
Research Article
Analysis of Single-Server Queue with Phase-Type Service and
Energy Harvesting

Sergey A. Dudin1 and Moon Ho Lee2

1Department of Applied Mathematics and Computer Science, Belarusian State University, 4 Nezavisimosti Avenue,
220030 Minsk, Belarus
2Division of Electronics Engineering, Chonbuk National University, Jeonju 561-756, Republic of Korea

Correspondence should be addressed to Moon Ho Lee; moonho@jbnu.ac.kr

Received 4 August 2015; Revised 27 January 2016; Accepted 15 February 2016

Academic Editor: Vicent Pla

Copyright © 2016 S. A. Dudin and M. H. Lee. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose a queueing model suitable, for example, for modelling operation of nodes of sensor networks. The sensor node senses
a random field and generates packets to be transmitted to the central node. The sensor node has a battery of a finite capacity
and harvests energy during its operation from outside (using solar cells, wind turbines, piezoelectric cells, etc.). We assume that,
generally speaking, service (transmission) of a packet consists of a random number of phases and implementation of each phase
requires a unit of energy. If the battery becomes empty, transmission is failed. To reduce the probability of forced transmission
termination, we suggest that the packet can be accepted for transmission only when the number of energy units is greater than
or equal to some threshold. Under quite general assumptions about the pattern of the arrival processes of packets and energy, we
compute the stationary distributions of the system states and the waiting time of a packet in the system and numerically analyze
performance measures of the system as functions of the threshold. Validity of Little’s formula and its counterpart is verified.

1. Introduction

The wireless sensor networks technology has great advance-
ment; small and smart wireless sensor networks now can be
used for different complicated and challenging applications.
Wireless sensor networks found applications for environ-
mental monitoring, animal tracking and control, safety, secu-
rity and military purposes, built environment, health, and
so forth; for more details see, for example, Kausar et al. [1].
Nodes of sensor networks have small batteries with limited
power and also have limited computational power and stor-
age space. When the battery of a node is exhausted, it is not
replaced and the node dies.When sufficient number of nodes
die, the network may not be able to perform its designated
task.Thus the life time of a network is an important character-
istic of a sensor network and it is tied up with the life time of a
node. Recent advances in energy harvesting technology have
resulted in the design of new types of sensor nodes which
are able to extract energy from the surrounding environment.
The major sources of energy harvesting include solar, wind,

sound, vibration, thermal, and electromagnetic power. The
concept of extracting ambient energy is to convert harvested
energy from existing environmental sources into electricity
to power sensor nodes; an energy storage device is used
to accumulate such energy. Energy harvesting sensor nodes
have the potential to perpetuate the life time of a battery
through continuous energy harvesting. Thus, a lot of atten-
tion in the literature is devoted to telecommunication systems
with energy harvesting. Recent surveys in this subject are
published inCui et al. [2], Lu et al. [3], Zhang and Lau [4], and
Ulukus et al. [5]. Because it is well known thatmany problems
related to capacity planning, performance evaluation, and
optimization of telecommunication networks can be effec-
tively solved with help of queueing theory, there are a large
number of papers devoted to application of this theory for
analysis of telecommunication networkswith energy harvest-
ing. For background information see, for example, Sharma
et al. [6], Tutuncuoglu and Yener [7], Yang and Ulukus [8],
and Yang and Ulukus [9].
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In the existing literature, it is usually assumed that cus-
tomers (packets) arrive according to the stationary Poisson
process and are buffered if the server is not available at the
customer arrival moment. It is also suggested usually that
harvested energy is slotted to some discrete units where a unit
is the amount of energy which is used to provide service to
one customer. Arriving units of energy are accumulated in the
buffer having a finite capacity. Similar to our model, a model
was recently considered in Gelenbe [10]. The main contribu-
tions of our results in comparison with Gelenbe [10] are as
follows.

(i) It is assumed in Gelenbe [10] and the overwhelming
majority of other papers that the arrival flows of
customers and units of energy are described by the
stationary Poisson processes.This assumption greatly
simplifies the analysis of the model, but it may be
not true in many real life applications. The stationary
Poisson process has a property that the intensity of
arrival is constant. While in modelling operation of
the sensor node of the network designed for moni-
toring the state of some object, arrivals of customers
(signals from detectors of the node) may be quite rare
in normal situation andmay become quite frequent in
security threat situation. The intensity of harvesting
the units of energy may essentially vary depending
on the state of environment of a sensor node. For
example, it may essentially increase when the weather
is sunny or windy and decrease in the opposite case if
the energy is harvested from solar panels or wind
turbines. In our paper, we suggest muchmore general
processes of customers and energy arrivals, namely,
Markovian arrival processes. This allows easily mod-
elling situations when the intensities of arrivals essen-
tially fluctuate.

(ii) It is assumed in Gelenbe [10] that the service time
is equal to zero. If a customer arrives and energy
presents in the system, the customer and one unit
of energy instantaneously leave the system. Here we
assume more general situation. Service of a customer
is not instantaneous. Service lasts during some ran-
dom time. This time is assumed to be having so-
called phase-type (PH) distribution. PH distribution
is much more general than an exponential distribu-
tion, which is popular in the literature. Random time
having such a distribution can be interpreted as the
sum of known or random number of independent
random times (phases), duration of which has an
exponential distribution. Bearing in mind this inter-
pretation, we assume that the unit of energy cor-
responds to amount of energy that is necessary for
implementation of one phase of service. Thus, some
number of energy units is required for service of a
customer and if, at the beginning of some phase of
service, the buffer of energy is empty, service is termi-
nated and the customer in service is forced to perma-
nently leave the system. Thus, the problem of control
by service initiation arises.We assume that the control
strategy is of the threshold type. Some threshold is
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Figure 1: Queueing system under study.

fixed. Service of the customer does not start if the cur-
rent number of energy units in the buffer is less than
this threshold. Evident advantages of such a strategy
are that, under the proper choice of the threshold, it
allows decreasing the probability of forced termina-
tion of service and the waste of energy units spent
during the elapsed service time. Presented in our
paper, results are useful for solving the problem of the
optimal choice of the threshold.

It is worth noting that we assume in our model that
the waiting time of a customer in the buffer is restricted.
This allows taking into account the fact that the packet in a
sensor node should be dropped if it cannot be successfully
transmitted during a specific time interval.

The problem of optimal (e.g., with respect to the loss
probability of a customer) choice of the threshold is far from a
trivial one. If this threshold is too small, many customers are
lost due to the forced service termination caused by the lack of
energy. If this threshold is too large, many customers are lost
due to the restriction of allowed waiting time (impatience).
Thus, careful mathematical analysis is necessary to solve an
optimization problem.

The rest of the paper is organized as follows. In Section 2,
the mathematical model is described. In Section 3, the pro-
cess of the system states is defined and the problem of compu-
tation of the stationary probabilities of the system states is dis-
cussed. Formulas for computation of the performance mea-
sures of the system are presented in Section 4.The problem of
computation of the stationary distribution of thewaiting time
is solved in Section 5. Numerical illustrations are given and
briefly discussed in Section 6. Section 7 concludes the paper.

2. Mathematical Model

We consider a single-server queueing systemwithMarkovian
arrival processes of customers and energy. The structure of
the system under study is presented in Figure 1.

Customers arrive at the system according to the Marko-
vian arrival process. We will code this process as MAP

𝑐
.

Advantage of the MAP pattern of the arrival process com-
paring to a popular in the queueing literature model of the
stationary Poisson process (which is a very particular case of
theMAP) is that theMAP allows taking into account correla-
tion of the successive interarrival times and burstiness typical
for modern telecommunication networks. Arrivals in the
MAP
𝑐
are directed by an irreducible continuous-timeMarkov

chain 𝑤
𝑡
, 𝑡 ≥ 0, with the finite state space {0, 1, . . . ,𝑊}. The

sojourn time of the Markov chain𝑤
𝑡
, 𝑡 ≥ 0, in the state𝑤 has
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an exponential distributionwith the parameter 𝜆
𝑤
,𝑤 = 0,𝑊.

Here, notation such as𝑤 = 0,𝑊means that𝑤 assumes values
from the set {0, 1, . . . ,𝑊}. After this sojourn time expires,
with probability 𝑝

𝑘
(𝑤, 𝑤


) the process 𝑤
𝑡
transits to the state

𝑤
 and 𝑘 customers, 𝑘 = 0, 1, arrive at the system. The

intensities of transitions from one state to another, which are
accompanied by the arrival of 𝑘 customers, are combined to
the square matrices 𝐷

𝑘
, 𝑘 = 0, 1, of size 𝑊 + 1. The matrix

generating function of these matrices is 𝐷(𝑧) = 𝐷
0
+ 𝐷
1
𝑧,

|𝑧| ≤ 1. The matrix 𝐷(1) is an infinitesimal generator of the
process 𝑤

𝑡
, 𝑡 ≥ 0. The stationary distribution vector 𝜃 of this

process satisfies the system of equations 𝜃𝐷(1) = 0, 𝜃e = 1.
Here and throughout this paper, 0 is a zero row vector, and e
denotes unit column vector. In case the dimension of a vector
is not clear from the context, it is indicated as a lower index.

