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During the last years, kriging has become one of the most popular methods in computer simulation andmachine learning. Kriging
models have been successfully used in many engineering applications, to approximate expensive simulation models. When many
input variables are used, kriging is inefficient mainly due to an exorbitant computational time required during its construction. To
handle high-dimensional problems (100+), one method is recently proposed that combines kriging with the Partial Least Squares
technique, the so-called KPLS model. This method has shown interesting results in terms of saving CPU time required to build
model while maintaining sufficient accuracy, on both academic and industrial problems. However, KPLS has provided a poor
accuracy compared to conventional kriging on multimodal functions. To handle this issue, this paper proposes adding a new step
during the construction of KPLS to improve its accuracy for multimodal functions. When the exponential covariance functions
are used, this step is based on simple identification between the covariance function of KPLS and kriging. The developed method
is validated especially by using a multimodal academic function, known as Griewank function in the literature, and we show the
gain in terms of accuracy and computer time by comparing with KPLS and kriging.

1. Introduction

During the last years, the kriging model [1–4], which is
referred to as the Gaussian process model [5], has become
one of the most popular methods in computer simulation
and machine learning. It is used as a substitute of high-
fidelity codes representing physical phenomena and aims to
reduce the computational time of a particular process. For
instance, the kriging model is used successfully in several
optimization problems [6–11]. Kriging is not well adapted to
high-dimensional problem, principally due to large matrix
inversion problems. In fact, the krigingmodel becomesmuch
time consuming when a large number of input variables are
used since a large number of sampling points are required.

Indeed, it is recommended in [12] to use 10𝑑 sampling
points, with 𝑑 the number of dimensions, for obtaining a
good accuracy of the kriging model. As a result, we need
to increase the size of the kriging covariance matrix which
becomes computationally very expensive to invert.Moreover,
this inversion’s problem induces difficulty in the classical
hyperparameters estimation through themaximization of the
likelihood function.

A recentmethod, called KPLS [13], is developed to reduce
computational time which uses, during a construction of the
kriging model, the dimensional reduction method “Partial
Least Squares” (PLS). This method is able to reduce the
number of hyperparameters of a kriging model, such that
their number becomes equal to the number of principal
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components retained by the PLS method. The KPLS method
is thus able to rapidly build a kriging model for high-
dimensional problems (100+) while maintaining a good
accuracy. However, it has been shown in [13] that the KPLS
model is less accurate than the kriging model in many cases,
in particular for multimodal functions.

In this paper, we propose an extra step that supplements
[13] in order to improve its accuracy. Under hypothesis that
kernels used for building the KPLS model are of exponential
type with the same form (all Gaussian kernels, e.g.), we
choose the hyperparameters found by the KPLS model as
an initial point to optimize the likelihood function of a
conventional kriging model. In fact, this approach is per-
formed by identifying the covariance function of the KPLS
model as a covariance function of a kriging model. The fact
of considering the identified kriging model, instead of the
KPLS model, leads to extending the search space where the
hyperparameters are defined and thus tomaking the resulting
model more flexible than the KPLS model.

This paper is organized in 3 main sections. In Section 2,
we present a review of the KPLS model. In Section 3, we
discuss our new approach under the hypothesis needed for its
applicability. Finally, numerical results are shown to confirm
the efficiency of our method followed by a summary of what
we have achieved.

2. Construction of KPLS

In this section, we introduce the notation and describe the
theory behind the construction of the KPLS model. Assume
that we have evaluated a cost deterministic function of 𝑛
points x(𝑖) (𝑖 = 1, . . . , 𝑛) with x(𝑖) = [𝑥(𝑖)1 , . . . , 𝑥

(𝑖)

𝑑
] ∈ 𝐵 ⊂

R𝑑, and we denote X by the matrix [x(1)𝑡, . . . , x(𝑛)𝑡]𝑡. For
simplicity, 𝐵 is considered to be a hypercube expressed by
the product between intervals of each direction space; that
is, 𝐵 = ∏

𝑑

𝑗=1[𝑎𝑗, 𝑏𝑗], where 𝑎𝑗, 𝑏𝑗 ∈ R with 𝑎𝑗 ≤ 𝑏𝑗 for
𝑗 = 1, . . . , 𝑑. Simulating these 𝑛 inputs gives the outputs
y = [𝑦(1), . . . , 𝑦(𝑛)]𝑡 with 𝑦(𝑖) = 𝑦(x(𝑖)), for 𝑖 = 1, . . . , 𝑛.

