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This paper investigates the value of designing a new kernel of support vector regression for the application of forecasting high-
frequency stock returns. Under the assumption that each return is an event that triggers momentum and reversal periodically,
we decompose each future return into a collection of decaying cosine waves that are functions of past returns. Under realistic
assumptions, we reach an analytical expression of the nonlinear relationship between past and future returns and introduce a new
kernel for forecasting future returns accordingly. Using high-frequency prices of Chinese CSI 300 index from January 4, 2010, to
March 3, 2014, as empirical data, we have the following observations: (1) the new kernel significantly beats the radial basis function
kernel and the sigmoid function kernel out-of-sample in both the predictionmean square error and the directional forecast accuracy
rate. (2) Besides, the capital gain of a simple trading strategy based on the out-of-sample predictions with the new kernel is also
significantly higher.Therefore, we conclude that it is statistically and economically valuable to design a new kernel of support vector
regression for forecasting high-frequency stock returns.

1. Introduction

Although the efficient market hypothesis is one of the most
influential theories in the past few decades, researchers
have never given up examining the predictability of stock
returns.The complexity of the market makes the relationship
between past and future financial data nonlinear [1, 2].
Linear statistical models, such as the autoregressive (AR)
model, the autoregressive moving average (ARMA) model,
and the autoregressive integrated moving average (ARIMA)
model, are apparently powerless when compared to non-
linear approaches such as the generalized autoregressive
conditional heteroskedasticity (GARCH)model, the artificial
neural network (ANN), and the support vector machine for
regression (SVR). Atsalakis and Valavanis [3] provide a very
comprehensive review of the nonlinear models used in stock
market forecasting.

With its remarkable generalization performance,
support vector machine (SVM), firstly designed for pattern
recognition by Vapnik [4], has gained extensive applications

in regression estimation (in which it is called SVR) and is
thus introduced to time series forecasting problems. SVR is
compared withmultiple other models such as the backpropa-
gation (BP) neural network [5–7], the regularized radial basis
function (RBF) neural network [6], the case-based reasoning
(CBR) approach [7], the GARCH-class models [8] and shows
superior forecast performance. The kernel function used in
SVR plays a crucial role in capturing the nonlinear dynamics
of the time series under study. Several commonly used
kernels, for example, the radial basis function kernel, are
firstly derived mathematically and are widely applied in time
series forecasting problems. Parameters are empirically tuned
by researchers to achieve good performance of prediction. In
addition, several researchers argue that using a single kernel
may not solve a complex problem satisfactorily and thus pro-
pose the multiple-kernel SVR approach [9–11]. Yeh et al. [11]
show thatmultikernel SVR outperforms single-kernel SVR in
forecasting the daily closing prices of Taiwan capitalization
weighted stock index. Besides, Huang et al. [12] linearly
combine the predicting result of SVR with those of other
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classifiers trained with the same data set and realize better
forecast performance of the weekly movement direction of
NIKKEI 225 index. However, current applications seldom
touch the inner structure of the existing kernels, which
depicts the nonlinear relationship between past and future
data. Thus, it is reasonable to argue that if the kernel is
designed according to the specific nonlinear dynamics of the
series under study, improvement in forecast accuracy can be
expected.

In addition, the above-mentioned studiesmostly use daily
(or lower frequency) data in their empirical experiments.
Since high-frequency trading has gained its popularity in
recent years, the ability to forecast intraday stock returns
is becoming increasingly important. Thus in this study, we
instead consider the forecasting of high-frequency stock
returns. Mat́ıas and Reboredo [13] and Reboredo et al.
[14] empirically show the forecast ability of SVR for high-
frequency stock returns by directly using the radial basis
function kernel. Instead of directly applying some conven-
tional kernel or some combination of conventional kernels,
we design a kernel for the specific forecasting problem.
Specifically, under the assumption that each high-frequency
stock return is an event that triggers momentum and rever-
sal periodically, we decompose each future return into a
collection of decaying cosine waves that are functions of
past returns. After taking several realistic assumptions, we
reach an analytical expression of the nonlinear relationship
between past and future returns and design a new kernel
accordingly. One-minute returns of Chinese CSI 300 index
are used as empirical data to evaluate the new kernel of
SVR. We show that the new kernel significantly beats the
conventional radial basis function and sigmoid function
kernels in both the prediction mean square error and the
directional forecast accuracy rate. Besides, the capital gain of
a practically simple trading strategy based on the predictions
with the new kernel is also significantly higher.

