𝑂 and𝐷 in 𝐺 is the personalized
urban multicriteria shortest path between 𝑂 and𝐷.

Based onDefinitions 1 and 2, the personalized urbanmul-
ticriteria shortest path optimization model can be described
as the following. In (1), 𝐿𝑂,𝐷 is the set of all the valid routes
between 𝑂 and𝐷 in 𝐺:

𝑓 (𝑙
∗
) = min
𝑙∈𝐿
𝑂,𝐷

𝑓 (𝑙) , (1)

𝑓 (𝑙) =

𝐶

∑

𝑐=1

𝑤𝑐 ∑

𝑔∈𝑙,𝑥
𝑐,𝑔
∈𝑋
𝑔

𝑥𝑐,𝑔, (2)

𝐶

∑

𝑐=1

𝑤𝑐 = 1. (3)

3. The Stochastic Optimization Algorithm for
Solving the PUMSP Problem

The survey and analysis about vehicles’ trajectories in urban
road networks done by the authors’ team showed that some
common laws exist in drivers’ daily travel. For each pair of
nodes in urban road network, there are one or more fixed
routes which are chosen by experienced drivers. When poor
travel condition emerges in parts of the preselected routes in
travel which may be caused by many factors like congestion
caused by traffic accident or water gathered on the road
after raining, drivers will replace the parts using other routes
within certain distance range once found by them before
arriving there. And the ultimately chosen routes are nearly
all around the preselected routes within certain distant range.
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Figure 1: The calculating process of the proposed algorithm.

Based on these laws, a stochastic optimization algorithm is
designed and proposed to solve the PUMSP problem, in
which the optimum path is obtained by iteratively updating
a valid route set 𝑄 including certain number of valid routes
between 𝑂 and 𝐷. The calculating process is as shown in
Figure 1.

3.1. Urban Road Network Data Preparation. Urban road
network data including criteria-costs data of each arc in
the road network and the road network topology data are
required in the calculation process. The method of [18]
is applied to organize and store the road network data.
The statistic section of the arc criteria-costs is between the
center points of the adjacent intersections in the traditional
methods. The differences of different turning directions in
the intersection are usually neglected and errors are easily
produced. In this paper, the sections between the exits of
adjacent intersections are determined as the statistic sections

o1 o2

B A

C

D

Figure 2: The sketch of the arc criteria-costs statistic sections.

of the arc criteria-costs, just as showed in Figure 2, the arc
criteria-costs of the arcs AB, AD, and AC between the exits of
intersection 𝑜1, and the intersection 𝑜2 should be separately
counted.

In order to describe the algorithm, three criteria chosen
by a driver are considered including “travel length,” “travel
time,” and “effect from other travel factors.” The “travel
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Table 1: The effect values of different travel factors.

Number Travel factor 𝛿𝜄

1 Waiting time
before red light

1 second∼10 seconds 0.10
11 seconds∼30 seconds 0.30
31 seconds∼60 seconds 0.40
61 seconds∼90 seconds 0.60

>90 s 0.90

2 Road grade

Expressway 0.05
Major arterial 0.40
Minor arterial 0.60
Local street 0.80

3 Road around marketplaces 0.60

4 Vehicles parking
in the roadside

One side 0.30
Double sides 0.60

length” value (𝑏1) of the route 𝑙 is the sum of the arc-distance
values of the route 𝑙. The “travel time” value (𝑏2) of the route
𝑙 is the sum of the arc passing-time of the route 𝑙. The “effect
from other travel factors” value (𝑏3) of the route 𝑙 is the
sum of the arc-effect values of the route 𝑙. According to the
driver’s opinion, the “effect from other travel factors” value
of an arc is the sum of the effect values of four travel factors
including waiting time before red light, road grade, road
around marketplaces, and vehicles parking in the roadside
(4), in which 𝛿𝜄 is the effect value of the travel factor 𝜄. The
effect values of the four travel factors are given in Table 1,
which are obtained from travel survey done by the authors.

