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Although the nonlocal means (NLM) algorithm takes a significant step forward in image filtering field, it suffers from a high
computational complexity. To dealwith this drawback, this paper proposes an acceleration strategy based on a correlation operation.
Instead of per-pixel processing, this approach performs a simultaneous calculation of all the image pixels with the help of correlation
operators. Complexity analysis and experimental results are reported and show the advantage of the proposed algorithm in terms
of computation and time cost.

1. Introduction

Digital image denoising has been a fundamental and chal-
lenging issue for several decades [1, 2]. Many contributions
have been devoted to recover the image degraded byGaussian
noise.Much attention has been paid to the Partial Differential
Equation (PDE) approaches among which the total variation
(TV) and the Perona and Malik (PM) model are well known
[3–5]. Other methods rely on the image transform from
the spatial domain to another domain (such as the Fourier
domain, the wavelet domain, and the DCT domain). After
adjusting the transform coefficients, the image is restituted
by applying the inverse transform [6, 7].

The algorithm of nonlocal means (NLM) filtering was
proposed by Buades et al. [8]. They suggested that a denoised
pixel is equivalent to the weighted average of its neighboring
pixels, with the weights calculated by the normalized Gaus-
sian weighted Euclidean distance between the blocks centred
at those pixels. The NLM algorithm has demonstrated better
performance than other main-stream filter methods, such
as bilateral filter and TV model in both visual performance

and objective measure [9]. Unfortunately, the computational
cost of computing the weights is too expensive in many
applications.

Some solutions have been proposed to alleviate this
high computation burden for weights’ calculation. Liu et al.
proposed an approximation to the similarity of neighborhood
windows by employing an efficient Summed Square Image
(SSI) further combined with Fast Fourier Transform (FFT)
[10, 11]. In [12, 13], the NLM algorithm is accelerated by elim-
inating some computation of weights through a preclassifica-
tion step based on a hard threshold of local block measures
(average intensities, gradients, and first- and second-order
moments). Also, some Probabilistic Early Termination (PET)
schemes, such as cluster tree, Singular Value Decomposition
(SVD), or dictionaries for image blocks and image edges,
were also employed to speed up the weights’ calculation [14–
17].

In this paper, compared with the traditional NLM algo-
rithm, in which the calculations of weights are by the pixel by
pixel way, our proposed fast strategy was performed on the
whole image. Specifically, correlation operators are applied to
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compute the differential image and lead to a straightforward
shortcut to achieve all the weights. By doing this, a lot
of redundancy computation can be successfully avoided.
Thereby, the computation speed of NLM is improved.

This paper is organized as follows. In Section 2, we briefly
review the NLM algorithm.The repetitive computation caus-
ing the original per-pixel NLM slowness is analyzed and our
proposed fast NLM algorithm is described in Section 3. In
Section 4, some experiments are conducted and they show
that a significant improvement over competitive approaches
is brought by our method. Section 5 concludes this paper and
some relative discussions are given.

2. The Non-Local Means Algorithm

2.1. The Principle of NLM. The image denoising model for an
image 𝐹 ∈ R√𝑀×√𝑀, whereR is the real value domain, can be
formulated by

𝐹 (𝑖) = 𝑈 (𝑖) + 𝑁 (𝑖) , 1 ≤ 𝑖 ≤ 𝑀, (1)

where 𝐹(𝑖) denotes the noisy image value, 𝑈(𝑖) represents
the original noise-free image value, and 𝑁(𝑖) is the noise
value at the pixel 𝑖. The idea behind the NLM filter is to
consider that the denoised pixel value of 𝑖 is equivalent to
the weighted mean of all pixels’ values of the noisy image
(indexed in image 𝐹) [1, 8]. However, considering the high
computational cost, it was suggested in [1, 8] that we can
estimate the denoised pixel value𝐹(𝑖)using the pixels within a
larger search neighborhood 𝑆(2𝐿+1)×(2𝐿+1)𝑖 ⊆ R√𝑀×√𝑀 centred
at the pixel i, where 𝐿 denotes the radius of 𝑆𝑖, whose pixel
values are scanned column by column and then concatenated
to a vector:

𝐹 (𝑆𝑖) = [𝐹 (𝑠𝑖,1) , 𝐹 (𝑠𝑖,2) , . . . , 𝐹 (𝑠𝑖,𝑞) , . . . , 𝐹 (𝑠𝑖,𝐾)]
𝑇
, (2)

where𝐾 = (2𝐿+1)×(2𝐿+1) is the number of pixels within 𝑆𝑖.
The superscript “𝑇” denotes the transpose and𝐹(𝑠𝑖,𝑞), 1 ≤ 𝑞 ≤

𝐾, is the value of the 𝑞th pixel in the search neighborhood 𝑆𝑖.
In this situation, the NLM algorithm can be expressed by

NLM (𝐹 (𝑖)) = ∑

𝑠𝑖,𝑞∈𝑆𝑖

𝑊(𝑖, 𝑠𝑖,𝑞) 𝐹 (𝑠𝑖,𝑞) , (3)

where NLM(𝐹(𝑖)) is the filtered image value of the pixel 𝑖 and
𝑊(𝑖, 𝑠𝑖,𝑞) represents the weight between 𝐹(𝑖) and 𝐹(𝑠𝑖,𝑞). The
weight is acquired by

𝑊(𝑖, 𝑠𝑖,𝑞) =
1

𝑍 (𝑖)
𝑊̃ (𝑖, 𝑠𝑖,𝑞) , (4)

where 𝑍(𝑖) is a normalization factor:

𝑍 (𝑖) = ∑

𝑠𝑖,𝑞∈𝑆𝑖

𝑊̃ (𝑖, 𝑠𝑖,𝑞) , (5)

and 𝑊̃(𝑖, 𝑠𝑖,𝑞) denotes the exponential Gaussian weighted
Euclidean distance:

𝑊̃ (𝑖, 𝑠𝑖,𝑞) = 𝑒
−𝐷𝑎(𝑖,𝑠𝑖,𝑞)/ℎ

2

. (6)

In (6), ℎ acts as a filtering parameter and 𝐷𝑎(𝑖, 𝑠𝑖,𝑞) is
the Gaussian Euclidean distance between blocks 𝐵𝑖 ∈

R(2𝑙+1)×(2𝑙+1) and 𝐵𝑠𝑖,𝑞 ∈ R(2𝑙+1)×(2𝑙+1) centred at the pixels 𝑖 and
𝑠𝑖,𝑞, respectively, and is given by

𝐷𝑎 (𝑖, 𝑠𝑖,𝑞) =
󵄩󵄩󵄩󵄩󵄩󵄩
f (𝐵𝑖) − f (𝐵𝑠𝑖,𝑞)

󵄩󵄩󵄩󵄩󵄩󵄩

2

2,𝑎
. (7)

In (7),

f (𝐵𝑖) = [𝐹 (𝑏𝑖,1) , 𝐹 (𝑏𝑖,2) , . . . , 𝐹 (𝑏𝑖,𝑘)]
𝑇
, (8)

obtained by scanning the pixel values of the block 𝐵𝑖 column
by column and then concatenating them and 𝑘 is the number
of pixels within the square block 𝐵𝑖 whose radius is set as 𝑙.
That is to say, 𝑘 = (2𝑙 + 1) × (2𝑙 + 1). Similarly,

f (𝐵𝑠𝑖,𝑞) = [𝐹 (𝑏(𝑠𝑖,𝑞),1
) , 𝐹 (𝑏(𝑠𝑖,𝑞),2

) , . . . , 𝐹 (𝑏(𝑠𝑖,𝑞),𝑘
)]

𝑇
(9)

is achieved by scanning the pixel values of the block
𝐵𝑠𝑖,𝑞

column by column and then concatenating them. Using
(8) and (9), (7) can be deduced step by step as follows:

𝐷𝑎 (𝑖, 𝑠𝑖,𝑞) =

𝑘

∑

𝑚=1

𝐺 (𝑚) 𝐹𝑠𝑖,𝑞
(𝑚) , (10)

𝐹𝑠𝑖,𝑞
(𝑚) = 𝐹̃

2

𝑠𝑖,𝑞
(𝑚) , (11)

𝐹̃𝑠𝑖,𝑞
(𝑚) = 𝐹 (𝑏𝑖,𝑚) − 𝐹 (𝑏(𝑠𝑖,𝑞),𝑚

) , 1 ≤ 𝑚 ≤ 𝑘, (12)

where 𝐺(𝑚) is the 𝑚th component of the discrete Gaussian
kernel 𝐺 ∈ R(2𝑙+1)×(2𝑙+1), whose standard deviation is 𝑎.
Apparently it has the same size as the block 𝐵.