The remainder of this paper is organized as follows.
Section 2 introduces the basic idea of SVR. Section 3 presents
our basic assumptions and designs the new kernel. Section 4
determines the newly introduced kernel parameters and
compares the new kernel with two commonly used kernels
in terms of the forecast performance of the SVR. Finally, the
conclusions are drawn in Section 5.

2. Support Vector Machine for Regression

First designed by Vapnik as a classifier [4], SVR is featured
with the capability of capturing nonlinear relationship in
the feature space and thus is also considered as an effective
approach to regression analysis. The following sketches the
basic idea of SVR. For more detailed illustration of SVR,
please refer to Burges [15].

2.1. SVR for Linear Regression. In a regression problem, given
a finite data set 𝐹 = {(x𝑘, 𝑦𝑘)}

𝑛

𝑘=1
derived from an unknown

function 𝑦 = 𝑔(x) with noise, we need to determine a
function 𝑦 = 𝑓(x) solely based on 𝐹 and to minimize the
difference between𝑓 and the unknown function 𝑔. For linear

regression, 𝑔 is assumed to be a linear relationship between x
and 𝑦

𝑦 = 𝑔 (x,w, 𝑏) = w ⋅ x + 𝑏 =
𝑚

∑

𝑗=1

𝑤𝑗𝑥𝑗 + 𝑏, (1)

where x is called feature vector and the space X it lives in
is named as feature space. 𝑚 is the dimension of the feature
vector x and the feature space X. 𝑦 is referred to as the label
for each (x, 𝑦). Now that the relationship to be determined is
assumed linear, our goal is to find a hyperplane 𝑦 = 𝑓(x) in
the𝑚+1dimension space, where {(x𝑘, 𝑦𝑘)}

𝑛

𝑘=1
are plotted and

to minimize the fitting errors by adjusting the parameters. As
is proven by Vapnik, the hyperplane is given as

𝑦 = 𝑓 (x,𝛼, 𝑏) = ∑
𝑘

𝛼𝑘𝑦𝑘x𝑘 ⋅ x + 𝑏, (2)

where x𝑘’s are support vectors in the given data set 𝐹 and
𝑦𝑘’s are the corresponding labels. “⋅” represents the inner
product in the feature space X. Finding the support vectors
and determining the parameters 𝛼 and 𝑏 turn out to be a
linearly constrained quadratic programming problem that
can be solved in multiple ways (e.g., the sequential minimal
optimization algorithm [16]). Such a process conducted on
the given data set 𝐹 is called learning. Once the learning
phase is done, the model built can be used to predict the
corresponding label 𝑦 from any feature vector x in the feature
space X.

2.2. SVR for Nonlinear Regression. However, the linear rela-
tionship assumption is often too simple to characterize the
dynamics of the time series, and thus it is necessary to
consider the case when 𝑔 is nonlinear. The idea of SVR for
nonlinear regression is to build amapping x → 𝜙(x) from the
original 𝑚 dimension feature space X to a new feature space
X whose dimension depends on the mapping scheme and is
not necessarily finite. In the new space X, the relationship
between the new feature vector 𝜙(x) and label 𝑦 is believed
to be in a linear form. By building a proper mapping, the
nonlinear relationship can be approximated by doing in the
new feature spaceX exactly the same thing as is done for the
linear case, and it can be proven that the nonlinear version of
(2) is

𝑦 = 𝑓 (x,𝛼, 𝑏) = ∑
𝑘

𝛼𝑘𝑦𝑘𝐾(x𝑘, x) + 𝑏, (3)

where 𝐾(x𝑘, x) = 𝜙(x𝑘) ⋅ 𝜙(x) is the kernel function and “⋅”
represents the inner product in the new feature space X.