The average intensity 𝜆
𝑐
(fundamental rate) of the MAP

𝑐

is defined by 𝜆
𝑐

= 𝜃𝐷
1
e. The variance V of customers

interarrival time is calculated by

V = 2 (𝜆
𝑐
)
−1

𝜃 (−𝐷
0
)
−1 e − (𝜆

𝑐
)
−2

, (1)

the squared coefficient of the variation 𝑐var is calculated as

𝑐var = 2𝜆
𝑐
𝜃 (−𝐷

0
)
−1 e − 1, (2)

and the coefficient of correlation 𝑐cor of intervals between
successive arrivals is given as

𝑐cor =
((𝜆
𝑐
)
−1

𝜃 (−𝐷
0
)
−1

𝐷
1
(−𝐷
0
)
−1 e − (𝜆

𝑐
)
−2

)

V
.

(3)

For more information about the MAPs and their usefulness
in modelling telecommunication networks see Chakravarthy
[11]. Necessity of careful account of burstiness of the arrival
process in the considered model is explained, as it was men-
tioned above, by the following essential feature of the nodes
of the sensor networks: arrivals of customers (signals from
detectors of the node) may be quite rare in normal situation
(e.g., when there is no danger for the object under protection
or the monitored animals do not move) and may become
quite frequent in security threat situation or situation when
the animals quickly relocate.

Units of energy arrive at the system according to the
Markovian arrival process MAP

𝑒
. Arrivals in the MAP

𝑒
are

directed by an irreducible continuous-time Markov chain V
𝑡
,

𝑡 ≥ 0, with the finite state space {0, 1, . . . , 𝑉}. The MAP
𝑒
is

defined by the matrices𝐻
0
and𝐻

1
. Let us denote the average

intensity of the MAP
𝑒
as 𝜆
𝑒
. The buffer for energy has a finite

capacity𝑁. An energy unit is lost if it arrives when the buffer
is full. Necessity of account of burstiness of the energy arrival
process in the considered model is quite clear and also was
mentioned above.

The service time of a customer for the server has a
PH distribution with an irreducible representation (𝛽, 𝑆).
This service time can be interpreted as the time until the
underlying Markov process 𝑚

𝑡
, 𝑡 ≥ 0, with the finite state

space {1, . . . ,𝑀,𝑀 + 1}, reaches the single absorbing state
𝑀 + 1 conditioned on the fact that the initial state of this
process is selected among the states {1, . . . ,𝑀} according to
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Figure 2: Arriving customer occupies the server.

the probabilistic row vector 𝛽 = (𝛽
1
, . . . , 𝛽

𝑀
). The transition

rates of the process𝑚
𝑡
within the set {1, . . . ,𝑀} are defined by

the subgenerator 𝑆, and the transition rates into the absorbing
state (which leads to service completion) are given by the
entries of the column vector S

0
= −𝑆e.Themean service time

is calculated as 𝑏
1
= 𝛽(−𝑆)

−1e.
The class of PH distributions is dense (in the sense of

weak convergence) in the set of all probability distributions
of nonnegative variables. Thus, the PH distribution is very
general and can be used for approximation of an arbitrary
distribution; see Asmussen [12].

It is worth stressing that the assumptions made in our
paper about the arrival processes of customers and energy
units and the service process are quite realistic and are much
weaker than the standard in the queueing literature assump-
tions that the flows are described by the stationary Poisson
arrival processes and the service times are exponentially dis-
tributed.The single disadvantage of our assumptions is as fol-
lows.The stationary Poisson arrival process and the exponen-
tial distribution are defined by one parameter. Thus, estima-
tion of this parameter based on real data is extremely simple.
Estimation of parameters of the MAP and PH is much more
difficult problem. But this problem is successfully solved in
the relevant literature. For references see, for example, Buch-
holz et al. [13], Buchholz and Panchenko [14], and Okamura
and Dohi [15]. Importance of the use of the MAP and PH for
modelling of real sensor nodes operation where the arrival
process of signals is correlatedwill be illustrated in the section
devoted to numerical results. Correlation drastically changes
the performance measures of the system and its ignorance,
which occurs when the arrival process is assumed to be the
stationary Poisson process, leads to poor prediction of the
system performance measures.

We assume that implementation of each phase of service
requires a unit of energy. The unit, if any, leaves the buffer
of energy at the phase beginning moment. If the buffer of
energy is empty at such a moment, during service, service of
a customer is interrupted and the customer is lost.The server
switches to the sleep mode.

We offer the following strategy of waking the server up.
The staying of the server in the sleep mode finishes when
the number of energy units becomes greater than or equal
to the threshold 𝐾, 1 ≤ 𝐾 ≤ 𝑁. Thus, if during an arbitrary
customer arrival epoch the server is idle and the number of
energy units is greater than or equal to the threshold 𝐾, this
customer occupies the server (see Figure 2).

Otherwise the customer joins the buffer (see Figure 3).
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Figure 3: Arriving customer joins the buffer.

The customers from the buffer are serviced in the order
of arrival and the first customer from the buffer is accepted
for service when the server becomes free and the number of
energy units is greater than or equal to the threshold𝐾.

The customers from the buffer are impatient; that is, the
customer leaves the buffer and the system after an exponen-
tially distributed time described by the parameter 𝛾, 0 < 𝛾 <

∞. The impatience of a customer may be interpreted as the
obsolescence of information collected by the sensor. After
some amount of time, information becomes useless and may
be dropped.

We assume that the threshold 𝐾 is a control parameter.
Note that if the value of the threshold 𝐾 is too small, many
customers will be lost during service due to the lack of energy.
If the value of the threshold 𝐾 is too large, which causes
long sleep periods, then many customers will be lost due to
impatience. Thus, the task of optimal choice of the threshold
𝐾 has a major importance. In the general case, the number of
units of energy that is required for service of one customer
is random and unknown at the service beginning epoch.
This makes the problem of suitable choice of the value of 𝐾
difficult. In some particular cases, this problem becomes a
bit easier. For example, if PH distribution is the Erlangian of
order𝑚, then the choice of𝐾 such that𝐾 > 𝑚 guarantees that
service of any customer will not be interrupted because, at the
customer’s service beginning epoch, there is enough energy
to completely serve the customer. However, because the
energy arrives during the service time, probably it does not
make sense to wait until 𝑚 energy units will be accumulated
in the system to start service of a customer.

Since the arrival of customers and energy units occurs at
randommoments and the service time is random as well, the
number of customers and energy units in the system at an
arbitrary moment is random. Thus, to have an opportunity
to compute the performance measures of the system under
arbitrary fixed value of the threshold 𝐾, it is necessary to
compute the stationary distribution of the system states. To
this end, it is necessary to construct the Markovian process
describing the dynamics of the system states and compute its
stationary distribution. This will be done in the next section.

3. Process of System States

It is easy to see that the behavior of the system under study
is described by the following regular irreducible continuous-
time Markov chain:

𝜉
𝑡
= {𝑖
𝑡
, 𝑟
𝑡
, 𝑛
𝑡
, 𝑤
𝑡
, V
𝑡
, 𝑚
𝑡
} , 𝑡 ≥ 0, (4)

where, during the epoch 𝑡, 𝑡 ≥ 0,
(i) 𝑖
𝑡
is the number of customers in the buffer, 𝑖

𝑡
≥ 0;

(ii) 𝑟
𝑡
is an indicator that indicates whether the server

works or not: 𝑟
𝑡
= 0 corresponds to the case when the

server does not work and 𝑟
𝑡
= 1 if the server works;

(iii) 𝑛
𝑡
is the number of energy units in the buffer, 𝑛

𝑡
=

0,𝑁;
(iv) 𝑤

𝑡
is the state of the underlying process of the MAP

𝑐
,

𝑤
𝑡
= 0,𝑊;

(v) V
𝑡
is the state of the underlying process of the MAP

𝑒
,

V
𝑡
= 0, 𝑉;

(vi) 𝑚
𝑡
is the state of the underlying process of the PH

service process,𝑚
𝑡
= 1,𝑀.

The Markov chain 𝜉
𝑡
, 𝑡 ≥ 0, has the following state space:

({0, 0, 𝑛, 𝑤, V} , 𝑛 = 0,𝑁)

⋅ ({𝑖, 0, 𝑛, 𝑤, V} , 𝑖 > 0, 𝑛 = 0, 𝐾)

∪ ({𝑖, 1, 𝑛, 𝑤, V, 𝑚} , 𝑖 ≥ 0, 𝑛 = 0,𝑁) ,

𝑤 = 0,𝑊, V = 0, 𝑉, 𝑚 = 1,𝑀.