2.2. Computation Cost Using Per-Pixel Algorithm. From (10)–
(12), we can clearly see the cause of the NLM computational
complexity. For every pixel 𝑖, the NLM algorithm must
compute the dissimilarity between f(𝐵𝑖) and all f(𝐵𝑠𝑖,𝑞) in the
search neighborhood 𝑆𝑖. For instance, to filter a noisy image
𝐹 of size √𝑀 × √𝑀, it needs 2 × 𝑘 × 𝐾 ×𝑀multiplications
and (2𝑘 − 1) × 𝐾 ×𝑀 additions. By cutting down the search
neighborhood 𝑆𝑖 into 15 × 15, with the block 𝐵𝑖 set as 3 × 3, for
a general 512 × 512 size image 𝐹, it needs 2 × 92 × 152 × 5122
multiplications and 17 × 152 × 5122 additions. Hence, a fast
NLM algorithm is required. This motivated us to propose a
correlation based accelerated nonlocal denoising algorithm.

3. The Fast Nonlocal Means Algorithm

3.1. Repetitive Computation of the Per-Pixel Algorithm. From
the above observations, we can see that, for one specific
central pixel 𝑖, the Gaussian weighted Euclidean distance
𝑑𝑎(𝑖, 𝑠𝑖,𝑞) between the block 𝐵𝑖 centred at 𝑖 and block 𝐵𝑠𝑖,𝑞

centred at 𝑠𝑖,𝑞 in the neighboring needs to be computed.
However, for any pixel 𝑗 adjoining the pixel 𝑖, the Gaussian
weighted Euclidean distance 𝑑𝑎(𝑗, 𝑠𝑗,𝑞) between the block 𝐵𝑗

centred at 𝑗 and block 𝐵𝑠𝑗,𝑞 centred at 𝑠𝑗,𝑞 in the neighboring
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Figure 1: Two adjacent pixels 𝑖 and 𝑗 with their blocks 𝐵𝑖 and 𝐵𝑗,
and their search neighborhoods 𝑆𝑖 and 𝑆𝑗. The pixels within the 11 ×
11 blue block diagram represent the search neighborhood 𝑆𝑖 of the
pixel 𝑖, the 5 × 5 blue block diagram is the block 𝐵𝑖 of the pixel 𝑖, and
the centered blue block diagram is the pixel 𝑖.The red block diagrams
(from small to big) correspond to the pixel 𝑗, block 𝐵𝑗, and search
neighbourhood 𝑆𝑗, respectively.

also needs to be computed. Because the two pixels are
adjacent, 𝐵𝑖 and 𝐵𝑗 have lots of overlap and are the same as
𝐵𝑠𝑖,𝑞

and 𝐵𝑠𝑗,𝑞
. Therefore, by the per-pixel way to implement

the NLM algorithm, the blocks based Gaussian weighted
Euclidean calculation is highly repetitive.

More precisely, for a block 𝐵 with size 𝑘 = (2 × 𝑙 + 1) ×

(2 × 𝑙 + 1), the repetitive calculated square term is (2 × 𝑙)
2.

The repetitive rate is ((2 × 𝑙 + 1) × (2 × 𝑙))/(2 × 𝑙 + 1)
2
=

(2× 𝑙)/(2× 𝑙+1). To get an intuitive observation, a diagram is
depicted in Figure 1 in whichwe set the size of block𝐵𝑖 as 𝑘=3
× 3. It can be observed that there are 2/3 repetitive operators
of intensities differences when calculating the weights for the
adjacent centered values of pixels 𝑖 and 𝑗.