The new feature 𝜙(x), which can be an infinite dimension
vector, is usually not necessary to be computed explicitly,
since we normally work with the kernel function in the
training and forecasting phases. Accordingly, the kernel
function is essential to the performance of SVR. Any function
satisfying Mercer’s condition can be used as the kernel
function. Commonly used kernels include the radial basis
function kernel𝐾(x, y) = exp(−‖x− y‖/2𝜎2) and the sigmoid
function kernel 𝐾(x, y) = tanh(𝜅x ⋅ y − 𝛿), where 𝜎, 𝜅, and 𝛿
are kernel parameters that can be tuned.
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3. A New Kernel for Forecasting
High-Frequency Stock Returns

Most applications of SVR directly apply the commonly
used kernels and tune the kernel parameters for improved
forecast performance. However, we argue that a specifically
designed kernel function, which builds on the properties of
the underlying data, can enable the SVR to better capture
the nonlinear relationship between the original feature vector
x and label 𝑦. Thus, in this study, we develop a new kernel
specifically for forecasting high-frequency stock returns from
some basic assumptions about the stock market.

3.1. High-Frequency Stock Return Series Forecasting Problem.
High-frequency stock return series refers to the return time
series with one-minute or comparatively small time intervals.
Given a return time series 𝐼𝑛 = {𝑟𝑛, 𝑟𝑛−1, 𝑟𝑛−2, . . .} frompresent
𝑡 = 𝑛 to some time point in the history, a forecasting
problem is to find the one-step-ahead return 𝑟𝑛+1 based on
the knowledge of 𝐼𝑛.

To put it in another way, we need to determine the
function 𝑟𝑛+1 = 𝑓(𝑟𝑛, 𝑟𝑛−1, 𝑟𝑛−2, . . .) that best fits the given
return series 𝐼𝑛. (Some studies introduce exogenous variables
in stock return series forecasting. However, since we focus
on the high-frequency return series where the inefficiency
of the market is obvious [17, 18], it is reasonable to believe
that the return series itself can provide enough information
for its forecasting.) The vector r𝑛 = (𝑟𝑛, 𝑟𝑛−1, 𝑟𝑛−2, . . .) is thus
the feature vector, and 𝑟𝑛+1 is the label. The training data set
𝐹 includes every single return as label and all the returns
before it as the elements of the corresponding feature vector.
According to former studies, 𝑓 is believed to be nonlinear
considering the complexity of the financial market.

3.2. The New Kernel for SVR. It is straightforward that every
single return has impact on the market. Due to behavioral
effects such as overreaction andunderreaction, such impact is
not unidirectional during its remaining period. In this study,
we assume that each high-frequency stock return is an event
that triggers momentum and reversal periodically and thus
express the impact generated by the return 𝑟𝑖 as

𝐴(𝑟𝑖, 𝑡𝑝) = 𝑟𝑖 cos [𝜔 (𝑖, 𝑡𝑝)
𝑟𝑖
 𝑡𝑝 + 𝜑 (𝑖)] 𝑒

−𝜆𝑡𝑝 , (4)

where 𝑖 is the time point when the return 𝑟𝑖 first occurs, 𝑡𝑝
is the time past since 𝑡 = 𝑖, and 𝜆 is the parameter that
controls the decay rate. 𝜔(𝑖, 𝑡𝑝)|𝑟𝑖| is the frequency of the
cosine wave where 𝜔(𝑖, 𝑡𝑝) is a nonzero factor, and 𝜑(𝑖) is the
phase factor. Such an expression ensures that the same level
of return occurring at different time points can have different
impact waves.

According to (4), a larger return leads to greater (ampli-
tude) and faster (frequency) price change in the future, and
as time goes by, such an impact wave will gradually fade
to vanity. This exactly meets the basic intuition about how

the market reacts to events. For subsequent deduction, (4) is
transformed as follows:

𝐴(𝑟𝑖, 𝑡𝑝) = 𝑟𝑖 {𝑎𝑖 cos [𝜔 (𝑖, 𝑡𝑝)
𝑟𝑖
 𝑡𝑝]

+ (1 − 𝑎
2

𝑖
)
1/2

sin [𝜔 (𝑖, 𝑡𝑝)
𝑟𝑖
 𝑡𝑝]} 𝑒

−𝜆𝑡𝑝 ,

(5)

where 𝑎𝑖 ∈ [−1, 1].
It is natural to assume that every return is comprised

of all the impact waves generated by the past returns. (We
only consider the predictable part of every future return
and ignore the innovation part.) Thus, we decompose every
return 𝑟𝑛 into a collection of decaying cosine waves

𝑟𝑛 =

∞

∑

𝑖=1

𝐴 (𝑟𝑛−𝑖, 𝑖Δ𝑡) , (6)

where Δ𝑡 denotes the time interval length, which is 1 minute
in this study, and thus the time passed since event 𝑟𝑛−𝑖 is 𝑡𝑝 =
𝑖Δ𝑡.

