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Abstract. 
The main aim in this paper is to use all the possible arrangements of objects such that  of them are equal to 1 and  (the others) of them are equal to 2, in order to generalize the definitions of Riemann-Liouville and Caputo fractional derivatives (about order ) for a fuzzy-valued function. Also, we find fuzzy Laplace transforms for Riemann-Liouville and Caputo fractional derivatives about the general fractional order  under H-differentiability. Some fuzzy fractional initial value problems (FFIVPs) are solved using the above two generalizations.



1. Introduction
Fuzzy Fractional Differential Equations (FFDEs) can offer a more comprehensive account of the process or phenomenon. This has recently captured much attention in FFDEs. As the derivative of a function is defined in the sense of Riemann-Liouville, Grünwald-Letnikov, or Caputo in fractional calculus, the used derivative is to be specified and defined in FFDEs as well [1].
Many researchers have worked on the field of Fuzzy Fractional Differential Equations (FFDEs); for example, Salahshour et al. [2] dealt with the solutions of FFDEs under Riemann-Liouville H-differentiability by fuzzy Laplace transforms; Mazandarani and Kamyad [1] presented the solution to FFIVP under Caputo-type fuzzy fractional derivatives by a modified fractional Euler method; Wu and Baleanu [3] proposed a novel modification of the variational iteration method (VIM) by means of the Laplace transform; they extended the method successfully to fractional differential equations; Ahmadian et al. [4] reveal a computational method based on using a Tau method with Jacobi polynomials for the solution of fuzzy linear fractional differential equations of order , and Allahviranloo et al. [5] introduced the fuzzy Caputo fractional differential equations under the generalized Hukuhara differentiability.
This paper is arranged as follows. Basic concepts are given in Section 2. In Section 3, the general formula of the fuzzy Riemann-Liouville fractional derivatives and the general formula of Laplace transforms of the fuzzy Riemann-Liouville fractional derivatives for a fuzzy-valued function  are found. In Section 4, the general formula of the fuzzy Caputo fractional derivatives and the general formula of Laplace transforms of the fuzzy Caputo fractional derivatives for a fuzzy-valued function  are found. In Section 5, conclusions are drawn.
2. Basic Concepts
In this section, we give the basic concepts which are needed in the next sections. We denote  as the space of all continuous fuzzy-valued functions on . Also, we denote the space of all Lebesgue integrable fuzzy-valued functions on the bounded interval  by .
Theorem 1 (see [6]).  Let  be a positive integer. Let  be continuous on ;  is the class of piecewise continuous functions on  and integrable on any finite subinterval of  and let  Then, one finds the following: 
 If  is of class C, then and 
 if  is continuous on , then for where 
Definition 2 (see [7]). A fuzzy number  in parametric form is a pair  of functions ,  , which satisfy the following requirements.(1) is a bounded nondecreasing left continuous function in  and right continuous at 0.(2) is a bounded nonincreasing left continuous function in  and right continuous at 0.(3)Consider ,  .We denote the set of all real numbers by  and the set of all fuzzy numbers on  is indicated by .
Definition 3 (see [8]). Let . If there exists  such that , then  is called the H-difference of  and , and it is denoted by . The sign “” always stands for H-difference and also note that .
Definition 4 (see [9]). Let  be continuous fuzzy-valued function; suppose that  is improper fuzzy Rimann-integrable on  then  is called fuzzy Laplace transforms and is denoted as , .
We havealso by using the definition of classical Laplace transform:then, we follow:
Definition 5 (see [2]). Let . The fuzzy Riemann-Liouville integral of fuzzy-valued function  is defined as follows:
3. Generalization of Fuzzy Laplace Transforms of the Fuzzy Riemann-Liouville Fractional Derivatives of Order 
In this section, we define Riemann-Liouville fractional derivatives of the general fractional order  and we find fuzzy Laplace transforms for Riemann-Liouville fractional derivatives of the general fractional order  for fuzzy-valued function  under H-differentiability.