3.2. Our Proposed Fast Algorithm. To avoid repetitive compu-
tations of the pixel difference 𝐹̃𝑠𝑖,𝑞(𝑚) (1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑚 ≤ 𝑘)

in (12) by the traditional pixel by pixel way, the proposed
correlation based accelerated fast NLM algorithm deals with
the image𝐹 as a whole. In this case, it is necessary to deal with
(1)–(9) in matrix form. Mathematically, it is trivial to extend
them to the nonscalar matrix case. Then, the variables in (1)–
(9) are restricted to all the𝑀pixels in the noisy image𝐹 rather
than some specific pixel 𝑖.

To deal with the operation with the whole image 𝐹,
our algorithm can be accordingly divided into 8 steps being
consistent with the opposite sequence of (1)–(9).

Step 1. Compute the “differential image” 𝐹̃𝑠𝑞 , which is matrix
case consistent with 𝐹̃𝑠𝑖,𝑞

(𝑚) in (12).

This step can be efficiently implemented via a correlation
operator:

𝐹̃𝑠𝑞
= 𝑃𝑠𝑞

∘ 𝐹, (13)

1

(0, 0)

v
−1

x

y

Figure 2: The introduced correlation kernel matrix and its corre-
sponding v.

where “∘” denotes the correlation operation and 𝐹̃𝑠𝑞
∈

R√𝑀×√𝑀 denotes the 𝑞th differential image of the original
image 𝐹. 𝑃𝑠𝑞 ∈ R(2𝐿+1)×(2𝐿+1) is a 2D correlation kernel, which
contains only two nonzero elements; that is, the center pixel
value is 1 and the 𝑞th pixel value is −1. Note that, for every
different 𝑞 values, there is a different correlation kernel 𝑃𝑠𝑞
since 𝑞 determines the position of the pixel value −1. Figure 2
gives an illustration of the 𝑞 = 5th differential image of the
whole image within an 11 × 11 search neighborhood.

By means of (13), the achieved differential image contains
all the available information in (12). In fact, (13) can be
straightforwardly implemented by a translation operation:

𝐹̃𝑠𝑞
= 𝐹v𝑞 − 𝐹, (14)

where 𝐹v𝑞 represents the image shifted by a coordinate vector
v𝑞, 1 ≤ 𝑞 ≤ 𝐾. Here, the 𝑞th vector v𝑞 points out the
coordinate (𝑥𝑞,𝑦𝑞) from the origin (0, 0) as shown in Figure 2.
Note that the correlation kernel 𝑃𝑠𝑞 and v𝑞, 1 ≤ 𝑞 ≤ 𝐾, are
one-to-one mapping; that is, when

𝑞 = 𝑐 (2𝐿 + 1) + 𝑟 + 1, 0 ≤ 𝑐 ≤ 2𝐿, 0 ≤ 𝑟 ≤ 2𝐿, (15)

where (𝑐, 𝑟) is the coordinate of “−1” in 𝑃𝑠𝑞 shown in Figure 2,
then, its corresponding v𝑞 is given by

v𝑞 = (𝑥𝑞, 𝑦𝑞) = (𝑟 − 𝐿, 𝑐 − 𝐿) . (16)

Step 2. Compute the “square image”𝐹𝑠𝑞 , which is matrix case
consistent with 𝐹𝑠𝑖,𝑞

(𝑚) in (11).

This step can be easily conducted by an element-wise
square operation as follows:

𝐹𝑠𝑞
= 𝐹̃𝑠𝑞

∙ 𝐹̃𝑠𝑞
, (17)

where “∙” acts as an element-wise product operator.

Step 3. Compute the “Gaussian weighted Euclidean distance
image”𝐷𝑎(𝑠𝑞), which is matrix case consistent with𝐷𝑎(𝑖, 𝑠𝑖,𝑞)
in (10).
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This step can also be implemented by a correlation as
follows:

𝐷𝑎 (𝑠𝑞) = 𝐺 ∘ 𝐹𝑠𝑞
. (18)

𝐷𝑎(𝑠𝑞) ∈ R√𝑀×√𝑀 is the Gaussian weighted Euclidian
distance corresponding to the 𝑞th pixel in the search neigh-
borhood 𝑆 for the whole image 𝐹. Equation (18) can be
efficiently implemented by FFT as follows:

𝐷𝑎 (𝑠𝑞) = IFFT ((FFT (𝐺))
∗
∙ (FFT (𝐹𝑠𝑞

))) . (19)

Step 4. Compute the exponential Gaussian weighted Euclid-
ian distance image 𝑊̃(𝑠𝑞), which is matrix case consistent
with 𝑊̃(𝑖, 𝑠𝑖,𝑞) in (6).