Now we substitute (5) into (6). Taylor serial expansion
is used on the “sin” and “cos” terms and the coefficients are
rearranged to generate the following:

𝑟𝑛 =

∞

∑

𝑖=1

∞

∑

𝑘=0

𝐶𝑖,𝑘𝑟𝑛−𝑖 [𝜔 (𝑛 − 𝑖, 𝑖Δ𝑡)
𝑟𝑛−𝑖

 𝑖Δ𝑡]
𝑘
𝑒
−𝜆𝑖Δ𝑡

=

∞

∑

𝑖=1

∞

∑

𝑘=0

𝐶


𝑖,𝑘
𝑟𝑛−𝑖 (

𝑟𝑛−𝑖
 𝑖Δ𝑡)
𝑘
𝑒
−𝜆𝑖Δ𝑡

,

(7)

where {𝐶
𝑖,𝑘
}𝑖,𝑘 is the coefficient set to be determined.

Therefore, based on the assumptions above, a nonlinear
relationship between past returns and the one-step-ahead
future return is derived. It is easy to see that 𝑟𝑛 is a linear
combination of {𝑟𝑛−𝑖(|𝑟𝑛−𝑖|𝑖Δ𝑡)

𝑘
𝑒
−𝜆𝑖Δ𝑡

}𝑖,𝑘.Thus, it is possible to
map the original feature vectors to a proper form to make the
relationship between label and feature vector linear. However,
we once again fall into the dilemma that (7) is a collection of
infinite series, which makes the mapped feature vectors have
infinite dimension and hard to compute. It is also unlikely to
derive the kernel function instead like before.

To solve the above-mentioned problem, we first consider
the decay property of the impact waves, which is presented by
the factor 𝑒−𝜆𝑖Δ𝑡. Since the decay rate 𝜆 is constant, we believe
that the impact of an event that is𝑚Δ𝑡 before the time being
is negligible, and 𝑚 is the minimum integer that satisfies the
condition 𝑒

−𝜆𝑚Δ𝑡
/𝑒
−𝜆Δ𝑡

< 𝛿, where 𝛿 → 0. Since we do
not know how little 𝛿 should be, 𝑚 is determined through
experiments in Section 4.2.

It is also necessary to consider the high-frequency prop-
erty of the data. Such a property ensures that the scale of the
time interval Δ𝑡 is subtle compared to the time scale of the
fluctuation of the market. Thus, it is reasonable to assume
Δ𝑡 ≪ 2𝜋/𝜔(𝑖, 𝑡𝑝)|𝑟𝑖|, ∀𝑖, where the right hand side is the
period of the impact wave of return 𝑟𝑖 and “≪” represents
at least 2 orders of magnitude smaller. Furthermore, since
the Taylor serial expansion reserved till order 𝑞 has an error
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err (𝑥) = (𝑓
(𝑞+1)

(𝜉)/(𝑞 + 1)!)𝑥
𝑞+1, the error from truncating

the Taylor expansions in (7) satisfies

err ≤
[𝜔 (𝑛 − 𝑖, 𝑖Δ𝑡)

𝑟𝑛−𝑖
 𝑖Δ𝑡]
𝑞+1

(𝑞 + 1)!

= (
𝜔 (𝑛 − 𝑖, 𝑖Δ𝑡)

𝑟𝑛−𝑖
 Δ𝑡

2𝜋⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≪1

)

𝑞+1

⋅
(2𝜋𝑖)
𝑞+1

(𝑞 + 1)!
.

(8)

Thus, setting 𝑞 = 3 can well ensure the accuracy of the
approximation.