2.1. Construction of the Kriging Model. For building the
kriging model, we assume that the deterministic response
𝑦(x) is realization of a stochastic process [14–17]:

𝑌 (x) = 𝛽0 + 𝑍 (x) . (1)

The presented formula, with 𝛽0 an unknown constant, corre-
sponds to ordinary kriging [8] which is a particular case of
universal kriging [15].The stochastic term𝑍(x) is considered
as realization of a stationaryGaussian process withE[𝑍(x)] =
0 and a covariance function, also called kernel function, given
by

Cov (𝑍 (x) , 𝑍 (x)) = 𝑘 (x, x) = 𝜎2𝑟 (x, x) = 𝜎2𝑟xx ,

∀x, x ∈ 𝐵,
(2)

where 𝜎2 is the process variance and 𝑟xx is the correlation
function between x and x. However, the correlation function

𝑟 depends on hyperparameters 𝜃 which are considered to
be known. We also denote the 𝑛 × 1 vector as rxX =

[𝑟xx(1) , . . . , 𝑟xx(𝑛)]
𝑡 and the 𝑛 × 𝑛 correlation matrix as R =

[rx(1)X, . . . , rx(𝑛)X]. We use �̂�(x) to denote the prediction of
the true function 𝑦(x). Under the hypothesis above, the best
linear unbiased predictor for 𝑦(x), given the observations y,
is

�̂� (x) = 𝛽0 + r
𝑡

xXR
−1
(y − 𝛽01) , (3)

where 1 denotes an 𝑛-vector of ones and

𝛽0 = (1
𝑡R−11)

−1
1𝑡R−1y. (4)

In addition, the estimation of 𝜎2 is given by

�̂�
2
=
1

𝑛
(y − 1𝛽0)

𝑡
R−1 (y − 1𝛽0) . (5)

Moreover, ordinary kriging provides an estimate of the
variance of the prediction, which is given by

𝑠
2
(x) = �̂�2 (1 − r𝑡xXR

−1rxX) . (6)

Note that the assumption of a known covariance function
with known parameters 𝜃 is unrealistic in reality and they
are often unknown. For this reason, the covariance func-
tion is typically chosen from among a parametric family
of kernels. In this work, only the covariance functions of
exponential type are considered, in particular the Gaussian
kernel. Indeed, theGaussian kernel is themost popular kernel
in kriging metamodels of simulation models, which is given
by

𝑘 (x, x) = 𝜎2
𝑑

∏

𝑖=1

exp (−𝜃𝑖 (𝑥𝑖 − 𝑥


𝑖)
2
) , ∀𝜃𝑖 ∈ R

+
. (7)

We note that the parameters 𝜃𝑖, for 𝑖 = 1, . . . , 𝑑, can be
interpreted as measuring how strongly the input variables
𝑥1, . . . , 𝑥𝑑, respectively, affect the output 𝑦. If 𝜃𝑖 is very large,
the kernel 𝑘(x, x) given by (7) tends to zero and thus leads to a
low correlation. In fact, we see in Figure 1 how the correlation
curve rapidly varies from a point to another when 𝜃 = 10.

However, the estimator of the kriging parameters (𝛽0, �̂�
2,

and 𝜃1, . . . , 𝜃𝑑) makes the kriging predictor, given by (3),
nonlinear and makes the estimated predictor variance, given
by (6), biased. We note that the vector r and the matrix R
should get hats above but it is ignored in practice [18].

2.2. Partial Least Squares. The PLS method is a statisti-
cal method which searches out the best multidimensional
direction X that explains the characteristics of the output
y. It finds a linear relationship between input variables and
output variable by projecting input variables onto principal
components, also called latent variables. The PLS technique
reduces dimension and reveals how inputs depend on output.
In the following, we use ℎ to denote the number of principal
components retained which are a lot lower than 𝑑 (ℎ ≪
𝑑); ℎ does not generally exceed 4, in practice. In addition,
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Figure 1: Theta smoothness can be tuned to adapt spatial influence
to our problem.Themagnitude of 𝜃 dictates howquickly the squared
exponential function variates.

the principal components can be computed sequentially.
In fact, the principal component t(𝑙), for 𝑙 = 1, . . . , ℎ, is
computed by seeking the best directionw(𝑙) whichmaximizes
the squared covariance between t(𝑙) = X(𝑙−1)w(𝑙) and y(𝑙−1):

w(𝑙) =
{

{

{

argmax
w(𝑙)

w(𝑙)𝑡X(𝑙−1)𝑡y(𝑙−1)y(𝑙−1)𝑡X(𝑙−1)w(𝑙)

such that w(𝑙)𝑡w(𝑙) = 1,
(8)

where X = X(0), y = y(0), and, for 𝑙 = 1, . . . , ℎ, X(𝑙) and y(𝑙) are
the residualmatrix from the local regression ofX(𝑙−1) onto the
principal component t(𝑙) and from the local regression of y(𝑙)

onto the principal component t(𝑙), respectively, such that

X(𝑙) = X(𝑙−1) − t(𝑙)p(𝑙),

y(𝑙) = y(𝑙−1) − 𝑐𝑙t
(𝑙)
,

(9)

where p(𝑙) (a 1 × 𝑑 vector) and 𝑐𝑙 (a coefficient) contain the
regression coefficients. For more details of how PLS method
works, please see [19–21].