The corresponding criteria-costs 𝑥1, 𝑥2, and 𝑥3 for each
arc in𝐺 are normalized using (5)∼(6). In (5), 𝑥𝑐 is the average
value of the 𝑐th criterion-cost 𝑥𝑐 of all arcs in 𝐺 and 𝑥𝜏 is
the maximum of 𝑥𝑐 (𝑐 = 1, 2, 3); 𝑦𝑐 is the transition value. In
(6), 𝑦𝜍,𝑐 and 𝑦𝜏,𝑐 separately are the minimum and maximum
of 𝑦𝑐 of all the arcs, and 𝑧𝑐 is the normalization value of 𝑥𝑐.
The values of the three criteria can be calculated using (7), in
which 𝑏𝑐,𝑙 is the value of the cth criterion of the route 𝑙; 𝑧𝑐,ℎ is
the normalization value of the 𝑐th criterion-cost of the arc ℎ:

𝑥3 =

4

∑

𝜄=1

𝛿𝜄, (4)

𝑦𝑐 = 𝑥𝑐

𝑥𝜏

𝑥𝑐

(𝑐 = 1, 2, 3) , (5)

𝑧𝑐 =
𝑦𝑐 − 𝑦𝜍,𝑐

𝑦𝜏,𝑐 − 𝑦𝜍,𝑐

(𝑐 = 1, 2, 3) , (6)

𝑏𝑐,𝑙 = ∑

ℎ∈𝑙,ℎ∈𝐸

𝑧𝑐,ℎ (𝑐 = 1, 2, 3) . (7)

3.2. Route Encoding. An unfixed-length decimal encoding
method is applied for encoding the routes, by which a route
is encoded using a positive integer sequence consisting of the
IDs of nodes from𝑂 to𝐷 in the route. For example, in a route
as showed in Figure 3, the route encoding is {1 5 4 2 3 8 6 9}.

1 

5 4
2

3
8

6

9

Figure 3: The example of a route.

3.3. Comprehensive Evaluation Function Value Calculation.
According to (2), a comprehensive evaluation function is
defined using (8), in which 𝑧𝑐,𝜐 is the normalization value of
the 𝑐th criterion-cost 𝑥𝑐 of the arc V in the route 𝑙:

𝑓 (𝑙) =

3

∑

𝑐=1

𝑤𝑐∑

𝜐∈𝑙

𝑧𝑐,𝜐. (8)

3.4. The Valid Route Set Initialization Operator. In the pro-
posed algorithm, the optimum path is obtained by iteratively
updating a valid route set 𝑄 consisting of certain number of
valid routes.The initialization of the valid route set𝑄 directly
affects the performance of the proposed algorithm. Unlike
the existing stochastic optimization algorithms, the proposed
algorithm does not use a stochastic method to generate the
initial routes. Instead, with the consideration of the law of
drivers’ initial route choice in daily travel, all the daily travel
routes are encoded and used to initialize 𝑄, which can be
obtained from the taximonitoring system or the survey about
the vehicle trajectories between 𝑂 and𝐷.

3.5. The Valid Route Set Update Operator. In reality, the
preselected routes are often adjusted based on drivers’ expe-
riences, and the replaced routes are not always the best. And
sometimes, the preselected routes have not been adjusted
when travel condition goes bad in parts of the routes because
of the lack of information. A personalized travel often has
not been satisfied. So, in the updating of 𝑄, the parts with
poor travel conditions in each route in 𝑄 should be timely
identified and adjusted. And as the increase of iteration
times, the routes in 𝑄 should converge to the optimum path
gradually and the adjusted nodes in each route in𝑄 are fewer
and fewer.

With the consideration of the above, for each iteration,
some new routes will be generated by adjusting parts of each
route in 𝑄. In order to increase the search for the routes
around the routes with the smaller comprehensive evaluation
function value, for each iteration, the number of routes
generated by each route 𝑞 (𝑞 ∈ 𝑄) is calculated using (9), in
which 𝑠𝜏 and 𝑠𝜍 separately are the maximum and minimum
of routes generated by a route in 𝑄 in each iteration; 𝑓𝜏,𝑘
and 𝑓𝜍,𝑘 separately are the maximum and minimum of the
comprehensive evaluation function values of all the routes
in 𝑄 in the 𝑘th iteration. 𝑓𝑞 and 𝑆𝑞,𝑘 separately are the
comprehensive evaluation function value and the number
of new routes generated by the route 𝑞 in the 𝑘th iteration.
As shown in Figure 4, there is a linear relation between 𝑆𝑞,𝑘

and 𝑓𝑞. From (9) and Figure 4, it can be seen that the larger
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Figure 4: The linear relation between 𝑆𝑞,𝑘 and 𝑓𝑞.
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Figure 5:The vertical distance 𝑧𝑑 from the end node of an arc to the
straight connecting line between 𝑂 and𝐷.