Now, a much more accessible approximation of (7) is
derived

𝑟𝑛 =

𝑚

∑

𝑖=1

𝑞

∑

𝑘=0

𝐶


𝑖,𝑘
𝑟𝑛−𝑖 (

𝑟𝑛−𝑖
 𝑖Δ𝑡)
𝑘
𝑒
−𝜆𝑖Δ𝑡

. (9)

Equation (9) explicitly states how the mapping is con-
structed. For any past return series {𝑟𝑛−𝑖}

𝑚

𝑖=1
, the original

feature vector is r𝑛−1 = (𝑟𝑛−1, 𝑟𝑛−2, . . . , 𝑟𝑛−𝑚), and themapping
𝜙 is defined as

𝜙 (r𝑛−1) = {𝑟𝑛−𝑖 (
𝑟𝑛−𝑖

 𝑖Δ𝑡)
𝑘
𝑒
−𝜆𝑖Δ𝑡

}

𝑚,𝑞

𝑖=1, 𝑘=0
. (10)

It is important to understand that the new feature vector
𝜙(r) is 𝑚 × (𝑞 + 1) dimension, with each element 𝜙𝑖,𝑘 given
as 𝜙𝑖,𝑘 = 𝑟𝑛−𝑖(|𝑟𝑛−𝑖|𝑖Δ𝑡)

𝑘
𝑒
−𝜆𝑖Δ𝑡. Now that 𝜙(r) has finite

dimension, the dimension of the new feature space X is also
finite, and the kernel function is naturally built as the inner
product in such a space

𝐾(r(1), r(2)) =
𝑚

∑

𝑖=1

𝑞

∑

𝑘=0

𝜙
(1)

𝑖,𝑘
𝜙
(2)

𝑖,𝑘
. (11)

Although it is theoretically important to examinewhether
the newkernel satisfiesMercer’s condition or not, considering
that some kernels which fail to meet the condition still
lead to perfectly converged results [15], we will examine the
appropriateness of the new kernel through experiments.

4. Empirical Experiments

4.1. Data. One-minute prices of Chinese CSI 300 index from
January 4, 2010, to March 3, 2014 (1000 trading days), are
used as empirical data in this study. The data are obtained
fromWind Financial Terminal, and days with missing prices
are deleted. The official trading hours are from 9:30 to 11:30
and from 13:00 to 15:00, and thus we have 240 one-minute
returns per day. The returns within the same trading day are
used for learning and forecasting, since the continuousness
of the time is important in the above derivation. (Although
there is a 1.5-hour break in each trading day, buy and sell
orders submitted in themorning are still valid and neworders
can still be submitted during this period; thus we deem the
time as continuous in each trading day.) Specifically, the first
100 + 𝑚 returns within each trading day are set as the in-
sample data (𝑚 ≤ 30), which are used for learning, and the

last 110 returns are set as the out-of-sample data, which are
used for prediction and evaluation.The average performance
of the SVR during the first 500 trading days, that is, from
January 4, 2010, to February 1, 2012, is used for determining
the kernel parameters.The last 500 trading days, that is, from
February 2, 2012, to March 3, 2014, is used for performance
comparison against the commonly used kernels. To improve
the performance, the logarithmic returns are normalized to
[−1, 1] before being input into the SVR.

4.2. Determining the Kernel Parameters. Before evaluating
the performance of the new kernel, multiple parameters still
need to be determined to make best use of the kernel. The
undetermined parameters are𝑚, which measures how many
historical data are used, 𝜆, which measures how fast the
impact of one event decays with time, andΔ𝑡, which indicates
how we represent 1 minute numerically. We optimize the
parameters according to the out-of-sample forecast perfor-
mance of the corresponding SVR, which is evaluated byMSE
and hit rate, respectively. MSE is the mean square error of the
predictions and is computed using the normalized returns.
Hit rate is the proportion of predicted returns that have the
same sign with the actual ones, that is, the directional forecast
accuracy rate.

To determine 𝑚, all the other parameters are fixed, and
𝑚 varies from 1 to 30. The average MSE and hit rate in the
first 500 trading days are plotted in Figures 1(a) and 1(b),
respectively. (Figures 1(a) and 1(b) are plotted with 𝜆 and Δ𝑡
set to the optimal values. Actually, the trends of the plots
do not vary with the other kernel parameters.) The average
MSE decreases sharply with 𝑚 when 𝑚 ≤ 21, is relatively
constant when 𝑚 ∈ [21, 26], and decreases slowly with 𝑚

when𝑚 ∈ [26, 30].The average hit rate increases sharply with
𝑚when𝑚 ≤ 21, is relatively constant when𝑚 ∈ [21, 25], and
gets smaller afterwards. Considering that smaller MSE and
greater hit rate are preferred, 𝑚 = 30 and 𝑚 ∈ [21, 25] are
all appropriate choices suggested by the experiments. In the
following comparative experiments, 𝑚 is set to 25. (We have
also done comparative experiments with 𝑚 set to the other
suggested values, and the results are consistent.)