The principal components represent the new coordinate
system obtained upon rotating the original system with axes,
𝑥1, . . . , 𝑥𝑑 [21]. For 𝑙 = 1, . . . , ℎ, t(𝑙) can be written as

t(𝑙) = X(𝑙−1)w(𝑙) = Xw(𝑙)∗ . (10)

This important relationship is mainly used for developing the
KPLSmodel which is detailed in Section 2.3.The vectorsw(𝑙)∗ ,
for 𝑙 = 1, . . . , ℎ, are given by the following matrix W∗ =
[w(1)∗ , . . . ,w

(ℎ)
∗ ] which is obtained by (for more details, see

[22])

W∗ =W (P𝑡W)
−1
, (11)

whereW = [w(1), . . . ,w(ℎ)] and P = [p(1)𝑡, . . . , p(ℎ)𝑡].

Table 1: Results for tab1 experiment data (24 input variables, output
variables 𝑦3) obtained by using 99 training points, 52 validation
points, and the error given by (18). “Kriging” refers to the ordinary
kriging Optimus solution and “KPLSℎ” and “KPLSℎ+K” refer to
KPLS and KPLS+K with ℎ principal components, respectively. Best
results of the relative error are highlighted in bold type.

Surrogate model RE (%) CPU time

tab1

Kriging 8.97 8.17 s
KPLS1 10.35 0.18 s
KPLS2 10.33 0.42 s
KPLS3 10.41 1.14 s

KPLS1+K 8.77 2.15 s
KPLS2+K 8.72 4.22 s
KPLS3+K 8.73 4.53 s

2.3. Construction of the KPLS Model. The hyperparameters
𝜃 = {𝜃𝑖}, for 𝑖 = 1, . . . , 𝑑, given by (7) are found by maxi-
mum likelihood estimation (MLE) method.Their estimation
becomes more and more expensive when 𝑑 increases. The
vector 𝜃 can be interpreted as measuring how strongly
the variables 𝑥1, . . . , 𝑥𝑑 affect the output 𝑦, respectively.
For building KPLS, coefficients given by vectors w(𝑙)∗ will
be considered as measuring of the influence of the input
variables 𝑥1, . . . , 𝑥𝑑 on the output 𝑦. By some elementary
operations on the kernel functions, we define theKPLS kernel
by

𝑘KPLS1:ℎ (x, x

) =

ℎ

∏

𝑙=1

𝑘𝑙 (𝐹𝑙 (x) , 𝐹𝑙 (x

)) , (12)

where 𝑘𝑙:𝐵 × 𝐵 → R is an isotropic stationary kernel and

𝐹𝑙: 𝐵 → 𝐵

x → [𝑤(𝑙)∗1𝑥1, . . . , 𝑤
(𝑙)

∗𝑑
𝑥𝑑] .

(13)

More details of such construction are given in [13].
Considering the example of the Gaussian kernel given by (7),
we obtain

𝑘 (x, x) = 𝜎2
ℎ

∏

𝑙=1

𝑑

∏

𝑖=1

exp [−𝜃𝑙 (𝑤
(𝑙)

∗𝑖𝑥𝑖 − 𝑤
(𝑙)

∗𝑖𝑥


𝑖)
2
] ,

∀𝜃𝑙 ∈ R
+
.

(14)

Since a small number of principal components are retained,
the estimation of the hyperparameters 𝜃1, . . . , 𝜃ℎ is faster than
the hyperparameters 𝜃1, . . . , 𝜃𝑑 given by (7), where 𝑑 is very
high (100+).

3. Transition from the KPLS Model to
the Kriging Model Using the Exponential
Covariance Functions

In this section, we show that if all kernels 𝑘𝑙, for 𝑙 = 1, . . . , ℎ,
used in (12) are of the exponential type with the same form
(all Gaussian kernels, e.g.), then the kernel 𝑘KPLS1:ℎ given by
(12) will be of the exponential type with the same form as 𝑘𝑙
(Gaussian if all 𝑘𝑙 are Gaussian).
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Table 2: Results of the Griewank function in 20D over the interval [−5, 5]. Ten trials are done for each test (50, 100, 200, and 300 training
points). Best results of the relative error are highlighted in bold type for each case.