Definition 6. Let , and  and  are values of  rounded up and down to the nearest integer number, respectively. One can see that , and the functions  and  are defined as:for , such that  are all the possible arrangements of  objects which have the number given in the rule:where  of them equal 1 (meaning Riemann-Liouville type derivative in the first form) and  of them equal 2 (meaning Riemann-Liouville type derivative in the second form) and .  is the Riemann-Liouville type fuzzy fractional differentiable function of order , , at , if there exists an element  such that for all  and for  sufficiently near zero. Then:  If , then  If , thenfor ,  , such that  are all the possible arrangements of  objects which have the number given by the rule:If the fuzzy-valued function  is differentiable as in Definition 6 cases defined in (11), it is the Riemann-Liouville type differentiable in the first form and denoted by . If  is differentiable as in Definition 6 cases defined in (12), it is the Riemann-Liouville type differentiable in the second form and denoted by .
We note that if we take  in Definition 6 we get Definition  3.2 [2] which is introduced by Salahshour et al.
Theorem 7.  Let  be a fuzzy-valued function such that  for , , and . Suppose that  and  is the number of repetitions of number 2 among  for ,  , say, , such that ; that is,  and . Then, one has the following:  If  is an even number, then If  is an odd number, thenwhere 
Proof. Suppose that  is an even number, and then , . Now, we have two probabilities as follows.
The first probability is  is the Riemann-Liouville type fuzzy fractional differentiable function in the first form (), and then from (11) of Definition 6, we have:Multiplying both sides by , , we obtain:By taking  on both sides of the above equations, we get:Now, since  is equal to the limits defined in (8) of Definition 6, then by applying (8) for  times, we getSince  is equal to the limits defined in (9) of Definition 6, then by applying (9) once, we get:Since  is equal to the limits defined in (8) of Definition 6, then by applying (8) for  times, we get:Since  is equal to the limits defined in (9) of Definition 6, then by applying (9) once, we get:In other words, from (23) we note that, after applying (8) and (9) for any even number from , we will get an equation similar to (23). Therefore, for , we have:since  is an even number.
Finally, since  is equal to the limits defined in (8) of Definition 6, then by applying (8) for  times, we get:Then,Substituting (26) in (19) yields the following:The second probability is  is the Riemann-Liouville type fuzzy fractional differentiable function in the second form (), and then, by applying (12) of Definition 6, we can getSince  is an even number, then by replacing  by  in (24), we get:Similarly, by applying (8)  times for  and (9) once for , we get:Finally, since  is equal to the limits defined in (8) of Definition 6, then, by applying (8) for  times, we get:Then,Substituting (32) in (28) yields:If  is an odd number, the proof is similar.
We note that if we take  in Theorem 7, we get Theorem  3.2 [2] which is found by Salahshour et al.
Corollary 8.  Let  be a fuzzy-valued function and  for  and . Suppose that  and  is the number of repetitions of number 2 among  for ,  . Then, one has the following. 
If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for If  is -differentiable fuzzy-valued function, then for where 
Theorem 9.  Suppose that  is fuzzy-valued function;  for . One supposes that  and  is the number of repetitions of 2 among , say, , such that ; that is,  and . Then, one has the following:  If  is an even number, we have:such that  If  is an odd number, we have:such that 
Proof. By  we mean . Suppose that  is an odd number; then, from Theorem 7, when , we get:Therefore, we get:Then, from (54), we get:We know from Laplace transform of the Riemann-Liouville fractional derivative of order  thatThe above equation can be written as:In a similar manner, we can get:Since  and  is an odd number, then we have the following equations:The last one of the above equations yields from Theorem 7 because  is an odd number. Using (57), (58), and the above equations, (55) becomes:where  is defined as in (52).
If  is an even number, the proof is similar.
We note that if we take  in Theorem 9, we get Theorem  4.4 [2] which is found by Salahshour et al.
Corollary 10.  Suppose that . One supposes that . Then, one finds the following. 