To determine 𝜆, all the other parameters are fixed, and
𝜆 varies from 1 to 50. The average MSE and hit rate in the
first 500 trading days are plotted in Figures 2(a) and 2(b),
respectively. It is quite clear that the minimum average MSE
and maximum average hit rate are both achieved at 𝜆 =

10, and thus we set 𝜆 to 10 in the following comparative
experiments.

The same method is used to optimize Δ𝑡, and the average
MSE and hit rate are plotted in Figures 3(a) and 3(b),
respectively. We can see that the minimum average MSE and
maximum average hit rate are both achieved at Δ𝑡 = 0.05,
and thus we set Δ𝑡 to 0.05 in the following comparative
experiments.

4.3. NewKernel versus CommonlyUsed Kernels. Thenewker-
nel is compared with the commonly used kernels in terms of
the out-of-sample forecast performance of the corresponding
SVR. Although any function satisfying Mercer’s condition
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Figure 1: 500-day average MSE and hit rate achieved with different values of𝑚.
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Figure 2: 500-day average MSE and hit rate achieved with different values of 𝜆.

can be used as the kernel function, radial basis function
and sigmoid function are two widely used kernels. The
former tends to outperformothers under general smoothness
assumption [12], and the latter gives a particular kind of two-
layer sigmoidal neural network [15]. Thus, these two kernel
functions are used for performance comparison. We realize
each SVR by LIBSVM-3.20 [19], and the related codes are
modified for the new kernel.

The out-of-sample MSE and hit rate are computed for
each of the three kernels on each of the last 500 trading days.
The results of the new kernel are plotted against those of the
radial basis function kernel and the sigmoid function kernel
in Figures 4 and 5, respectively.

In Figure 4(a), the vertical and horizontal axes represent
the MSE of the new kernel and the radial basis function
kernel, respectively, while, in Figure 4(b), the vertical and
horizontal axes represent the hit rate of the newkernel and the

radial basis function kernel, respectively.There are 500 points
corresponding to the 500 trading days plotted in each subplot,
and the diagonal line representing 𝑦 = 𝑥 is for reference.
We can see that most points lie below the line 𝑦 = 𝑥 in
Figure 4(a) and lie above the line 𝑦 = 𝑥 in Figure 4(b). This
indicates that the newkernel leads to smallerMSE and greater
hit rate than the radial basis function kernel in most of the
500 trading days. Similarly, Figures 5(a) and 5(b) indicate that
the new kernel leads to smaller MSE and greater hit rate than
the sigmoid function kernel in most of the 500 trading days.
Therefore, the SVR with the new kernel has obviously better
forecast performance in terms of both the MSE and the hit
rate.

In addition, a simple trading strategy is carried out based
on the out-of-sample forecasts of the SVR with different
kernel specifications. The initial capital is set as 100 on
each trading day. The index is bought if the one-step-ahead
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Figure 3: 500-day average MSE and hit rate achieved with different values of Δ𝑡.
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Figure 4: New kernel versus radial basis function kernel from February 2, 2012, to March 3, 2014.

predicted return is positive and exceeds a threshold and sold
if the one-step-ahead predicted return is negative and below a
threshold, and no action is performed otherwise.The thresh-
old is set as the average of the (100 + 𝑚) normalized returns
in the training period divided by the scale coefficient of
ln(1000). (The scale coefficient controls the trading strategy’s
sensitivity to index price change, and a higher value leads to
more frequent trading.The value of ln(1000) is arbitrarily set
and can be adjusted. The results are consistent as the scale
coefficient varies.)

The variation of capital under such a strategy in the 110-
minute out-of-sample period on February 2, 2012, is plotted
in Figure 6(a). We can see that the new kernel leads to higher
capital gain than the other two kernels most of the time.
Also, the average capital variation in the last 500 trading
days is plotted in Figure 6(b). Unlike the fluctuant plots in
Figure 6(a), the capital increases steadily when it is averaged

over the 500-day period, no matter which kernel is used.
This confirms the effectiveness of SVR in forecasting high-
frequency stock returns. Once again, the new kernel leads to
the highest capital gain and the advantage gets more obvious
as the trading period is prolonged. At the end of a day, the new
kernel leads to a return at about 0.6%/110min on average,
while the resulting returns of the other two kernels are both
less than 0.4%/110min on average.