the comprehensive evaluation function value, the fewer the
number of the generated new routes:

𝑆𝑞,𝑘 = ⌊𝑠𝜍 + (𝑠𝜏 − 𝑠𝜍)

𝑓𝜏,𝑘 − 𝑓𝑞

𝑓𝜏,𝑘 − 𝑓𝜍,𝑘

⌋ . (9)

Assume that the number of the replaced nodes𝑚𝑘,𝑞 in the
route 𝑞 is the same for generating each new route and is a
function of 𝑘 (10), in which𝐻𝑞 is the number of nodes in the
route 𝑞, and 𝜆 is a real number, 𝜆 ∈ (0, 1], and 𝐾 is the total
number of iterations:

𝑚𝑘,𝑞 = 1 + ⌈(𝐻𝑞 − 3) (1 −
𝑘

𝐾
)

𝜆

⌉ . (10)

Based on all the above, a new route 𝑞1 can be generated
by replacing𝑚𝑘,𝑞 nodes in the route 𝑞. Set 𝑢 and V separately
to be the start node and the end node of the replaced part
in the route 𝑞, 𝜇 to be a real number, and 𝜇 = 𝑚𝑘,𝑞 + 2.
Then, the places of 𝑢 and V can be determined according to
the following method.

In order tomake the replaced part incline to the part with
poor travel condition, a cost 𝜌 is calculated for each arc in
the route 𝑞 using (11) firstly, in which 𝑧𝑑 is the normalization
value of the vertical distance from the end node of an arc to
the straight connecting line between𝑂 and𝐷 just as shown in
Figure 5, 𝑧∗2 is the normalization value of the expected travel
time of the arc, and 𝜀 (𝜀3 ∼ 𝑁(0, 1)) is the random itemwhich
is different for each arc in the route 𝑞:

𝜌 = 𝑤1𝑧𝑑 + 𝑤1

𝑧2 − 𝑧
∗
2

𝑧
∗
2

+ 𝑤3𝑧3 − 𝜀. (11)

Subsequently, find out the node 𝜗 from all the nodes
excepting 𝐷 in the route 𝑞 which is the end node of the arc

with the maximum value of the arc cost 𝜌. Set 𝑝1 to be the
number of nodes between 𝑂 and 𝜗 and 𝑝2 to be the number
of nodes between 𝜗 and 𝐷. Set 𝑟 to be position of the node 𝑢
in the route 𝑞; then the node 𝑢 is the (𝑟 + 𝜇 − 1)th node in the
route 𝑞. And 𝑟 is determined based on the following rules:

(1) If 𝜇 ≥ 𝑝1 + 3 and 𝜇 ≤ 𝑝2 + 3 are true, then 1 ≤ 𝑟 ≤

𝑝1 + 1. And 𝑟 should be, respectively, selected from
the range for generating each new route. As shown in
Figure 6(a), when node 2 is the node 𝜗 and 𝜇 = 6,
then the node 𝑢 can be any node from node 1 to node
4 in the route, and the node V is a node from node 8
to node 9 in the route.

(2) If 𝜇 ≥ 𝑝1 + 3 and 𝜇 > 𝑝2 + 3 are true, then 1 ≤ 𝑟 ≤

𝑝1 + 𝑝2 + 4 − 𝜇. As shown in Figure 6(b), when node
2 is the node 𝜗 and 𝜇 = 7, then the node 𝑢 can be any
node from node 1 to node 5 in the route, and the node
V is a node from node 6 to node 9 in the route.

(3) If 𝜇 < 𝑝1 +3 and 𝜇 ≤ 𝑝2 +3 are true, then 𝑝1 +4−𝜇 ≤

𝑟 ≤ 𝑝1+1. As shown in Figure 6(c), when node 2 is the
node 𝜗 and 𝜇 = 4, then the node 𝑢 can be any node
from node 5 to node 4 in the route, and the node V is
a node from node 3 to node 8 in the route.

(4) If 𝜇 < 𝑝1 +3 and 𝜇 > 𝑝2 +3 are true, then 𝑝1 +4−𝜇 ≤

𝑟 ≤ 𝑝1 + 𝑝2 + 4 − 𝜇. As shown in Figure 6(d), when
node 8 is the node 𝜗 and 𝜇 = 6, then the node 𝑢 can be
any node from node 5 to node 4 in the route, and the
node V is a node from node 6 to node 9 in the route.