(5)

To simplify the analysis of the Markov chain 𝜉
𝑡
, 𝑡 ≥

0, let us enumerate the states of this process in the direct
lexicographic order of the components 𝑟, 𝑛, 𝑤, V, 𝑚, and refer
to the set of the states of the Markov chain having values
(𝑖, 𝑟) of the first two components of the Markov chain as the
macrostate (𝑖, 𝑟). Let 𝐺 be the generator of the Markov chain
𝜉
𝑡
, 𝑡 ≥ 0. It consists of the blocks 𝐺

𝑖,𝑗
, 𝑖, 𝑗 ≥ 0, each of which

consists of blocks𝐺(𝑟,𝑟

)

𝑖,𝑗
, 𝑟, 𝑟 = 0, 1, defining the intensities of

transitions from the macrostate (𝑖, 𝑟) to the macrostate (𝑗, 𝑟).
Analyzing all possible transitions of the Markov chain 𝜉

𝑡
,

𝑡 ≥ 0, during an interval of infinitesimal length and rewriting
the intensities of these transitions in block matrix form we
obtain the following result.

Theorem 1. The infinitesimal generator 𝐺 = (𝐺
𝑖,𝑗
)
𝑖,𝑗≥0

of the
Markov chain 𝜉

𝑡
, 𝑡 ≥ 0, has a block-tridiagonal structure:

𝐺 = (

𝐺
0,0

𝐺
0,1

𝑂 𝑂 . . .

𝐺
1,0

𝐺
1,1

𝐺
1,2

𝑂 . . .

𝑂 𝐺
2,1

𝐺
2,2

𝐺
2,3

. . .

.

.

.

.

.

.

.

.

.

.

.

. d

). (6)
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The blocks of the matrix 𝐺
𝑖,𝑖
, 𝑖 ≥ 0, have the following form:

𝐺
𝑖,𝑖
= (

𝐺
(0,0)

𝑖,𝑖
𝐺
(0,1)

𝑖,𝑖

𝐺
(1,0)

𝑖,𝑖
𝐺
(1,1)

𝑖,𝑖

) , 𝑖 ≥ 0,

𝐺
(0,0)

0,0
= 𝐼
𝑁+1

⊗ (𝐷
0
⊕ 𝐻
0
) + 𝐸
+

𝑁
⊗ 𝐼
𝑊
⊗ 𝐻
1
,

𝐺
(0,0)

𝑖,𝑖
= 𝐼
𝐾
⊗ (𝐷
0
⊕ 𝐻
0
) + 𝐸
+

𝐾
⊗ 𝐼
𝑊
⊗ 𝐻
1
− 𝑖𝛾𝐼,

𝑖 > 0,

𝐺
(0,1)

0,0
= 𝐸

−

⊗ 𝐷
1
⊗ 𝐼
𝑉
⊗ 𝛽,

𝐺
(0,1)

𝑖,𝑖
= 𝑂, 𝑖 > 0,

𝐺
(1,0)

0,0
= �̂�
𝑁+1,𝑁+1

⊗ 𝐼
𝑊𝑉

⊗ ((𝑆 − 𝑆
𝑑
) e) + 𝐼

(𝑁+1)𝑊𝑉

⊗ S
0
,

𝐺
(1,0)

𝑖,𝑖
= �̂�
𝑁+1,𝐾

⊗ 𝐼
𝑊𝑉

⊗ ((𝑆 − 𝑆
𝑑
) e) + 𝐼

𝑁+1,𝐾
⊗ 𝐼
𝑊𝑉

⊗ S
0
, 𝑖 > 0,

𝐺
(1,1)

𝑖,𝑖
= 𝐼
𝑁+1

⊗ (𝐷
0
⊕ 𝐻
0
⊕ 𝑆
𝑑
) + 𝐸
+

𝑁
⊗ 𝐼
𝑊
⊗ 𝐻
1
⊗ 𝐼
𝑀

− 𝑖𝛾𝐼 + 𝐸
−

⊗ 𝐼
𝑊𝑉

⊗ (𝑆 − 𝑆
𝑑
) , 𝑖 ≥ 0.

(7)

The nonzero blocks of the matrix 𝐺
𝑖,𝑖−1

, 𝑖 ≥ 1, have the
following form:

𝐺
𝑖,𝑖−1

= (

𝐺
(0,0)

𝑖,𝑖−1
𝐺
(0,1)

𝑖,𝑖−1

𝑂 𝐺
(1,1)

𝑖,𝑖−1

) , 𝑖 ≥ 1,

𝐺
(0,0)

1,0
= 𝛾𝐼
𝐾,𝑁+1

⊗ 𝐼
𝑊𝑉

,

𝐺
(0,0)

𝑖,𝑖−1
= 𝑖𝛾𝐼
𝐾𝑊𝑉

, 𝑖 ≥ 2,

𝐺
(0,1)

𝑖,𝑖−1
= �̃� ⊗ 𝐼

𝑊
⊗ 𝐻
1
⊗ 𝛽, 𝑖 ≥ 1,

𝐺
(1,1)

𝑖,𝑖−1
= 𝑖𝛾𝐼
(𝑁+1)𝑊𝑉𝑀

+ 𝐸

−

⊗ 𝐼
𝑊𝑉

⊗ S
0
𝛽, 𝑖 ≥ 1.

(8)

The nonzero blocks of the matrix 𝐺
𝑖,𝑖+1

, 𝑖 ≥ 0, have the
following form:

𝐺
𝑖,𝑖+1

= (

𝐺
(0,0)

𝑖,𝑖+1
𝑂

𝑂 𝐺
(1,1)

𝑖,𝑖+1

) , 𝑖 ≥ 0,

𝐺
(0,0)

0,1
= 𝐼 ⊗ 𝐷

1
⊗ 𝐼
𝑉
,

𝐺
(0,0)

𝑖,𝑖+1
= 𝐼
𝐾
⊗ 𝐷
1
⊗ 𝐼
𝑉
, 𝑖 ≥ 0,

𝐺
(1,1)

𝑖,𝑖+1
= 𝐼
𝑁+1

⊗ 𝐷
1
⊗ 𝐼
𝑉𝑀

, 𝑖 ≥ 0.

(9)

Here,

(i) 𝐼 is the identity matrix, and 𝑂 is a zero matrix of an
appropriate dimension;

(ii) 𝑆
𝑑
is the diagonal matrix with the diagonal entries

equal to the corresponding diagonal entries of the
matrix 𝑆;

(iii) ⊗ and ⊕ indicate the symbols of Kronecker product and
sum of matrices, respectively;

(iv) 𝑊 = 𝑊 + 1, 𝑉 = 𝑉 + 1;
(v) 𝐸+
𝐾
is the square matrix of size 𝐾 with all zero entries

except the entries (𝐸+
𝐾
)
𝑙,𝑙+1

, 𝑙 = 0, 𝐾 − 2, which are
equal to 1;

(vi) 𝐸+
𝑁
is the squarematrix of size𝑁+1with all zero entries

except the entries (𝐸+
𝑁
)
𝑙,𝑙+1

, 𝑙 = 0,𝑁 − 1, and (𝐸
+

𝑁
)
𝑁,𝑁

which are equal to 1;
(vii) 𝐼

𝑘,𝑗
is the matrix of size 𝑘×𝑗with all zero entries except

the entries (𝐼
𝑘,𝑗
)
𝑙,𝑙
, 𝑙 = 0,min{𝑘 − 1, 𝑗 − 1}, which are

equal to 1;
(viii) 𝐸− is the squarematrix of size𝑁+1with all zero entries

except the entries (𝐸−)
𝑙,𝑙−1

, 𝑙 = 1,𝑁, which are equal to
1;

(ix) �̃� is the matrix of size𝐾× (𝑁 + 1) with all zero entries
except the entry (�̃�)

𝐾−1,𝐾−1
, which is equal to 1;

(x) 𝐸− is the squarematrix of size𝑁+1with all zero entries
except the entries (𝐸−)

𝑙,𝑙−1
, 𝑙 = 𝐾,𝑁which are equal to

1;
(xi) �̂�
𝑚,𝑙

is thematrix of size𝑚×𝑙with all zero entries except
the entry (�̂�

𝑚,𝑙
)
0,0

which is equal to 1;

(xii) 𝐼 is the matrix of size (𝑁 + 1) × 𝐾 with all zero entries
except the entries (𝐼)

𝑙,𝑙
, 𝑙 = 0, 𝐾 − 1, which are equal to

1.