Surrogate Statistic 50 points 100 points
Error (%) CPU time Error (%) CPU time

Kriging Mean 0.62 30.43 s 0.43 40.09 s
std 0.03 9.03 s 0.04 11.96 s

KPLS1 Mean 0.54 0.05 s 0.53 0.12 s
std 0.03 0.007 s 0.03 0.02 s

KPLS2 Mean 0.52 0.11 s 0.48 1.04 s
std 0.03 0.05 s 0.04 0.97 s

KPLS3 Mean 0.51 1.27 s 0.46 3.09 s
std 0.03 1.29 s 0.06 3.93 s

KPLS1+K Mean 0.59 1.20 s 0.45 2.42 s
std 0.04 0.16 s 0.07 0.44 s

KPLS2+K Mean 0.58 1.28 s 0.42 3.38 s
std 0.04 0.15 s 0.05 1.06 s

KPLS3+K Mean 0.58 2.45 s 0.41 5.61 s
std 0.03 1.32 s 0.05 3.99 s

Surrogate Statistic 200 points 300 points
Error (%) CPU time Error (%) CPU time

Kriging Mean 0.15 120.74 s 0.16 94.31 s
std 0.02 27.49 s 0.06 21.92 s

KPLS1 Mean 0.48 0.43 s 0.45 0.89 s
std 0.03 0.08 s 0.03 0.02 s

KPLS2 Mean 0.42 1.14 s 0.38 2.45 s
std 0.04 0.92 s 0.04 1 s

KPLS3 Mean 0.37 3.56 s 0.35 3.52 s
std 0.03 2.75 s 0.06 1.38 s

KPLS1+K Mean 0.20 8.00 s 0.17 19.07 s
std 0.04 1.51 s 0.07 3.19 s

KPLS2+K Mean 0.18 9.71 s 0.16 19.89 s
std 0.02 1.29 s 0.05 2.67 s

KPLS3+K Mean 0.16 11.67 s 0.16 20.49 s
std 0.02 3.88 s 0.05 3.46 s

3.1. Proof of the Equivalence between the Kernels of the KPLS
Model and the Kriging Model. Let us define, for 𝑖 = 1, . . . , 𝑑,
𝜂𝑖 = ∑

ℎ

𝑙=1 𝜃𝑙𝑤
(𝑙)

∗𝑖

2
; we have

𝑘1:ℎ (x, x

) =

ℎ

∏

𝑙=1

𝑑

∏

𝑖=1

exp (−𝜃𝑙𝑤
(𝑙)

∗𝑖

2
(𝑥𝑖 − 𝑥



𝑖)
2
)

= exp(
𝑑

∑

𝑖=1

ℎ

∑

𝑙=1

− 𝜃𝑙𝑤
(𝑙)

∗𝑖

2
(𝑥𝑖 − 𝑥



𝑖)
2
)

= exp(
𝑑

∑

𝑖=1

− 𝜂𝑖 (𝑥𝑖 − 𝑥


𝑖)
2
)

=

𝑑

∏

𝑖=1

exp (−𝜂𝑖 (𝑥𝑖 − 𝑥


𝑖)
2
) .

(15)

In the same way, we can show this equivalence for the other
exponential kernels where 𝑝1 = ⋅ ⋅ ⋅ = 𝑝ℎ:

𝑘1:ℎ (x, x

) = 𝜎
2
ℎ

∏

𝑙=1

𝑑

∏

𝑖=1

exp (−𝜃𝑙

𝑤
(𝑙)

∗𝑖 (𝑥𝑖 − 𝑥


𝑖)


𝑝
𝑙

) . (16)

However, we must caution that the above proof shows
equivalence between the covariance functions of KPLS and
kriging only on a subspace domain. More precisely, the
KPLS covariance function is defined in a subspace from R+

𝑑

whereas the kriging covariance function is defined in the
complete R+

𝑑 domain. Thus, our original idea is to extend
the space where the KPLS covariance function is defined for
the complete space R+𝑑.

3.2. A New Step during the Construction of the KPLS Model:
KPLS+K. By considering the equivalence shown in the last
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Table 3: Results of the Griewank function in 60D over the interval [−5, 5]. Ten trials are done for each test (50, 100, 200, and 300 training
points). Best results of the relative error are highlighted in bold type for each case.