Step 5. Then, repeat Steps 1–4 and compute all the 𝑊̃(𝑠𝑞), 1 ≤

𝑠𝑞 ≤ 𝐾.

Step 6. Compute the normalization factor image 𝑍, which is
matrix case consistent with 𝑍(𝑖) in (5).

Step 7. Compute the weights 𝑊(𝑠𝑞), which is matrix case
consistent with𝑊(𝑖, 𝑠𝑖,𝑞) in (4).This step can be implemented
by an element-wise division operation.

Step 8. Compute the processed NLM(𝐹) in (3).

3.3. Symmetry Property. Note that the computational cost of
Step 5 can be further reduced by exploiting the symmetry
property of the v𝑞; that is,

v𝑞 = −v(𝐾−𝑞+1), (20)

where v(𝐾−𝑞+1) denotes the (𝐾 − 𝑞 + 1)th translation vector.
The symmetry property is shown in Figure 3.

Thus, when we calculate the 𝑞th weights 𝑊̃(𝑠𝑞) for the
image, the (𝐾 − 𝑞 + 1)th weights 𝑊̃(𝑠(𝐾−𝑞+1)) of the image
are also meanwhile obtained as a secondary product, which
saves the computational cost by one half.

Specifically, when the kernel 𝑃𝑠𝑞 is employed to yield the
𝑞th differential image 𝐹̃𝑠𝑞 according to (14), the (𝐾 − 𝑞 + 1)th
differential image 𝐹̃𝑠(𝐾−𝑞+1)

is achieved by means of (20) as
follows:

𝐹̃𝑠(𝐾−𝑞+1)
= 𝐹v(𝐾−𝑞+1) − 𝐹 = 𝐹−v𝑞 − 𝐹 = − (𝐹v𝑞 − 𝐹) . (21)

Next, when 𝐹𝑠𝑞
is calculated by (17), 𝐹𝑠(𝐾−𝑞+1) is also

meanwhile achieved by

𝐹𝑠(𝐾−𝑞+1)
= 𝐹̃𝑠(𝐾−𝑞+1)

∙ 𝐹̃𝑠(𝐾−𝑞+1)
. (22)

In Steps 3-4, only once same operation is implemented,
𝑊̃(𝑠𝑞) and 𝑊̃(𝑠(𝐾−𝑞+1)) are simultaneously obtained.

Intuitively, this can be observed in Figure 3. By means
of k𝑠13 , for each pixel 𝑖 within the image 𝐹, the 13th dif-
ferential image 𝐹̃𝑖,𝑠13

(𝑚) (𝑚 = 1, . . . , 9) is available which

i

−v

v

si,q

si,(K−q+1)

Figure 3: The schematic representation of the symmetry property
for weight calculation.

is corresponding to difference between the red and green
blue rectangle. At the same time, the negative 𝐹̃𝑖,𝑠109

(𝑚)

(𝑚 = 1, . . . , 9) is also available which is corresponding to
the difference between the red and blue rectangle. Following
Steps 3-4, only once operation is implemented, 𝑊̃(𝑖, 𝑠13) and
𝑊̃(𝑖, 𝑠109) are simultaneously obtained.

Therefore, the necessary translation operations in terms
of v𝑞 can be reduced from (𝐾 − 1) to (𝐾 − 1)/2 according to
the symmetry property (see (20)). Thus, the computational
cost will be reduced by one half.

3.4. Computational Complexity. Note also that the differences
between the proposed fast algorithm and the traditional
per-pixel NLM algorithm lie in Steps 1–3. Steps 4 to 8

in the proposed algorithm include the same operations as
those in the original NLM algorithm. So the computational
complexity in these steps is not taken into account in the
following subsection of complexity analysis.