To illustrate the derivation of the form of the generator
blocks, let us explain in brief the form of the blocks 𝐺

𝑖,𝑖−1
,

𝑖 ≥ 2. Decrease of the number of customers in the buffer
from 𝑖 to 𝑖 − 1 without change of the status 0 of the server
(the server is in the sleep mode) can only occur if one of 𝑖
presenting in the buffer customers leaves the buffer due to
impatience. The total intensity of such a transition is equal to
𝑖𝛾. During an interval of infinitesimal length, only one event
from the following ones can occur: customers departure due
to impatience, a transition of the underlying process of cus-
tomers arrival, and a transition of the underlying process of
energy arrival. Because we already assumed that departure of
a customer takes place, a transition of the underlying process
of customers arrival and a transition of the underlying process
of energy arrival cannot occur. So, the number of energy
units in the buffer and the states of the underlying processes
of customers and energy arrival do not change. Thus, the
matrix defining the transition probabilities of these processes
is equal to 𝐼

𝐾𝑊𝑉
. As a result of this consideration we obtain

formula 𝐺(0,0)
𝑖,𝑖−1

= 𝑖𝛾𝐼
𝐾𝑊𝑉

, 𝑖 ≥ 2.
Decrease of the number of customers in the buffer from

𝑖 to 𝑖 − 1 with the change of the status of the server from
0 (server is in the sleep mode) to 1 (server is working) can
only occur if 𝑖 customers were presenting in the buffer, the
number of energy units in the system was equal to𝐾−1, and
a new energy unit arrives in the system.Thematrix𝐻

1
defines

the transition intensities of the underlying process of energy
arrival.Thematrix �̃� of size𝐾×(𝑁+1) reflects the change of
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the number of energy units in the system: this number was
equal to 𝐾 − 1, and the arrived energy unit was taken for
service of a customer which started at this moment.Thus, the
number of energy units in the system remains to be equal to
𝐾−1. Size𝐾×(𝑁+1) of the nonsquare matrix �̃� is explained
by the fact that, in the sleep mode, the possible number of
energy units in the system varies from 0 to𝐾− 1 while in the
mode when the server works this number varies from 0 to𝑁.
Because in the considered case a transition of the underlying
process of energy arrival occurs, the underlying process of
customers arrival cannot make any transitions. Thus, its
transitions are described by the identity matrix 𝐼

𝑊
. Start of

customer service is accompanied by the choice of the initial
state of the underlying process of service with probabilities
defined by the entries of the vector 𝛽. Symbol of Kronecker
product of matrices is very useful to describe simultaneous
transitions of several independentMarkov chains. Finally, we
obtain formula 𝐺(0,1)

𝑖,𝑖−1
= �̃� ⊗ 𝐼

𝑊
⊗ 𝐻
1
⊗ 𝛽, 𝑖 ≥ 1. The order of

multipliers in the Kronecker products is induced by the order
of corresponding components of the Markov chain 𝜉

𝑡
.

Decrease of the number of customers in the buffer from
𝑖 to 𝑖 − 1 without the change of the current status 1 of
the server can occur if one of the customers in the queue
leaves the buffer due to impatience (corresponding intensities
of transitions are given by the matrix 𝑖𝛾𝐼

(𝑁+1)𝑊𝑉𝑀
) or a

customer finishes service and new service starts immediately.
The intensities of finishing the service are given by the entries
of the vector S

0
while the probabilities defining the choice of

the initial state of the underlying process of service are given
by the entries of the vector 𝛽. Start of the new service causes
the decrease of the number of energy units in the system by
one which is reflected by thematrix𝐸−.The transitions of the
underlying processes of arrival of customers and energy are
impossible, so their change is defined by the identity matrix
𝐼
𝑊𝑉

. As a result of this consideration, we obtain formula
𝐺
(1,1)

𝑖,𝑖−1
= 𝑖𝛾𝐼
(𝑁+1)𝑊𝑉𝑀

+ 𝐸

−

⊗ 𝐼
𝑊𝑉

⊗ S
0
𝛽, 𝑖 ≥ 1.

Decrease of the number of customers in the buffer from
𝑖 to 𝑖 − 1 does not imply that the server becomes idle. Thus,
the change of status 1 of the server to status 0 is not possible.
Eventually, we explained the form of all blocks of the matrix
𝐺
𝑖,𝑖−1

. Derivation of the presented above expressions for
matrices 𝐺

𝑖,𝑖
and 𝐺

𝑖,𝑖+1
is implemented analogously.

Corollary 2. TheMarkov chain 𝜉
𝑡
, 𝑡 ≥ 0, belongs to the class of

continuous-time asymptotically quasi-Toeplitz Markov chains
(𝐴𝑄𝑇𝑀𝐶); see Klimenok and Dudin [16].

As follows from Klimenok and Dudin [16], a sufficient
condition for the existence of a stationary distribution of the
AQTMC 𝜉

𝑡
, 𝑡 ≥ 0, is expressed in terms of the matrices 𝑌

0
,

𝑌
1
, and 𝑌

2
defined as follows:

𝑌
0
= lim
𝑖→∞

𝑅
−1

𝑖
𝐺
𝑖,𝑖−1

,

𝑌
1
= lim
𝑖→∞

𝑅
−1

𝑖
𝐺
𝑖,𝑖
+ 𝐼,

𝑌
2
= lim
𝑖→∞

𝑅
−1

𝑖
𝐺
𝑖,𝑖+1

,

(10)

where the matrix 𝑅
𝑖
is a diagonal matrix with the diagonal

entries which are defined as the moduli of the corresponding
diagonal entries of the matrix 𝐺

𝑖,𝑖
, 𝑖 ≥ 0.

It is easy to verify that in the considered case the matrices
𝑌
0
, 𝑌
1
, and 𝑌

2
have the following form:

𝑌
0
= 𝐼,

𝑌
1
= 𝑂,

𝑌
2
= 𝑂.

(11)

As proven by Klimenok and Dudin [16], the steady-state
distribution of the Markov chain 𝜉

𝑡
, 𝑡 ≥ 0, exists if the

inequality

y𝑌
0
e > y𝑌

2
e (12)

holds true, where the vector y is the unique solution to the
system

y (𝑌
0
+ 𝑌
1
+ 𝑌
2
) = y,

ye = 1.

(13)

It is easy to see that ergodicity condition (12) is transformed
to the inequality 1 > 0 which is true for all possible values of
the system parameters.

Thus, the stationary probabilities 𝑝(𝑖, 𝑟, 𝑛, 𝑤, V, 𝑚), 𝑖 ≥ 0,
𝑟 = 0, 1, 𝑛 = 0,𝑁, 𝑤 = 0,𝑊, V = 0, 𝑉, 𝑚 = 1,𝑀, of the
system states exist. Let us form the row vectors p(𝑖, 𝑟, 𝑛) of
these probabilities enumerated in the lexicographic order of
the components 𝑤, V, 𝑚. Then let us form the row vectors

p (0, 0) = (p (0, 0, 0) , p (0, 0, 1) , . . . , p (0, 0,𝑁)) ,

p (𝑖, 0) = (p (𝑖, 0, 0) , p (𝑖, 0, 1) , . . . , p (𝑖, 0, 𝐾)) ,

𝑖 > 0,

p (𝑖, 1) = (p (𝑖, 1, 0) , p (𝑖, 1, 1) , . . . , p (𝑖, 1,𝑁)) ,

𝑖 ≥ 0,

p
𝑖
= (p (𝑖, 0) , p (𝑖, 1)) , 𝑖 ≥ 0.

(14)

It is well known that the probability vectors p
𝑖
, 𝑖 ≥ 0,

satisfy the following system of linear algebraic equations:

(p
0
, p
1
, . . . , p

𝑖
, . . .) 𝐺 = 0,

(p
0
, p
1
, . . . , p

𝑖
, . . .) e = 1,

(15)

where𝐺 is the infinitesimal generator of theMarkov chain 𝜉
𝑡
,

𝑡 ≥ 0. To solve this system, the numerically stable algorithm
that takes into account that the matrix 𝐺 has a block-
tridiagonal structure, which is presented in Dudina et al. [17],
can be proposed.

4. Performance Measures

As soon as the vectors p
𝑖
, 𝑖 ≥ 0, have been calculated, we are

able to find various performance measures of the system.
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The average number𝑁customers of customers in the buffer
is computed by

𝑁customers =
∞

∑

𝑖=1

𝑖p
𝑖
e. (16)

The average number 𝑁energy of units of energy in the
buffer is computed by

𝑁energy =
∞

∑

𝑖=1

𝐾−1

∑

𝑛=1

𝑛p (𝑖, 0, 𝑛) e +
𝑁

∑

𝑛=1

𝑛p (0, 0, 𝑛) e

+

∞

∑

𝑖=0

𝑁

∑

𝑛=1

𝑛p (𝑖, 1, 𝑛) e.

(17)

The probability 𝑃busy where at an arbitrary moment the
server is busy is computed by

𝑃busy =
∞

∑

𝑖=0

p (𝑖, 1) e. (18)

The probability 𝑃loss
𝑒

that an arbitrary unit of energy will
be lost is computed by

𝑃
loss
𝑒

=

1

𝜆
𝑒

[p (0, 0,𝑁) (𝐼
𝑊
⊗ 𝐻
1
) e

+

∞

∑

𝑖=0

p (𝑖, 1,𝑁) (𝐼
𝑊
⊗ 𝐻
1
⊗ 𝐼
𝑀
) e] .