Surrogate Statistic 50 points 100 points
Error (%) CPU time Error (%) CPU time

Kriging Mean 1.39 560.19 s 1.04 920.41 s
std 0.15 200.27 s 0.05 231.34 s

KPLS1 Mean 0.92 0.07 s 0.87 0.10 s
std 0.02 0.02 s 0.02 0.007 s

KPLS2 Mean 0.91 0.43 s 0.87 0.66 s
std 0.03 0.54 s 0.02 1.06 s

KPLS3 Mean 0.92 1.57 s 0.86 3.87 s
std 0.04 1.98 s 0.02 5.34 s

KPLS1+K Mean 0.99 2.14 s 0.90 2.90 s
std 0.03 0.72 s 0.03 0.03 s

KPLS2+K Mean 0.98 2.44 s 0.88 3.44 s
std 0.04 0.63 s 0.02 1.06 s

KPLS3+K Mean 0.99 3.82 s 0.88 6.68 s
std 0.05 2.33 s 0.03 5.34 s

Surrogate Statistic 200 points 300 points
Error (%) CPU time Error (%) CPU time

Kriging Mean 0.83 2015.39 s 0.65 2894.56 s
std 0.04 239.11 s 0.03 728.48 s

KPLS1 Mean 0.82 0.37 s 0.79 0.86 s
std 0.02 0.02 s 0.03 0.04 s

KPLS2 Mean 0.78 2.92 s 0.74 1.85 s
std 0.02 2.57 s 0.03 0.51 s

KPLS3 Mean 0.78 6.73 s 0.70 20.01 s
std 0.02 10.94 s 0.03 26.59 s

KPLS1+K Mean 0.76 9.88 s 0.66 22.00 s
std 0.03 0.06 s 0.02 0.15 s

KPLS2+K Mean 0.75 12.38 s 0.60 23.03 s
std 0.03 2.56 s 0.03 0.50 s

KPLS3+K Mean 0.74 16.18 s 0.61 41.13 s
std 0.03 10.95 s 0.03 26.59 s

section, we propose to add a new step during the con-
struction of the KPLS model. This step occurs just after
the 𝜃𝑙-estimation, for 𝑙 = 1, . . . , ℎ. It involves making local
optimization of the likelihood function of the kriging model
equivalent to the KPLS model. Moreover, we use 𝜂𝑖 =
∑
ℎ

𝑙=1 𝜃𝑙𝑤
(𝑙)

∗𝑖

2
, for 𝑖 = 1, . . . , 𝑑, as a starting point of the local

optimization by considering the solution 𝜃𝑙, for 𝑙 = 1, . . . , ℎ,
found by the KPLS method. Thus, this optimization is done
in the complete space, where the vector 𝜂 = {𝜂𝑖} ∈ R

+𝑑.
This approach, called KPLS+K, aims to improve the MLE

of the kriging model equivalent to the associated KPLS
model. In fact, the local optimization of the equivalent
kriging offers more possibilities for improving the MLE,
by considering a wider search space, and thus it will be
able to correct the estimation of many directions. These
directions are represented by 𝜂𝑖 for the 𝑖th direction which is
badly estimated by the KPLSmethod. Because estimating the
equivalent kriging hyperparameters can be time consuming,

especially when 𝑑 is large, we improve the MLE by a local
optimization at the cost of a slight increase of computational
time.

Figure 2 recalls the principal stages of building a KPLS+K
model.

4. Numerical Simulations

We now focus on the performance of KPLS+K by comparing
it with the KPLS model and the ordinary kriging model.
For this purpose, we use the academic function, named
Griewank, over the interval [−5, 5] which is studied in [13].
20 and 60 dimensions are considered for this function. In
addition, an engineering example, done at Snecma for a
multidisciplinary optimization, is used.This engineering case
is chosen since it was shown in [13] that KPLS is less accurate
than ordinary kriging. The Gaussian kernel is used for all
surrogatemodels used herein, that is, ordinary kriging, KPLS,
and KPLS+K. For KPLS and KPLS+K using ℎ principal
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(1) To choose an exponential kernel function

(2) To define the covariance function
given by (12)

for i = 1, . . . , d, by using the starting
(4) To optimize locally the parameters 𝜂i,

(3) To estimate the parameters
𝜃l, for l = 1, . . . , h

point 𝜂i := lw
(l)2

∗i (Gaussian example)∑h

l=1
𝜃

Figure 2: Principal stages for building a KPLS+K model.
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Figure 3: A 2D Griewank function over the interval [−5, 5].

components, for ℎ ≤ 𝑑, will be denoted by KPLSℎ and
KPLSℎ+K, respectively, and this ℎ is varied from 1 to 3. The
Python toolbox Scikit-learn v.014 [23] is used to achieve the
proposed numerical tests, except for ordinary kriging used on
the industrial case, where the Optimus version is used. The
training and the validation points used in [13] are reused in
the following.

4.1. Griewank Function over the Interval [−5, 5]. The Grie-
wank function [13, 24] is defined by

𝑦Griewank (x) =
𝑑

∑

𝑖=1

𝑥
2
𝑖

4000
−

𝑑

∏

𝑖=1

cos(
𝑥𝑖

√𝑖

) + 1,

−5 ≤ 𝑥𝑖 ≤ 5, for 𝑖 = 1, . . . , 𝑑.