In reality, drivers prefer to select the replacing routes
around the preselected routes within certain distant range.
The replacing route between the nodes 𝑢, V is generated based
on Dijkstra algorithm and the arc cost as shown in (12), in
which 𝛿 (𝛿3 ∼ 𝑁(0, 1)) is the random item which is different
for each arc in 𝐺 and in generating each new route:

𝜆 = 𝑧1 + 𝛿. (12)

All the new routes can be generated based on the above
method.When all the new routes have been generated, delete
the new routes which are repeated with routes in 𝑄. In
addition, count the total number of routes in 𝑄 and the
remaining new routes, from which the routes with the largest
comprehensive evaluation function value are deleted until
the number of the remaining routes equals the maximum
number of routes allowed in 𝑄. And then, update 𝑄 using all
the remaining routes.

3.6. The Optimum Path Determination and Evaluation. The
route with the minimum comprehensive evaluation function
value in𝑄 is the optimumpath obtained by𝐾 times iteration.
In this paper, we also measure another parameter 𝛽 to
evaluate the calculation results (equation (13)), in which 𝑞

∧

is the optimum path by𝐾 times iteration and 𝑞∗𝑗 is the single-
criterion shortest path based on the 𝑗th arc criterion-cost.
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Figure 6: The nodes 𝑢, V determination: (a) 𝜇 ≥ 𝑝1 + 3 and 𝜇 ≤ 𝑝2 + 3; (b) 𝜇 ≥ 𝑝1 + 3 and 𝜇 > 𝑝2 + 3; (c) 𝜇 < 𝑝1 + 3 and 𝜇 ≤ 𝑝2 + 3; (d)
𝜇 < 𝑝1 + 3 and 𝜇 > 𝑝2 + 3.

Table 2: Five groups of (𝑤𝑐)𝑠 in (8).

Group Each criterion importance-value
𝑤1 𝑤2

𝑤3

1 0.5 0 0.5
2 0.4 0.2 0.4
3 0.3 0.4 0.3
4 0.2 0.6 0.2
5 0.1 0.8 0.1

𝛽 represents the average of the relative differences of the three
criteria of the route 𝑞∧ and their respective minimum values:

𝛽 = √
1

3

3

∑

𝑐=1

(

𝑤3 (∑𝑖∈𝑞∧ 𝑥𝑐,𝑖 − ∑𝑗∈𝑞∗
𝑗

𝑥𝑐,𝑗)

∑𝑗∈𝑞∗
𝑗

𝑥𝑐,𝑗

)

2

. (13)

4. Experiments and Discussion

An urban road network including 2000 nodes and 7014
arcs is used to evaluate the performance of the proposed
algorithm. The referred data in the algorithm are obtained
by simulation. The performance of the proposed algorithm
is compared with those of the genetic algorithm proposed
in [19] by calculating the optimum paths between two nodes
(IDs: 1 and 1259) in the road network under five groups of
(𝑤𝑐)𝑠 in Table 2.Theminimum of the three criteria separately
are 7847.60 meters, 811.71 seconds, and 31.67. And in order
to keep the comparability, the genetic algorithm in [19] is
improved in four aspects: (1) the comprehensive evaluation
function defined in Section 3.3 is defined as the fitness of the
generic algorithm, (2) all the daily travel routes between the
origin node and the destination node are used to initialize the
population, (3) the node 𝜗 defined in Section 3.5 is defined as
the gene variation node in each route, and (4) the replacing
routes are generated based on Dijkstra algorithm and the arc
cost 𝜆 defined in (12). Table 3 gives the basic parameters’
values of the two algorithms.

Table 3: The basic parameters’ values.

Algorithm Basic parameter Value

The proposed
algorithm

Maximum number of routes in the
valid route set 20

Maximum number of iterations 100
Maximum number of routes
generated by a route in each
iteration

5

Minimum number of routes
generated by a route in each
iteration

2

The genetic
algorithm

Maximum number of chromosomes
in the population 20

Maximum number of iterations 100
Crossover probability 0.9

Table 4: 𝑓
100

achieved by the two algorithms under each group of
(𝑤𝑐)𝑠 during 50 times’ test.