(19)

The average intensity 𝜆out of flow of customers who
receive service is computed by

𝜆out =
∞

∑

𝑖=0

p (𝑖, 1) (e
(𝑁+1)𝑊𝑉

⊗ S
0
) . (20)

Theprobability𝑃loss
𝑐

that an arbitrary customerwill be lost
is computed by

𝑃
loss
𝑐

= 1 −

𝜆out
𝜆
𝑐

. (21)

The probability 𝑃term of an arbitrary customer loss due to
the termination of its service caused by the lack of energy is
computed by

𝑃
term

=

1

𝜆
𝑐

∞

∑

𝑖=0

p (𝑖, 1, 0) (𝐼
𝑊𝑉

⊗ (𝑆 − 𝑆
𝑑
)) e. (22)

The probability 𝑃imp that an arbitrary customer from the
buffer will be lost due to impatience is computed by

𝑃
imp

= 𝑃
loss
𝑐

− 𝑃
term

. (23)

The probability 𝑃imm that an arbitrary customer succeeds
to get immediate access to the server upon arrival is computed
as

𝑃
imm

=

1

𝜆
𝑐

𝑁

∑

𝑛=𝐾

p (0, 0, 𝑛) (𝐷
1
⊗ 𝐼
𝑉
) e. (24)

5. Distribution of the Waiting Time of
an Arbitrary Customer in the System

We will derive the distribution of an arbitrary customer’s
waiting time in terms of the Laplace-Stieltjes transform
(LST).

To derive the expression for the LST 𝑧(𝑠) of the distri-
bution of an arbitrary customer’s waiting time we use the
method of collective marks (method of additional events,
method of catastrophes); for references, see, for example,
Kesten and Runnenburg [18] and van Danzig [19]. To this
end, we interpret the argument 𝑠 as the intensity of some
virtual stationary Poisson flow of catastrophes.Thus, 𝑧(𝑠) has
the meaning of the probability that no catastrophe arrives
during thewaiting time of an arbitrary customer. Let us tag an
arbitrary customer and keep track of its staying in the system.

Let 𝑧(𝑠, 𝑙, 𝑟, 𝑛, V, 𝑚) be the probability that a catastrophe
will not arrive during the rest of the tagged customer’s waiting
time in the system conditioned on the fact that, at the given
moment, the position of the tagged customer in the buffer is 𝑙,
𝑙 ≥ 1, the state of the server is 𝑟, 𝑟 = 0, 1, the number of units
of energy in the buffer is equal to 𝑛, 𝑛 = 0,𝑁, the states of the
process V

𝑡
are V, and the state of the process𝑚

𝑡
is𝑚, 𝑡 ≥ 0.

Let us enumerate the probabilities 𝑧(𝑠, 𝑙, 𝑟, 𝑛, V, 𝑚) in the
lexicographic order of components 𝑛, V, 𝑚 and form the col-
umn vectors z(𝑠, 𝑙, 𝑟, 𝑛) and z(𝑠, 𝑙, 𝑟) from these probabilities.

Theorem 3. The 𝐿𝑆𝑇 𝑧(𝑠) of the distribution of an arbitrary
customer’s waiting time is computed by

𝑧 (𝑠) = 𝑃
𝑖𝑚𝑚

+ 𝜆
−1

𝑐
[

∞

∑

𝑖=0

𝐾−1

∑

𝑛=0

p (𝑖, 0, 𝑛) (𝐷
1
e ⊗ 𝐼
𝑉
) z (𝑠, 𝑖 + 1, 0, 𝑛)

+

∞

∑

𝑖=0

p (𝑖, 1) (𝐼
𝑁+1

⊗ 𝐷
1
e ⊗ 𝐼
𝑉𝑀

) z (𝑠, 𝑖 + 1, 1)] .

(25)

The proof of the theorem evidently follows from the
formula of total probability and probabilistic sense of the LST.

The statement of Theorem 3 defines the LST 𝑧(𝑠) up to
the unknown vectors z(𝑠, 𝑙, 𝑟). Let us solve the problem of
computation of these vectors.

Using the probabilistic sense of the LST it can be shown
that the vectors z(𝑠, 𝑙, 𝑟) can be found from the following
system of linear algebraic equations:

z (𝑠, 𝑙, 0) = [(𝑠 + 𝑙𝛾) 𝐼 − 𝐼
𝐾
⊗ 𝐻
0
]
−1

((1 − 𝛿
𝑙,1
)

⋅ (�̃� ⊗ 𝐻
1
⊗ 𝛽) z (𝑠, 𝑙 − 1, 1) + 𝛿

𝑙,1
�̃� ⊗ 𝐻

1
e

+ (𝐸
+

𝐾
⊗ 𝐻
1
) z (𝑠, 𝑙, 0) + (𝑙 − 1) 𝛾z (𝑠, 𝑙 − 1, 0) + 𝛾e) ,

z (𝑠, 𝑙, 1) = [(𝑠 + 𝑙𝛾) 𝐼 − 𝐼
𝑁+1

⊗ (𝐻
0
⊕ 𝑆
𝑑
)]
−1

⋅ ((𝐸
+

𝑁
⊗ 𝐻
1
⊗ 𝐼
𝑀
+ 𝐸
−

⊗ 𝐼
𝑉
⊗ (𝑆 − 𝑆

𝑑
)) z (𝑠, 𝑙, 1)
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+ (1 − 𝛿
𝑙,1
) (𝐸

−

⊗ 𝐼
𝑉
⊗ S
0
𝛽) z (𝑠, 𝑙 − 1, 1)

+ 𝛿
𝑙,1
(𝐸

−

⊗ 𝐼
𝑉
⊗ S
0
𝛽) e + (𝑙 − 1) 𝛾z (𝑠, 𝑙 − 1, 1)

+ 𝛾e

+ (�̂�
𝑁+1,𝐾

⊗ 𝐼
𝑉
⊗ ((𝑆 − 𝑆

𝑑
) e) + 𝐼

𝑁+1,𝐾
⊗ 𝐼
𝑉
⊗ S
0
)

⋅ z (𝑠, 𝑙, 0)) , 𝑙 > 0.

(26)

Here, 𝛿
𝑖,𝑗
indicates the Kronecker delta.

To find the solution to system (26), let us introduce the
column vectors

z (𝑠, 𝑙) = ((z (𝑠, 𝑙, 0))𝑇 , (z (𝑠, 𝑙, 1))𝑇)
𝑇

, (27)

and rewrite system (26) into the matrix form as

(− (𝑠 + 𝑙𝛾) 𝐼 + 𝐴) z (𝑠, 𝑙)

+ (1 − 𝛿
𝑙,1
) (𝐵 + (𝑙 − 1) 𝛾𝐼) z (𝑠, 𝑙 − 1) + 𝛿

𝑙,1
a

+ 𝛾e = 0𝑇, 𝑙 ≥ 1,

(28)

where

𝐴 = (

𝐼
𝐾
⊗ 𝐻
0
+ 𝐸
+

𝐾
⊗ 𝐻
1

𝑂

𝐴
(1,0)

𝐴
(1,1)

) ,

𝐴
(1,1)

= 𝐼
𝑁+1

⊗ (𝐻
0
⊕ 𝑆
𝑑
) + 𝐸
+

𝑁
⊗ 𝐻
1
⊗ 𝐼
𝑀
+ 𝐸
−

⊗ 𝐼
𝑉

⊗ (𝑆 − 𝑆
𝑑
) ,

𝐴
(1,0)

= �̂�
𝑁+1,𝐾

⊗ 𝐼
𝑉
⊗ ((𝑆 − 𝑆

𝑑
) e) + 𝐼

𝑁+1,𝐾
⊗ 𝐼
𝑉
⊗ S
0
,

𝐵 = (

𝑂
𝐾𝑉

�̃� ⊗ 𝐻
1
⊗ 𝛽

𝑂 𝐸

−

⊗ 𝐼
𝑉
⊗ S
0
𝛽

) ,

a = (((�̃� ⊗ 𝐻
1
) e)
𝑇

, ((𝐸

−

⊗ 𝐼
𝑉
⊗ S
0
) e)
𝑇

)

𝑇

.

(29)

Thus, based on (28), it is easy to verify that the vectors
z(𝑠, 𝑙), 𝑙 ≥ 1, can be recursively computed as

z (𝑠, 1) = ((𝑠 + 𝛾) 𝐼 − 𝐴)
−1

(a + 𝛾e) ,

z (𝑠, 𝑙) = ((𝑠 + 𝑙𝛾) 𝐼 − 𝐴)
−1

⋅ ((𝐵 + (𝑙 − 1) 𝛾𝐼) z (𝑠, 𝑙 − 1) + 𝛾e) , 𝑙 > 1.