(17)

Figure 3 shows the degree of complexity of such function
which is very multimodal. As in [13], we consider 𝑑 = 20 and
𝑑 = 60 input variables. For each problem, ten experiments
based on the random Latin-hypercube design are built with
𝑛 (number of sampling points) equal to 50, 100, 200, and 300.

To better visualize the results, boxplots are used to show the
CPU time and the relative error RE given by

Error =

Ŷ − Y2
‖Y‖2

100, (18)

where ‖ ⋅ ‖2 represents the usual 𝐿2 norm and Ŷ and Y
are the vectors containing the prediction and the real values
of 5000 randomly selected validation points for each case.
The mean and the standard error are given in Tables 2 and
3, respectively, in Appendix. However, the results of the
ordinary kriging model and the KPLS model are reported
from [13].

For 20 input variables and 50 sampling points, the
KPLS models always give a more accurate solution than
ordinary kriging and KPLS+K, as shown in Figure 4(a).
Indeed, the best result is given by KPLS3 with a mean of
RE equal to 0.51%. However, the KPLS+K models give more
accurate models than ordinary kriging in this case (0.58% for
KPLS2+K and KPLS3+K versus 0.62% for ordinary kriging).
For the KPLS model, the rate of improvement with respect
to the number of sampling points is less than for ordinary
kriging and KPLS+K (see Figures 4(b)–4(d)). As a result,
KPLSℎ+K, for ℎ = 1, . . . , 3, and ordinary kriging give almost
the same accuracy (≈0.16%) when 300 sampling points are
used (as shown in Figure 4(d)), whereas theKPLSmodels give
a RE of 0.35% as a best result, when ℎ = 3.

Nevertheless, the results shown in Figure 5 indicate that
the KPLS+K models lead to an important reduction in CPU
time for the various number of sampling points compared to
ordinary kriging. For instance, 20.49 s are required for build-
ing KPLS3+K when 300 training points are used, whereas
ordinary kriging is built in 94.31 s; in this case, KPLS3+K
is thus approximately 4 times cheaper than the ordinary
kriging model. Moreover, the computational time required
for building KPLS+K is more stable than the computational
time for building ordinary kriging; standard deviations of
approximately 3 s for KPLS+K and 22 s for the ordinary
kriging model are observed.

For 60 input variables and 50 sampling points, a slight
difference of the results occurs compared to the 20 input
variables case (Figure 6(a)). Indeed, the KPLSmodels remain
always better, with a mean of RE approximately equal to
0.92%, than KPLS+K and ordinary kriging. However, the
KPLS+K models give more accurate results than ordinary
kriging with an accuracy close to that of KPLS (≈0.99%
versus 1.39%). Increasing the number of sampling points,
the accuracy of ordinary kriging becomes better than the
accuracy given by the KPLS models, but it remains less
accurate than for the KPLSℎ+K models, for ℎ = 2 or 3. For
instance, we obtain a mean of RE with 0.60% for KPLS2+K
against 0.65% for ordinary kriging (see Figure 6(d)), when
300 sampling points are used.

As we can observe from Figure 7(d), a very important
reduction in terms of computational time is obtained. Indeed,
a mean time of 2894.56 s is required for building ordinary
kriging, whereas KPLS2+K is built in 23.03 s; KPLS2+K is
approximately 125 times cheaper than ordinary kriging in
this case. In addition, the computational time for building



Mathematical Problems in Engineering 7

KP
LS

1

KP
LS

2

KP
LS

3

O
rd

in
ar

y 
kr

ig
in

g

KP
LS

1
+

K

KP
LS

2
+

K

KP
LS

3
+

K

0.45

0.50

0.55

0.60

0.65

0.70
RE

(a) RE (%) for 20 input variables and 50 sampling points

KP
LS

1

KP
LS

2

KP
LS

3

O
rd

in
ar

y 
kr

ig
in

g

KP
LS

1
+

K

KP
LS

2
+

K

KP
LS

3
+

K

0.30

0.35

0.40

0.45

0.50

0.55

0.60

RE
(b) RE (%) for 20 input variables and 100 sampling points

KP
LS

1

KP
LS

2

KP
LS

3

O
rd

in
ar

y 
kr

ig
in

g

KP
LS

1
+

K

KP
LS

2
+

K

KP
LS

3
+

K

0.1

0.2

0.3

0.4

0.5

RE

(c) RE (%) for 20 input variables and 200 sampling points

KP
LS

1

KP
LS

2

KP
LS

3

O
rd

in
ar

y 
kr

ig
in

g

KP
LS

1
+

K

KP
LS

2
+

K

KP
LS

3
+

K

0.1

0.2

0.3

0.4

0.5

RE

(d) RE (%) for 20 input variables and 300 sampling points

Figure 4: RE of the Griewank function in 20D over the interval [−5, 5]. The experiments are based on the 10-Latin-hypercube design.