If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then 
Example 11. Consider the following FFIVP:We note thatBy taking fuzzy Laplace transform for both sides of (69), we getNow, by using Theorem 9 when  we have  cases as follows.
Case 1. Let  be -differentiable. By using Theorem 9, when  (even), (72) becomesThen, we getThe solution of FFIVP (69) is as follows:
Case 2. Let  be -differentiable. By using Theorem 9, when  (odd), (72) becomesThen, we get:The solution of FFIVP (69) is as follows:
Case 3. Let  be -differentiable. By using Theorem 9, when  (odd), (72) becomes:Then, we get:The solution of FFIVP (69) is as follows:
Case 4. Let  be -differentiable. By using Theorem 9, when  (even), (72) becomes:Then, we get:The solution of FFIVP (69) is as follows:
4. Generalization of Fuzzy Laplace Transforms of the Fuzzy Caputo Fractional Derivatives of Order 
In this section, we define Caputo fractional derivatives of the general fractional order  and we find fuzzy Laplace transforms for Caputo fractional derivatives of the general fractional order  for fuzzy-valued function  under H-differentiability.
Remark 12. To get Caputo type fuzzy fractional derivatives of order  for , we takeinstead of  in Definition 6.
We note that if we take  in Remark 12, we get Definition  3.1 [1] which is introduced by Mazandarani and Kamyad.
Theorem 13.  Let  be a fuzzy-valued function such that  for , , and  is defined as in (85). 
Suppose that  and  is the number of repetitions of number 2 among  for , , say, , such that ; that is,  and . Then, one can find the following:  If  is an even number, then If  is an odd number, thenwhere 
Proof. Let  be an even number. If we make the same steps in the proof of Theorem 7 when  is an even number, we getwhere .
Thus,By using Definition 5, we have:where  and  are the Riemann-Liouville fractional integrals of the functions  and  at , respectively. By using (b) of Theorem 1 with , , and the equation , we get:Thus,If  is an odd number, the proof is similar.
We note that if we take  () in Theorem 13 we get Theorem  3.1 [1] which is found by Mazandarani and Kamyad.
Theorem 14.  Suppose that  is fuzzy-valued function  for . One supposes that  and  is the number of repetitions of 2 among , say, , such that ; that is,  and . Then, one has the following. 
If  is an even number, we have: such that If  is an odd number, we have: such that 
Proof. By  we mean . Suppose that  is an odd number, and then from Theorem 13, when , we get:Therefore, we get:Then, from (99), we get:We know from Laplace transform of the Caputo fractional derivative of order  thatThe above equation can be written as:In a similar manner, we can get:Since  and  is an odd number, we have the following equations:The last one of the equations in (104) yields because  is an odd number. Using (102), (103), and (104); then (100) becomes:where  is defined as (97).
If  is an even number, the proof is similar.
Corollary 15.  Suppose that . One supposes that . Then:  If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then If  is -differentiable fuzzy-valued function, then
Example 16. Consider the following FFIVP:We note that:By taking fuzzy Laplace transform for both sides of (114), we get:Now, by using Theorem 14 when  we have  cases as follows.
Case 1. Let  be -differentiable fuzzy-valued function. By using Theorem 14, when  (even), (117) becomes:Then, we get:The solution of the above system isThe solution of FFIVP (114) is as follows:where  denotes the Mittag-Leffler function.
Case 2. Let  be -differentiable fuzzy-valued function. By using Theorem 14, when  (odd), (117) becomes:Then, we get:The solution of FFIVP (114) is as follows:
5. Conclusions
The general formulas for fuzzy Riemann-Liouville and Caputo fractional derivatives about the general order  for fuzzy-valued function  are found by using all the possible arrangements of objects such that  of them equal 1 and  (the others) of them equal 2. Also, the general formulas for fuzzy Laplace transforms of Riemann-Liouville and Caputo fractional derivatives about the general order  are found under Hukuhara difference (H-difference).
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