(30)

Substituting expression (30) for the vectors z(𝑠, 𝑙), 𝑙 ≥ 1,
in (25), it is easy to compute the LST 𝑧(𝑠) and the moments
of the waiting time distribution.

Corollary 4. The average waiting time 𝑉𝑤𝑎𝑖𝑡 of an arbitrary
customer is calculated as

𝑉
𝑤𝑎𝑖𝑡

= −𝜆
−1

𝑐
[

∞

∑

𝑖=0

𝐾−1

∑

𝑛=0

p (𝑖, 0, 𝑛)

⋅ (𝐷
1
e ⊗ 𝐼
𝑉
) z (𝑠, 𝑖 + 1, 0, 𝑛)





𝑠=0

+

∞

∑

𝑖=0

p (𝑖, 1)

⋅ (𝐼
𝑁+1

⊗ 𝐷
1
e ⊗ 𝐼
𝑉𝑀

) z (𝑠, 𝑖 + 1, 1)





𝑠=0

] .

(31)

Here the column vectors z(𝑠, 𝑙, 𝑟)|
𝑠=0

and z(𝑠, 𝑙, 𝑟, 𝑛)|
𝑠=0

are calculated as the blocks of the vector z(𝑠, 𝑙)|
𝑠=0

which can
be calculated as follows:

z (𝑠, 1)
𝑠=0

= − (𝛾𝐼 − 𝐴)
−2

(a + 𝛾e) ,

z (𝑠, 𝑙)
𝑠=0

= (𝑙𝛾𝐼 − 𝐴)
−1

(−e + (𝐵 + (𝑙 − 1) 𝛾𝐼) z (𝑠, 𝑙 − 1)





𝑠=0

) ,

𝑙 > 1.

(32)

6. Numerical Example

To illustrate the effect of variation of the threshold 𝐾 and
importance of account of the coefficients of correlation and
variation in the arrival processes of customers and energy
units, let us consider the system with the stationary Poisson
arrivals of customers and energy (System 1) and the system
with theMarkovian arrival processes of customers and energy
(System 2) with the same average arrival rates of customers
𝜆
𝑐
= 0.3 and energy 𝜆

𝑒
= 2, but different correlation and

variation.
We assume that, in the case of System 1, the arrival process

of customers is defined by the matrices 𝐷
0
= (−0.3), 𝐷

1
=

(0.3). The arrival process of energy is defined by the matrices
𝐻
0
= (−2), 𝐻

1
= (2). These arrival flows are the stationary

Poisson processes with the coefficient of correlation equal to
0 and the coefficient of variation equal to 1.

In the case of System 2, we assume that the arrival process
of customers is defined by the matrices

𝐷
0
= (

−1.0193 0

0.0003 −0.033

) ,

𝐷
1
= (

1.0087 0.0106

0.0036 0.0291

) .

(33)

The coefficient of correlation of successive interarrival times
is 0.4, and the coefficient of variation of interarrival times is
3.52.
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The arrival process of energy is defined by the matrices

𝐻
0
= (

−6.7954 0

0.002 −0.2204

) ,

𝐻
1
= (

6.7246 0.0708

0.0243 0.1941

) .

(34)

The coefficient of correlation of successive interarrival
times is 0.4, and the coefficient of variation of interarrival
times is 3.52.

The rest of the system parameters are the same for each
system under consideration and are assumed to be as follows:

𝑁 = 25,

𝛾 = 0.01.

(35)

PH service process of customers is characterized by the vector
𝛽 = (1, 0, 0) and the matrix

𝑆 = (

−6 6 0

1 −6 5

0 1 −6

) . (36)

This means that service of a customer consists of at least
three phases. Duration of each phase has an exponential
distribution with parameter 6. After the first phase of service,
immediately the second phase starts. After finishing this
phase, with probability 5/6 the third phase starts, while with
the complimentary probability service returns to the first
phase, for example, due to not satisfactory implementation of
the second phase. After finishing the third phase, with prob-
ability 1/6 service returns to the second phase while with the
complimentary probability service is completed. The mean
service time in this service process is equal to 0.646, and the
coefficient of variation 𝑐var is equal to 0.653.

Let us vary the threshold𝐾 in the range𝐾 ∈ [1;𝑁].
Figures 4–6 illustrate the dependence of the loss proba-

bility of an arbitrary customer 𝑃loss
𝑐

, the loss probability 𝑃imp

that an arbitrary customer from the buffer will be lost due to
impatience, and the loss probability 𝑃term of an arbitrary cus-
tomer due to the termination of its service in the case of lack
of energy on parameter𝐾.

The first evident important conclusion following from
Figures 4–6, as well as from Figures 7–9, is that correlation
and variation in the arrival processes, under the same mean
arrival rates, drastically change the values of the performance
measures of the system. Higher correlation implies poorer
performance. This effect is explained as follows. Positive
correlation of two random variables implies that the smaller
value of one variable causes the smaller value of another
variable. The larger value of one variable causes the larger
value of another variable. Thus, for the arrival flow with high
positive correlation, time intervals, during which customers
arrive rarely (and the server starves), alternate with time
intervals, during which customers arrive very frequently and
the system becomes congested. A lot of customers are lost or
have a long waiting time. Note that the negative correlation
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Figure 4: Dependence of 𝑃loss
𝑐

on 𝐾.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 5 10 15 20 25
K

MAP0
+MAP0

MAP0.4
+MAP0.4

P
im

p

Figure 5: Dependence of 𝑃imp on 𝐾.
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Figure 7: Dependence of 𝑃loss
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Figure 8: Dependence of 𝑃imm on 𝐾.

in arrivals practically has no effect, comparing to the system
with renewal arrival process.

The second conclusion is that the loss probability 𝑃
loss
𝑐

decreases with growth of𝐾, reaches minimum at some point
𝐾
∗, and then starts the increase.This is easily explained by the

figures for the probabilities 𝑃imp and 𝑃term, the sum of which
is equal to 𝑃loss

𝑐
.

The probability 𝑃
term is very high for small values of 𝐾,

and then it decreases and becomes very small for 𝐾 > 10.
This fact stems from the fact that theminimal and the average
number of phases, which should be implemented to provide
service to a customer, are equal to 3 and 3.84, correspond-
ingly, and the mean number of energy units arriving during
one phase is equal to 0.333. Thus, if service to a customer
starts at presence of 𝐾 = 1, 2 or 3 units of energy in the
buffer, it is very likely that service will be terminated. When
𝐾 becomes large enough, loss of a customer due to the service
termination becomes almost impossible.
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Figure 9: Dependence of 𝑉wait on 𝐾.

Oppositely, the probability 𝑃imp increases when 𝐾 grows
because the increase of 𝐾 implies longer queue of customers
and larger number of customers that leave the system due
to impatience. Thus, behavior of curves in Figure 4 evidently
matches the behavior of curves in Figures 5 and 6.

It is worth noting that correlation significantly affects not
only the value of the probability 𝑃loss

𝑐
but also the value𝐾∗ of

the threshold𝐾where this probability isminimal. For System
1, 𝐾∗ = 8; 𝑃loss

𝑐
= 0.0021. For System 2, 𝐾∗ = 5; 𝑃loss

𝑐
=

0.3491. Thus, the problem of optimal choice of the threshold
𝐾 (as well as numerous other optimization problems related
to this model) should be individually solved for any fixed set
of the system parameters.

It is interesting to compare the optimal value of 𝑃loss
𝑐

with
its values when more trivial strategies of control are applied.
The first strategy is “never use sleepmode.”The server cannot
be idle if there are customers in the system and energy in the
system is not absent. This strategy corresponds to the choice
𝐾 = 1. For this strategy, 𝑃loss

𝑐
= 0.007594 for System 1 and

𝑃
loss
𝑐

= 0.4808 for System 2. The second trivial strategy is
“never finish sleep mode until the buffer of energy becomes
full.” This strategy corresponds to the choice𝐾 = 𝑁. For this
strategy, 𝑃loss

𝑐
= 0.01859 for System 1 and 𝑃

loss
𝑐

= 0.44358

for System 2. It is evidently seen that the optimal choice of 𝐾
provides essentially better value of 𝑃loss

𝑐
comparing the trivial

strategies.
Figures 7–9 illustrate the dependence of the loss probabil-

ity of an arbitrary energy unit 𝑃loss
𝑒

, the probability 𝑃imm that
an arbitrary customer succeeds to start service immediately
upon arrival, and the average waiting time 𝑉

wait of an
arbitrary customer on the parameter𝐾.