KPLS+K is more stable than ordinary kriging, except the
KPLS3+K case; a standard deviation of approximately 0.30 s
for KPLS1+K and KPLS2+K is observed, against 728.48 s
for ordinary kriging. However, the relatively large standard
of deviation of KPLS3+K (26.59 s) is probably due to the
dispersion caused by KPLS3 (26.59 s). But, it remains too
lower than the standard deviation of the ordinary kriging
model.

For the Griewank function over the interval [−5, 5], the
KPLS+K models are slightly more time consuming than the
KPLS models, but they are more accurate, in particular when
the number of observations is greater than the dimension 𝑑,
as is implied by the rule-of-thumb 𝑛 = 10𝑑 in [12].They seem

to performwell compared to the ordinary krigingmodel with
an important gain in terms of saving CPU time.

4.2. Engineering Case. In this section, let us consider the third
output, 𝑦3, from tab1 problem studied in [13]. This test case
is chosen because the KPLS models, from 1 to 3 principal
components, do not perform well (see Table 1). We recall that
this problem contains 24 input variables. 99 training points
and 52 validation points are used and the relative error (RE)
given by (18) is considered.

As we see in Table 1, we improve the accuracy of KPLS
by adding the step for building KPLS+K. This improvement
is verified whatever the number of principal components
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(a) CPU time for 20 input variables and 50 sampling points
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(b) CPU time for 20 input variables and 100 sampling points
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(c) CPU time for 20 input variables and 200 sampling points
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(d) CPU time for 20 input variables and 300 sampling points

Figure 5: CPU time of the Griewank function in 20D over the interval [−5, 5]. The experiments are based on the 10-Latin-hypercube design.

used (1, 2, and 3 principal components). For these three
models, a better accuracy is even found than the ordinary
kriging model. The computational time required to build
KPLS+k is approximately twice lower than the time required
for ordinary kriging.

5. Conclusions

Motivated by the need to accurately approximate high-fidelity
codes rapidly, we develop a new technique for building the
kriging model faster than classical techniques used in litera-
ture. The key idea for such construction relies on the choice
of the start point for optimizing the likelihood function of

the kriging model. For this purpose, we firstly prove equiva-
lence betweenKPLS and kriging when an exponential covari-
ance function is used. After optimizing hyperparameters of
KPLS, we then choose the solution obtained as an initial
point to find the MLE of the equivalent kriging model.
This approach will be applicable only if the kernels used for
building KPLS are of the exponential type with the same
form.

The performance of KPLS+K is verified in the Griewank
function over the interval [−5, 5] with 20 and 60 dimensions
and an industrial case from Snecma, where the KPLS models
do not perform well in terms of accuracy. The results of
KPLS+K have shown a significant improvement in terms of
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Figure 6: RE of the Griewank function in 60D over the interval [−5, 5]. The experiments are based on the 10-Latin-hypercube design.

accuracy compared to the results of KPLS, at the cost of a
slight increase in computational time. We have also seen,
in some cases, that accuracy of KPLS+K is even better than
accuracy given by the ordinary kriging model.

Appendix

Results of Griewank Function in 20D and 60D
over the Interval [−5, 5]

In Tables 2 and 3, the mean and the standard deviation (std)
of the numerical experiments with theGriewank function are
given for 20 and 60 dimensions, respectively.

Symbols and Notation (Matrices and Vectors
Are in Bold Type)

| ⋅ |: Absolute value
R: Set of real numbers
R+: Set of positive real numbers
𝑛: Number of sampling points
𝑑: Dimension
ℎ: Number of principal components

retained
x: A 1 × 𝑑 vector
𝑥𝑖: The 𝑖th element of a vector x
X: A 𝑛 × 𝑑matrix containing sampling

points
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(a) CPU time for 60 input variables and 50 sampling points
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(b) CPU time for 60 input variables and 100 sampling points

KP
LS

1

KP
LS

2

KP
LS

3

O
rd

in
ar

y 
kr

ig
in

g

KP
LS

1
+

K

KP
LS

2
+

K

KP
LS

3
+

K

0

500

1000

1500

2000

2500

Ti
m

e

(c) CPU time for 60 input variables and 200 sampling points
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(d) CPU time for 60 input variables and 300 sampling points

Figure 7: CPU time of the Griewank function in 60D over the interval [−5, 5]. The experiments are based on the 10-Latin-hypercube design.