Furthermore, Student’s 𝑡-test is used to test whether the
new kernel significantly outperforms the commonly used
kernels. Specifically, we calculate the differences of MSE,
hit rate, and 110-minute capital gain between the forecasts
with the new kernel and those with each comparative kernel,
respectively, on each of the last 500 trading days. Table 1
reports the mean (𝑥𝑑) and the standard deviation (𝑠𝑑) of
these differences in these 500 trading days. We test the null
hypothesis that “the forecasts with the new kernel and those
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Figure 5: New kernel versus sigmoid function kernel from February 2, 2012, to March 3, 2014.
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Figure 6: Capital variation of a simple trading strategy.

with the comparative kernel have the same accuracy in terms
of the specified criterion,” with the comparative kernel and
the criterion specified in the first row and the second row of
Table 1, respectively. The 𝑡-statistics are reported in the last
row of Table 1.

We can easily see that the six null hypotheses are all signif-
icantly rejected. The new kernel has smaller MSE, greater hit
rate, and higher 110-minute capital gain than both the radial
basis function kernel and the sigmoid function kernel. And
the differences are all significant at the 1% level. Therefore,
the results of Student’s 𝑡-test indicate that the improvement
in out-of-sample forecast accuracy brought about by the new
kernel is significant both statistically and economically, and

thus the newkernel is preferred in forecasting high-frequency
stock returns.

5. Summary and Conclusion

Support vector machine for regression is now widely applied
in time series forecasting problems. Commonly used kernels
such as the radial basis function kernel and the sigmoid
function kernel are first derived mathematically for pattern
recognition problems. Although their direct applications in
time series forecasting problems can generate remarkable
performance, we argue that using a kernel designed according
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Table 1: Out-of-sample forecast performance comparison results from February 2, 2012, to March 3, 2014 (𝑛 = 500).

Criterion New kernel versus (minus) radial basis kernel New kernel versus (minus) sigmoid kernel
MSE Hit rate 110-min gain MSE Hit rate 110min gain

𝑥𝑑 −1.5201𝑒 − 3 4.8709𝑒 − 2 2.0250𝑒 − 3 −1.3917𝑒 − 3 5.3945𝑒 − 2 2.3879𝑒 − 3

𝑠𝑑 5.3684𝑒 − 3 6.0785𝑒 − 2 2.8530𝑒 − 3 5.3658𝑒 − 3 6.3875𝑒 − 2 3.2202𝑒 − 3

𝑡 =
𝑥𝑑√𝑛

𝑠𝑑

−6.33
∗∗∗

17.92
∗∗∗

15.87
∗∗∗

−5.80
∗∗∗

18.88
∗∗∗

16.58
∗∗∗

Note: ∗∗∗ indicates significance at the 1% level.

to the specific nonlinear dynamics of the series under study
can further improve the forecast accuracy.

Under the assumption that each high-frequency stock
return is an event that triggers momentum and reversal
periodically, we decompose each future return into a col-
lection of decaying cosine waves that are functions of past
returns. Under realistic assumptions, we reach an analytical
expression of the nonlinear relationship between past and
future returns and thus design a new kernel specifically
for forecasting high-frequency stock returns. Using high-
frequency prices of Chinese CSI 300 index as empirical data,
we determine the optimal parameters of the new kernel and
then compare the new kernel with the radial basis function
kernel and the sigmoid function kernel in terms of the SVR’s
out-of-sample forecast accuracy. It turns out that the new
kernel significantly outperforms the other two kernels in
terms of the MSE, the hit rate, and the capital gain from a
simple trading strategy.

Our empirical experiments confirm that it is statistically
and economically valuable to design a new kernel of SVR
specifically characterizing the nonlinear dynamics of the
time series under study. Thus, our results shed light on
an alternative direction for improving the performance of
SVR. Current study only utilizes past returns to predict
future returns. A natural extension is to introduce intraday
trading volumes and intraday high/low prices into the feature
vector of the SVR and develop kernels characterizing the
corresponding nonlinear relationship between future return
and feature vector. Another possible extension is to apply the
SVR with new kernel in the energy markets where trading is
continuous 24 hours. We leave them for future work.
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