The probability of an arbitrary energy unit loss 𝑃
loss
𝑒

slightly depends on𝐾, but it increases when𝐾 becomes small
or large. This agrees with Figure 4 because the probability of
customer loss 𝑃loss

𝑐
is also higher when 𝐾 becomes small or

large. Loss of a customer implies that the customer does not
go through all required phases of service, so less energy is
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consumed for its service, the number of energy units in the
buffer becomes larger, and, thus, the probability of energy
unit loss due to the buffer overflowbecomes higher.Theprob-
ability 𝑃imm monotonically decreases when 𝐾 grows because
an arriving customer has less chances to start service imme-
diately upon arrival due to more strict requirement to the
number of energy units in the buffer at the service initiation
epoch and more long duration of sleep period. Increase of
the average waiting time 𝑉wait of an arbitrary customer with
growth of𝐾 is clear.

It should be mentioned that the results of numerous
numerical experiments show that the famous Little’s formula
holds true for the system under study; that is,

𝑉
wait

=

𝑁customers
𝜆

(37)

as well as the formula

𝑉
wait

=

𝑃
imp

𝛾

. (38)

These formulas as well as the results of computer simu-
lations were used for validation of the presented analytical
results and control of their computer implementation.

Let us now assume that the arrival process of customers
is defined by the matrices

𝐷
0
= (

−0.40549 0

0 −0.01316

) ,

𝐷
1
= (

0.40279 0.0027

0.00733 0.00583

) .

(39)

The coefficient of correlation of successive interarrival times
is 0.2, and the coefficient of variation of interarrival times is
3.51.

The arrival process of energy is defined by the matrices

𝐻
0
= (

−2.70328 0

0 −0.08774

) ,

𝐻
1
= (

2.6853 0.01798

0.04887 0.03887

) .

(40)

The coefficient of correlation of successive interarrival times
is 0.2, and the coefficient of variation of interarrival times
is 3.51. The rest of parameters is assumed to be the same as
above.

Table 1 contains the values of the key performance mea-
sures of the system for different values of the threshold𝐾.

It is easy to see that for this set of the system parameters
the optimal value of the threshold is 𝐾

∗

= 7, and the
minimal value of the loss probability is 𝑃loss

𝑐
= 0.06814. It

is interesting to observe that the value of the average number
𝑁energy of energy units in the system is not monotone when
the threshold𝐾 changes.The number𝑁energy decreases when
𝐾 increases from 1 to 4 and then it starts the monotone
increasing. This phenomenon is easily explained as follows.

It was noted above that the average number of phases, which
should be implemented to provide service of a customer, is
equal to 3.84. Thus, if we start service when 4 energy units
are staying in the buffer we have the high risk to lose all
these units because servicewill be not successfully completed.
When 𝐾 is less than 4, the risk to interrupt service is even
higher but the number of wasted energy units is less which
results in larger number of energy units in the system.

In this example the strategy “never use sleep mode”
provides value 𝑃

loss
𝑐

= 0.18410. The strategy “never finish
sleep mode until the buffer of energy becomes full” provides
value 𝑃loss

𝑐
= 0.10801. It is evident that the optimal choice of

𝐾,𝐾∗ = 7, provides essentially better value of 𝑃loss
𝑐

= 0.06814

comparing the trivial strategies.
To givemore information about the quantitative behavior

of the system, let us consider the system under the optimal
value in this example of the threshold𝐾∗ = 7 and present the
values of the probabilityp(𝑖, 0)e that 𝑖 customers are staying in
the buffer and the server is in sleep mode and the probability
p(𝑖, 1)e that 𝑖 customers are staying in the buffer and the
server provides service. We present here the values of the
probabilities only for 𝑖 = 0, 1, . . . , 20. Note that we show only
the values of the sums of the components of the vectors p(𝑖, 0)
and p(𝑖, 1), not the vectors themselves, because these vectors
have quite high dimension. The size of the vectors p(𝑖, 0),
𝑖 > 0, is equal to 104 while the size of the vectors p(0, 0) and
p(𝑖, 1), 𝑖 ≥ 0, is equal to 312 (see Table 2):

20

∑

𝑖=0

p
𝑖
e = 0.9881820310616707. (41)

The distribution of the number of units of energy, which
present in the system at an arbitrarymoment, is characterized
by Table 3.

It should be noted that two maximal values of probabili-
ties are 0.39625689 for 𝑛 = 𝑁 = 25 and 0.0848896 for 𝑛 = 6.

Thefirstmaximummay be explained by the following two
facts: (i) the mean rate of customers arrival is equal to 0.3 and
the average number of necessary energy units for an arbitrary
customer service is equal to 3.84, so the mean number of
energy units necessary per unit of time is 1.152; (ii) the mean
rate of energy arrivals is equal to 2. Thus, the probability that
the buffer of energy is full is high.Themaximum at point 𝑛 =

6 is relatedwith the fact that the optimal value of the threshold
𝐾 is 7. Thus, before and after sleep mode completion the
number of energy units in the system is equal to 6.

In all reported above experiments where we compared
performance measures of the systems under different corre-
lation in customers and energy streams, we compared the
systems with the same coefficient of correlation for both
streams.

Let us assume that the arrival flow of customers is the one
defined above having the coefficient of correlation 𝑐cor = 0.2

and we compare the key performancemeasures of the system
with this arrival process and the arrival flows of energy having
different coefficients of correlation: 𝑐cor = 0, 𝑐cor = 0.2, and
𝑐cor = 0.4 also defined above. Figures 10–12 illustrate the
dependence of the loss probability of an arbitrary customer
𝑃
loss
𝑐

, the probability 𝑃term of an arbitrary customer loss due
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Table 1: Dependence of the main performance measures on the threshold 𝐾 in the case MAP0.2 + MAP0.2.

𝐾 𝑁customers 𝑁energy 𝑃
loss
𝑒

𝜆out 𝑃
loss
𝑐

𝑃
term

𝑉
wait

𝑃
imm

𝐾 = 1 0.86270 17.93 0.49658 0.24477 0.18410 0.1553438 2.88 0.61994
𝐾 = 2 1.23368 17.28 0.47991 0.24992 0.16693 0.1258111 4.11 0.57533
𝐾 = 3 1.55019 16.82 0.46626 0.26980 0.10068 0.0490042 5.17 0.53924
𝐾 = 4 1.71485 16.77 0.46072 0.27378 0.08741 0.0302443 5.72 0.52086
𝐾 = 5 1.83108 16.86 0.45780 0.27811 0.07297 0.0119331 6.10 0.50803
𝐾 = 6 1.90329 17.06 0.45705 0.27897 0.07010 0.0066533 6.34 0.49947
𝐾 = 7 1.96167 17.30 0.45702 0.27956 0.06814 0.0027496 6.54 0.49219
𝐾 = 8 2.01069 17.57 0.45749 0.27945 0.06852 0.0014924 6.70 0.48564
𝐾 = 9 2.05749 17.85 0.45814 0.27923 0.06922 0.0006383 6.86 0.47904
𝐾 = 10 2.10305 18.14 0.45891 0.27886 0.07045 0.0003488 7.01 0.47240
𝐾 = 11 2.14896 18.44 0.45974 0.27846 0.07178 0.0001529 7.16 0.46547
𝐾 = 12 2.19611 18.75 0.46063 0.27801 0.07329 0.0000856 7.32 0.45799
𝐾 = 13 2.24411 19.06 0.46155 0.27755 0.07484 0.0000381 7.48 0.45026
𝐾 = 14 2.29365 19.39 0.46250 0.27706 0.07648 0.0000222 7.65 0.44182
𝐾 = 15 2.34560 19.72 0.46351 0.27654 0.07820 0.0000090 7.82 0.43244
𝐾 = 16 2.39824 20.05 0.46453 0.27602 0.07995 0.0000059 7.99 0.42277
𝐾 = 17 2.45395 20.40 0.46561 0.27546 0.08180 0.0000027 8.18 0.41147
𝐾 = 18 2.51290 20.77 0.46675 0.27487 0.08376 1.62982𝐸 − 06 8.38 0.39879
𝐾 = 19 2.57221 21.12 0.46790 0.27428 0.08574 7.6309𝐸 − 07 8.57 0.38551
𝐾 = 20 2.63865 21.51 0.46919 0.27361 0.08796 4.85818𝐸 − 07 8.80 0.36846
𝐾 = 21 2.70996 21.91 0.47057 0.27290 0.09033 2.17321𝐸 − 07 9.03 0.34921
𝐾 = 22 2.78556 22.30 0.47204 0.27214 0.09285 1.49155𝐸 − 07 9.29 0.32809
𝐾 = 23 2.88689 22.75 0.47401 0.27113 0.09623 6.07256𝐸 − 08 9.62 0.29517
𝐾 = 24 3.01828 23.18 0.47655 0.26982 0.10061 4.00805𝐸 − 08 10.06 0.25909
𝐾 = 25 3.24017 23.59 0.48086 0.26760 0.10801 2.08683𝐸 − 08 10.80 0.21669

Table 2: Stationary distribution of the number of customers in the buffer and status of the server.