𝑦(x): The true function 𝑦 performed on the
vector x

y: 𝑛 × 1 vector containing simulation of
X

�̂�(x): The prediction of the true function 𝑦(x)
𝑌(x): A stochastic process
x(𝑖): The 𝑖th training point for 𝑖 = 1, . . . , 𝑛 (a

1 × 𝑑 vector)
w(𝑙): A 𝑑 × 1 vector containing𝑋-weights

given by the 𝑙th PLS-iteration for
𝑙 = 1, . . . , ℎ

X(0): X

X(𝑙−1): Matrix containing residual of the inner
regression of the (𝑙 − 1)th PLS-iteration for
𝑙 = 1, . . . , ℎ

𝑘(⋅, ⋅): A covariance function
x𝑡: Superscript 𝑡 denoting the transpose

operation of the vector x
≈: Approximately sign.

Competing Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



Mathematical Problems in Engineering 11

Acknowledgments

The authors extend their grateful thanks to A. Chiplunkar
from ISAE-SUPAERO, Toulouse, for his careful correction of
the paper.

References

[1] D. Krige, “A statistical approach to some basic mine valuation
problems on the Witwatersrand,” Journal of the Chemical,
Metallurgical and Mining Society, vol. 52, pp. 119–139, 1951.

[2] G. Matheron, “Principles of geostatistics,” Economic Geology,
vol. 58, no. 8, pp. 1246–1266, 1963.

[3] N. Cressie, “Spatial prediction and ordinary kriging,” Mathe-
matical Geology, vol. 20, no. 4, pp. 405–421, 1988.

[4] J. Sacks, S. B. Schiller, and W. J. Welch, “Designs for computer
experiments,” Technometrics, vol. 31, no. 1, pp. 41–47, 1989.

[5] C. E. Rasmussen and C. K. Williams, Gaussian Processes for
Machine Learning, Adaptive Computation and Machine Learn-
ing, MIT Press, Cambridge, Mass, USA, 2006.

[6] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of
Global Optimization, vol. 13, no. 4, pp. 455–492, 1998.

[7] S. Sakata, F. Ashida, and M. Zako, “Structural optimizatiion
using Kriging approximation,” Computer Methods in Applied
Mechanics and Engineering, vol. 192, no. 7-8, pp. 923–939, 2003.

[8] A. Forrester, A. Sobester, and A. Keane, Engineering Design via
SurrogateModelling: A Practical Guide, JohnWiley& Sons, New
York, NY, USA, 2008.

[9] J. Laurenceau, Kriging based response surfaces for aerodynamic
shape optimization [Thesis], Institut National Polytechnique de
Toulouse (INPT), Toulouse, France, 2008.

[10] J. P. C. Kleijnen, W. van Beers, and I. van Nieuwenhuyse, “Con-
strained optimization in expensive simulation: novel approach,”
European Journal of Operational Research, vol. 202, no. 1, pp.
164–174, 2010.

[11] J. P. Kleijnen,W. vanBeers, and I. vanNieuwenhuyse, “Expected
improvement in efficient global optimization through boot-
strapped kriging,” Journal of Global Optimization, vol. 54, no.
1, pp. 59–73, 2012.

[12] J. L. Loeppky, J. Sacks, and W. J. Welch, “Choosing the sample
size of a computer experiment: a practical guide,”Technometrics,
vol. 51, no. 4, pp. 366–376, 2009.

[13] M. A. Bouhlel, N. Bartoli, A. Otsmane, and J. Morlier, “Improv-
ing kriging surrogates of high-dimensional design models
by partial least squares dimension reduction,” Structural and
Multidisciplinary Optimization, vol. 53, no. 5, pp. 935–952, 2016.

[14] J. Sacks,W. J.Welch, T. J. Mitchell, andH. P.Wynn, “Design and
analysis of computer experiments,” Statistical Science, vol. 4, no.
4, pp. 409–435, 1989.

[15] M. Sasena, Flexibility and efficiency enhancements for con-
strained global design optimization with Kriging approximations
[Ph.D. thesis], University of Michigan, 2002.

[16] V. Picheny, D. Ginsbourger, Y. Richet, and G. Caplin, “Quantile-
based optimization of noisy computer experimentswith tunable
precision,” Technometrics, vol. 55, no. 1, pp. 2–13, 2013.

[17] O. Roustant, D. Ginsbourger, and Y. Deville, “DiceKriging,
DiceOptim: two R packages for the analysis of computer
experiments by kriging-based metamodeling and optimiza-
tion,” Journal of Statistical Software, vol. 51, no. 1, pp. 1–55, 2012.

[18] J. P. Kleijnen, Design and Analysis of Simulation Experiments,
vol. 230, Springer, Berlin, Germany, 2015.

[19] I. S. Helland, “On the structure of partial least squares regres-
sion,” Communications in Statistics. Simulation and Computa-
tion, vol. 17, no. 2, pp. 581–607, 1988.

[20] l. E. Frank and J. H. Friedman, “A statistical view of some
chemometrics regression tools,”Technometrics, vol. 35, no. 2, pp.
109–135, 1993.
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