Each criterion importance-value 𝑓
100

𝑤1 𝑤2
𝑤3

The proposed
algorithm

The genetic
algorithm

0.5 0 0.5 15.58 16.39
0.4 0.2 0.4 15.20 15,87
0.3 0.4 0.3 14.57 15.45
0.2 0.6 0.2 13.77 15.2
0.1 0.8 0.1 12.58 14.67

Each algorithm is tested for 50 times under each group
of (𝑤𝑐)𝑠. The iterative calculation results of the two algo-
rithms are given in Figure 7, in which 𝑓𝑘 is the average
of the minimum comprehensive evaluation function values
(or the minimum fitness function values) achieved by each
algorithm for 𝑘 times iteration during 50 times’ test. Table 4
gives the average of the minimum comprehensive evaluation
function values (or the minimum fitness function values)
achieved by each algorithm by 100 times’ iteration during 50
times’ test. As shown in Figure 7 and Table 4, the proposed
algorithm has achieved smaller values of 𝑓100. The average
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Figure 7:The changing of𝑓
𝑘
achieved by the two algorithmswith the increasing of iteration times under each group of (𝑤𝑐)𝑠: (a) the proposed

algorithm; (b) the genetic algorithm.
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Figure 8:The daily travel routes and the optimum paths obtained by the two algorithms under each group of (𝑤𝑐)𝑠: (a) the daily travel routes,
(b) the optimum paths obtained by the proposed algorithm, and (c) the optimum paths obtained by the genetic algorithm.

computing time of the proposed algorithm during 50 times’
test is 31.33 seconds, and that of the genetic algorithm is 43.65
seconds. Table 5 gives the values of the three criteria and
the evaluation parameter 𝛽 of the optimum paths achieved
during 50 times’ test under each group of (𝑤𝑐)𝑠. It can be seen
that the proposed algorithm has reached a smaller value of
𝛽 than the genetic algorithm under each group of (𝑤𝑐)𝑠. It
is obvious that the performance of the proposed algorithm is
better than the genetic algorithm in solving the PUMSPprob-
lem. Figure 8 shows the daily travel routes and the optimum
paths obtained by the two algorithms under each group of
(𝑤𝑐)𝑠.The optimumpaths obtained by the two algorithms are
all around the daily travel routes, which matches the reality.
All of these calculation results indicate that the proposed
algorithm can be used to solve the PUMSP problem.

5. Conclusions

The personalized urban multicriteria shortest path optimiza-
tion is a complex problem. The stochastic algorithms are
proved to be superior to the deterministic algorithms. But
existing stochastic algorithms still have some limitations like
the lack of the strategies about avoiding the impractical
routes and the long computing time which largely affect
the performance in practice application. In this paper, a
new stochastic optimization algorithm is proposed to solve
the PUMSP problem. Unlike most of the existing stochastic
optimization algorithms based on the random strategies in
the initial routes generation and update, the key operators of
the proposed algorithm are designed based on drivers’ travel
route choice law on the initial routes choice and adjustment in
daily travel.The experiment results showed that the proposed
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Table 5: The values of the three criteria and 𝛽 of the optimum paths achieved during 50 times’ test under each group of (𝑤𝑐)𝑠.
Each criterion importance-value The proposed algorithm The genetic algorithm
𝑤1 𝑤2

𝑤3 𝑥1/meter 𝑥2/second 𝑥3 𝛽 𝑥1/meter 𝑥2/second 𝑥3 𝛽

0.5 0 0.5 9343.15 1277.71 40.08 0.1634 10930.65 1094.36 34.56 0.2016
0.4 0.2 0.4 8936.59 945.06 44.07 0.1693 10901.61 1083.48 34.79 0.1740
0.3 0.4 0.3 8970.47 911.00 45.11 0.1429 9018.87 826.20 59.81 0.2704
0.2 0.6 0.2 9067.27 869.69 48.16 0.1168 10795.14 1025.51 38.54 0.1803
0.1 0.8 0.1 8834.95 819.68 58.94 0.0874 10766.10 1021.16 40.92 0.2118

algorithm reached better results in the evaluation parameters
and computing time in comparison with those of the genetic
algorithm. And the experiment results also indicated that the
proposed algorithmhas the ability of avoiding the impractical
solutions.

It should be noted that the proposed algorithm is univer-
sal for more criteria. But (11) should be adjusted when more
criteria are considered. In addition, the computing time can
be further reduced by using a better shortest path algorithm
to generate the replacing routes.
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