𝑖 p(𝑖, 0)e p(𝑖, 1)e p
𝑖
e

𝑖 = 0 0.6239317218474825 0.1066112369136978 0.7305429587611788
𝑖 = 1 0.01918369258400953 0.026417593940965396 0.04560128652497489
𝑖 = 2 0.018435165982127483 0.009367941389389267 0.027803107371516724
𝑖 = 3 0.01701956038133314 0.005685178227558685 0.022704738608891818
𝑖 = 4 0.015589704990863436 0.004566368248038898 0.02015607323890231
𝑖 = 5 0.014243214709919589 0.003955497221275474 0.01819871193119508
𝑖 = 6 0.012980401351607156 0.0034751146180821662 0.01645551596968931
𝑖 = 7 0.011793060615562114 0.003053511776530785 0.014846572392092897
𝑖 = 8 0.010676341824961473 0.0026747366348585963 0.013351078459820058
𝑖 = 9 0.009628050888483944 0.002333512545118889 0.011961563433602839
𝑖 = 10 0.00864714408880838 0.002026836425554563 0.010673980514362942
𝑖 = 11 0.007732854199632773 0.0017522708692883516 0.009485125068921121
𝑖 = 12 0.006884290212401231 0.0015075471764451366 0.00839183738884637
𝑖 = 13 0.006100279935315123 0.0012904635015116403 0.007390743436826769
𝑖 = 14 0.005379323609073812 0.0010988627761308045 0.00647818638520462
𝑖 = 15 0.004719595865365016 9.306354403460654𝐸 − 4 0.005650231305711074
𝑖 = 16 0.004118968305954512 7.837299032657024𝐸 − 4 0.004902698209220216
𝑖 = 17 0.003575040868797677 6.561646626477985𝐸 − 4 0.004231205531445474
𝑖 = 18 0.0030851770217298546 5.460398016737795𝐸 − 4 0.003631216823403636
𝑖 = 19 0.0026465407059894147 4.515470133235514𝐸 − 4 0.0030980877193129645
𝑖 = 20 0.002256134121983131 3.709778645677343𝐸 − 4 0.0026271119865508663
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Table 3: Distribution of the number of units of energy.

𝑛
Probability that 𝑛 units of
energy present in the system

𝑛 = 0 0.005257905508569879
𝑛 = 1 0.005509630208742114
𝑛 = 2 0.014726179253861863
𝑛 = 3 0.018781677169906343
𝑛 = 4 0.056170706009369985
𝑛 = 5 0.07240774731564238
𝑛 = 6 0.08488960014753515
𝑛 = 7 0.01537683795036771
𝑛 = 8 0.011736083340386116
𝑛 = 9 0.010285277312655848
𝑛 = 10 0.009934953615597495
𝑛 = 11 0.010251213367679358
𝑛 = 12 0.010513483610080284
𝑛 = 13 0.011259973932302178
𝑛 = 14 0.01229433229048314
𝑛 = 15 0.01286122668417683
𝑛 = 16 0.014603533684450339
𝑛 = 17 0.016238840375660396
𝑛 = 18 0.017457901635544976
𝑛 = 19 0.021154088085968227
𝑛 = 20 0.024371579667587892
𝑛 = 21 0.026382235045579013
𝑛 = 22 0.038933398829995865
𝑛 = 23 0.04079100939440461
𝑛 = 24 0.041553695362992166
𝑛 = 25 0.3962568902004601

to the termination of its service caused by lack of energy,
and the average waiting time 𝑉wait of an arbitrary customer
on the parameter 𝐾 for arrival flows of energy with different
coefficients of correlation.

One can conclude from Figures 10–12 that correlation
in the energy arrival process has a very essential impact on
the system performance measures. In particular, the optimal
value of the threshold 𝐾 is equal to 𝐾∗ = 8 and the minimal
value of a customer loss probability is equal to𝑃loss

𝑐
= 0.00903

for the process of energy arrival coded as MAP0, that is,
having the coefficient of correlation equal to 0. In turn, for the
MAP0.2 energy arrival process, 𝐾∗ = 7 and 𝑃

loss
𝑐

= 0.06814,
and for the MAP0.4 energy arrival process 𝐾

∗

= 7 and
𝑃
loss
𝑐

= 0.20245. Lack of monotonicity of some curves around
the point 𝐾 = 3 was already mentioned above because the
minimal number of energy units required for service of a cus-
tomers is equal to 3 and the probability 𝑃loss

𝑐
has a maximum

around this point.Thus, the other performancemeasures also
have a bit irregular behavior around this point.

Let us assume now that the arrival flow of energy is
the one defined above having the coefficient of correlation
𝑐cor = 0.2 and we compare the key performance measures
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Figure 10: Dependence of 𝑃loss
𝑐

on 𝐾 for different arrival flows of
energy.
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Figure 11: Dependence of 𝑃term on 𝐾 for different arrival flows of
energy.

of the system with this energy arrival process and the arrival
flows of customers having different coefficients of correlation:
𝑐cor = 0, 𝑐cor = 0.2, and 𝑐cor = 0.4 also defined above. Figures
13–15 illustrate the dependence of the loss probabilities
𝑃
loss
𝑐

and 𝑃
term, and the average waiting time 𝑉

wait on the
parameter 𝐾 for arrival flows of customers with different
coefficients of correlation.

One can conclude from Figures 13–15 that correlation in
the customers arrival process has a very essential impact on
the system performance measures. In particular, the optimal
value of the threshold 𝐾 is equal to 𝐾∗ = 7 and the minimal
value of a customer loss probability is equal to 𝑃

loss
𝑐

=

0.045256 for the process of customers arrival coded asMAP0.
In turn, for the MAP0.2 customers arrival process 𝐾∗ = 7
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Figure 12: Dependence of 𝑉wait on 𝐾 for different arrival flows of
energy.
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Figure 13: Dependence of 𝑃loss
𝑐

on 𝐾 for different arrival flows of
customers.

and𝑃loss
𝑐

= 0.06814; for theMAP0.4 customers arrival process
𝐾
∗

= 8 and 𝑃
loss
𝑐

= 0.2806184.
The purpose of the next experiment is to illustrate the

impact of the coefficient of variation of the service time
distribution on the system performance measures. Note that
the service time distribution has a profound impact on the
system performance because it determines not only themean
service time but also the distribution of the number of energy
units required for one customer service. Thus, to investigate
the impact of the coefficient of variation of the service process
let us consider two service processes with the same mean
service time and energy consumption for customer service.
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Figure 14: Dependence of 𝑃term on 𝐾 for different arrival flows of
customers.
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Figure 15: Dependence of 𝑉wait on 𝐾 for different arrival flows of
customers.

The first service process, coded as Exp, has an exponential
distribution and is determined as follows:

𝑆 = (−1) ,

𝛽 = 1.

(42)

The second service process, coded as HExp, has a hyperexpo-
nential distribution and is determined as follows:

𝑆 = (

−0.06208 0

0 −4.882

) ,

𝛽 = (0.05, 0.95) .

(43)

Both these service processes have the same mean service
time 𝑏

1
= 1 and require exactly one energy unit for customer
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Table 4: Main performance measures of the system for the service processes with different coefficients of variation in the case𝐾 = 1.

𝑁customers 𝑁energy 𝑃
loss
𝑒

𝜆out 𝑃
loss
𝑐

𝑃
term

𝑉
wait

𝑃
imm

Exp 0.26745 19.16 0.8513 0.297 0.008915 0 0.8915 0.5939
HExp 2.27217 21.78 0.8585 0.283 0.056665 0 5.66 0.6235

service but have different coefficients of variation. In the case
of Exp, the coefficient of variation is equal to 1 and in the case
of HExp, coefficient of variation is equal to 5.

Let us present the system performance measures for the
considered cases and MAP0.2 +MAP0.2 arrival processes. All
the rest of parameters of the system are the same as above.
Since the number of energy units required for one customer
service in the considered cases is not random and is equal
to 1, this is the unique situation when the optimal value of
the threshold 𝐾

∗ can be predicted without computation and
𝐾
∗

= 1.
Table 4 presents the main performance measures of the

system for Exp andHExp service processes in the case𝐾 = 1.
It is seen from Table 4 that the variance of service times,

under the same mean service time and energy consumption,
has an essential impact on the system performancemeasures,
in particular on 𝑁customers, 𝑃

loss
𝑐

, and 𝑉
wait and, thus, this

variance has to be carefully taken into account.

7. Conclusion

A queueing model with energy harvesting and phase-type
distribution of the service time under the threshold strategy
of customers access is analyzed analytically. The presented
numerical examples demonstrate the feasibility of analytical
results and importance of the use of more general models of
the arrival processes of customers and energy units than the
stationary Poisson processes if the arrival processes in the
real system under investigation exhibit correlation or high
variability of interarrival times. Essential impact of variability
of the service times is also demonstrated. It is numerically
established that the famous Little’s formula holds true for the
system under study.
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