The computational complexity of the proposed algorithm
is analyzed in this section. We assume that FFT and Inverse
Fourier transform (IFFT) need the same computational
complexity. In general, the computational complexity of two-
dimensional FFT for an√𝑀 × √𝑀 image needs approx-
imately (5/9)𝑀 log2𝑀 multiplications and (4/3)𝑀 log2𝑀
additions [18].

Step 1. Computing 𝐹̃𝑠𝑞
in (14) for all 1 ≤ 𝑠𝑞 ≤ (𝐾 − 1)/2

requires (𝐾 − 1)/2 shifts; therefore,𝑀(𝐾−1)/2 additions are
necessary.

Step 2. Computing 𝐹𝑠𝑞 in (17) for all 1 ≤ 𝑞 ≤ (𝐾 − 1)/2 needs
(𝐾 − 1)𝑀/2multiplications.

Step 3. Computing 𝐷𝑎(𝑠𝑞) in (19) for all 1 ≤ 𝑠𝑞 ≤ (𝐾 − 1)/2

involves ((𝐾−1)/2+1) FFTs, (𝐾−1)/2 IFFTs, and (𝐾−1)𝑀/2

multiplications for element-wise multiplications. Therefore,
it needs (5/9)𝑀𝐾 log2𝑀 + (𝐾 − 1)𝑀/2 multiplications and
((4/3) log2𝑀)𝑀𝐾 additions.
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Table 1: The computational complexity of different methods.

Methods Multiplication operation number Addition operation number

Proposed method (
5

9
𝐾 log2𝑀+𝐾 − 1)𝑀 (

4

3
𝐾 log2𝑀+

1

2
(𝐾 − 1))𝑀

Method in [8] 2𝑘𝐾𝑀 (2𝑘 − 1)𝐾𝑀

Method in [11] (
15

9
𝐾 log2𝐾 + 𝐾 + 1)𝑀 (4𝐾 log2𝐾 + 2𝐾 + 4)𝑀 − 1

Table 2: The𝐾min and 𝐿min values for different image sizes.

Image size√𝑀 ×√𝑀 𝑀 𝐾min 𝐿min

256 × 256 65536 40.32 3
512 × 512 262144 64 4
1024 × 1024 1048576 101.59 5

The computational cost of 𝐷𝑎(𝑠𝑞) using the proposed
algorithm, the original algorithm [8], and the FFT based
algorithm [11] are, respectively, given in Table 1. Both the
proposed algorithm and the algorithm of [11] are superior to
the original NLM algorithm in terms of the computational
complexity. According to Table 1, if (23) holds, the complexity
relations in (24) and (25) will also hold:

𝑀 ≤ 𝐾
3
, (23)

(
5

9
𝐾 log2𝑀+𝐾 − 1)𝑀

≤ (
15

9
𝐾 log2𝐾 + 𝐾 + 1)𝑀,

(24)

(
4

3
𝐾 log2𝑀+

1

2
(𝐾 − 1))𝑀

≤ (4𝐾 log2𝐾 + 2𝐾 + 4)𝑀 − 1.

(25)

Here, to satisfy (23), theminimumpixel number in the search
neighborhood 𝐾min will be 3

√𝑀 and that can be used to
deduce the minimal radius 𝐿min of search region. Table 2 lists
the 𝐾min and 𝐿min values according to different image sizes.
These requirements on minimal values can be easily met in
most practical cases; thus, the proposed method is superior
to that of [11].

4. Experiments

In this section, we assess the performance of the proposed
algorithm by conducting experiments with the “Lena” image
with size 512× 512 (Figure 4).The degradation is simulated by
adding zero-mean Gaussian noise with standard deviations
10, 20, and 30, respectively. For Gaussian noise with different
standard deviations, we use different size settings for search
neighborhood 𝑆 and block 𝐵 to obtain the optimal denoising
effect. For the standard deviations 10, 20, and 30, the sizes
of block 𝐵 are set as 3 × 3, 5 × 5, and 7 × 7 and the search
neighborhoods 𝑆 are set as 15 × 15, 17 × 17, and 21 × 21,
respectively. For a fair comparisonwith themethods in [8, 11],
we use the simplified weight calculation strategy based on

Figure 4: The “Lena” image test in the experiment.

the Euclidian distance rather than Gaussian weighted one.
All the experiments are performed in the Matlab R2015a
environment using a PC computer with 16G ROM and
Intel i7 CPU. Our experiments are compared with Buades’s
classical per-pixel algorithm [8] and the Wang’s algorithm
[11].

We conduct quality assessment in terms of peak signal to
noise ratio (PSNR) and structural similarity index measuring
(SSIM) [19]. These quantitative metrics are defined by (26):

PSNR (𝑃, 𝐼)

= 10log10(
𝑃
2
max

(1/𝑚𝑛)∑
𝑚
𝑖=1 ∑
𝑛
𝑗=1 (𝑃𝑖,𝑗 − 𝐼𝑖,𝑗)

2
) ,

SSIM (𝑃, 𝐼) =
1

𝑚𝑛

(2𝜇𝑝𝜇𝑖 + 𝐶1) (2𝜎𝑝𝑖 + 𝐶2)

(𝜇2𝑝 + 𝜇
2
𝑖 + 𝐶1) (𝜎

2
𝑝 + 𝜎
2
𝑖 + 𝐶2)

,

(26)

where 𝜇𝑝 and 𝜇𝑖 are themeans of the 8× 8 square window and
𝑚 and 𝑛 are the image size. 𝜎𝑝 and 𝜎𝑖 are the corresponding
standard deviations and 𝜎𝑝𝑖 is the corresponding covariance.
𝐶1 and 𝐶2 are constant and set according to [19].

The experiments results are reported in Table 3. We can
note that the proposed algorithm leads to a very significant
decrease in computation cost. Because all the methods are
based on the same Euclidean distance, the three different
methods yield the same values of PSNR and SSIM in this
table.
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Table 3: The experiment results with different methods.

𝜎 PSNR SSIM
Time (seconds)

Method in [8] Method in [10] Proposed
method

10 33.35 0.89 306.74 31.51 4.86
20 29.73 0.80 373.44 34.72 6.76
30 27.96 0.77 556.84 41.07 10.74

5. Conclusion and Discussion

In this paper, we proposed a correlation based strategy to
accelerate NLM algorithms. This method filters the whole
image simultaneously instead of filtering pixel by pixel as the
original NLM one. This new approach shows that both the
computational complexity and the running time are greatly
reduced when compared to the original NLM method [8]
and the method reported in [11]. The acceleration method
in [11] has to be applied using the simplified Euclidean
distance but the proposed approach can overcome this limit
by effectively calculating the Gaussian kernel convolution in
(18). Our future work will consider its parallelization using
GPU techniques and will address applications in medical
image processing such as low-dose CT scanner [20–22] and
also color image processing [23–25].

Recently, the collaborative filtering algorithms, such as
the BM3D algorithm (block matching and 3D filtering
algorithm), which are extension of the general concepts of
grouping and block matching from the NLM, have shown
the superior denoising performance. These are described in
[26] and applied in [27] to complex data sets with good
results. However, the method also encounters the problem
of the large computational complexity costed to group. The
application of our proposed correlation based strategy can
simply deal with the problem. Actually, the grouping process
is consistent with the process of weights’ calculation within
NLM algorithm. Thereby, our method can be employed to
group. In addition, because of the existence of noise, the
tradition grouping strategy is easily disturbed [26, 27]. Our
method can overcome the issue to a large extent to enhance
grouping in terms of the adjustment of the Gaussian filtering
kernel employed in the NLM algorithm (see (18)).

Eventually, referring to Table 3, it can be observed that
the computational time increases versus the augment of noise
standard deviation.This is because, for larger noise corrupted
image, a larger search neighborhood 𝑆 and block 𝐵 are
necessary, and vice versa. Fortunately, the concept of random
resampling mask has been developed in [28, 29], which can
lower the noise standard deviation. Thus, the random mask
prefiltering helps to reduce the computational time of these
methods, which will be further studied in our future work.
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