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Rolling bearings play a pivotal role in rotating machinery. The degradation assessment and remaining useful life (RUL) prediction
of bearings are critical to condition-based maintenance. However, sensitive feature extraction still remains a formidable challenge.
In this paper, a novel feature extraction method is introduced to obtain the sensitive features through phase space reconstitution
(PSR) and joint with approximate diagonalization of Eigen-matrices (JADE). Firstly, the original features are extracted frombearing
vibration signals in time and frequency domain. Secondly, the PSR is applied to embed the original features into high dimensional
phase space. The between-class and within-class scatter (𝑆𝑆) are calculated to evaluate the feature sensitivity through the phase
point distribution of different degradation stages and then different weights are assigned to the corresponding features based on
the calculated 𝑆𝑆. Thirdly, the JADE is employed to fuse the weighted features to obtain the advanced features which can better
reflect the bearing degradation process. Finally, the advanced features are input into the extreme learning machine (ELM) to train
the RUL prediction model. A set of experimental case studies are carried out to verify the effectiveness of the proposed method.
The results show that the extracted advanced features can better reflect the degradation process compared to traditional features
and could effectively predict the RUL of bearing.

1. Introduction

Currently, Prognostics and Health Management (PHM) is an
important research area in industry, which aims at increasing
availability and decreasing the downtime by predicting the
residual life of machine. Rolling bearing as a fundamental
component is widely used in the rotary machine. Bearing
failure is one of the principal reasons for themachine damage
[1]. In brief, condition monitoring of bearing is becoming
more and more significant, especially in the RUL prediction,
which can reduce the costs of maintenance. There are three
main approaches, namely, model based, data driven, and
hybrid [2–4]. Among them, the data driven methods are
easier to deploy than others, which are based on the relation
between degradation state and measurement data [5].

One of the challenges for RUL prediction based on
data driven is sensitive feature extraction from vibration

signals that are always mixed by noise [6, 7]. Many modern
mathematical methods are employed to overcome this chal-
lenge.Thesemethods offer systematic, scientific, and effective
tactics for extracting the features that can reflect the bearing
degradation.There are some representative feature extraction
methods via statistical calculation, such as time domain
analysis, frequency domain analysis, and time-frequency
domain analysis [8–10]. However, these original features are
often redundant and with high dimensionality. Therefore,
dimensionality reduction methods such as the principal
component analysis (PCA) and the independent component
analysis (ICA) are employed to reduce the redundancy for
machine fault diagnosis [11–13]. On the other hand, the
nonlinear dimensionality reduction methods are developed
in recent years, such as local embedding structure (LLE)
[14], local tangent space information (LTSA) [15], and local
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adjacency relations (LE) [16]. However, they are often with
complex algorithm and need a large amount of calculation
[17].

In this paper, a new dimensionality reduction technique
is introduced based on approximate diagonalization of Eigen-
matrices (JADE) algorithm, which is originally used in blind
identification. Generally, the mixed model without environ-
mental noise can be effectively identified by JADE. However,
it has a poor performance when the signals are mixed
with background noise [18]. To overcome this problem, a
feature weighted fusion method combining the phase space
reconstitution (PSR) [19] with the between-class and within-
class scatters evaluation [20] is proposed in this paper. As
different kinds of signals demonstrate different structure in
phase trajectory, the PSR can better grasp the nature and
regularity of the time series.

After extracting feature from vibration signals, machine
learning algorithms can be used to establish the bearing RUL
predictionmodel, such as the support vector machine (SVM)
[21–23] and the ANN [24]. In recent years, a new machine
learning algorithm called extreme learning machine (ELM)
has been introduced by Huang et al. It is a novel algorithm
of single hidden layer feed-forward neural networks (SLFNs),
which has an extremely fast learning speed and advantageous
generalization capability through randomly choosing hidden
nodes and analytically determining output weights [25].
Moreover, ELM has a commendable performance in both
classification and regression with a simple structure. Com-
pared with back-propagation (BP) feed-forward network
learning algorithm, the training speed of ELM is much faster
while obtaining better generalization [26, 27]. In view of these
advantages, the ELM is selected in this paper to establish
bearing RUL prediction model.

The rest of the paper is organized as follows. Section 2
gives a brief introduction of PSR, JADE, and ELM. The
proposedRULprediction procedure for bearings is illustrated
in Section 3. Experimental validations and comparison with
other linear dimensionality reduction methods are presented
in Section 4. Finally, the conclusions are drawn in Section 5.

2. Theory Background

2.1. Phase Space Reconstitution (PSR). Chaotic time series
analysis is a method for nonlinear signal processing. By
extending the time series to high dimensional phase space,
this method can grasp the nature of time series much better.
The research of PSR on chaotic time series was started from
Packard et al. [28]. Suppose that the time series is 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), the embedding dimension is chosen as 𝑑, and

the time delay is selected as 𝜏. And then a phase point is
constructed as

𝑋
𝑖
(𝑑) = [𝑥

𝑖
, 𝑥
𝑖+𝜏

, . . . , 𝑥
𝑖+(𝑑−2)𝜏

, 𝑥
𝑖+(𝑑−1)𝜏

] , (1)

where 𝑛 is the number of time series and 𝑖 is the index of
the phase point. However, the acquired signals are blended
with noise, so the parameters should be determined under
a reasonable rule [29]. In this paper, the autocorrelation

function is employed to identify the time delay, which is
defined as

𝐶
𝑖
(𝜏) =

(1/𝑛)∑
𝑛

𝑖=1
[𝑥 (𝑖 + 𝜏) − 𝑥] [𝑥 (𝑖) − 𝑥]

(1/𝑛)∑
𝑛

𝑖=1
[𝑥 (𝑖) − 𝑥]

2
, (2)

where 𝑥 = (1/𝑛)∑
𝑛

𝑖=1
𝑥(𝑖). According to Rosenstein’s theories

[30], the minimum 𝜏 that makes 𝐶
𝑖
(𝜏) lower than 1 − 1/𝑒

can be considered as the most suitable time delay. And
Cao’s algorithm [31] is employed to identify the embedding
dimension. Suppose that the nearest phase point to 𝑋

𝑖
(𝑑) is

𝑋near(𝑖,𝑑)(𝑑). In accordance with the embedding theorem, if
𝑑 is the suitable embedding dimension, then any two points
that are close to the 𝑑 dimensional reconstructed phase space
will continue to be close to the 𝑑 + 1 dimensional space

𝑎 (𝑖, 𝑑) =

𝑋𝑖 (𝑑 + 1) − 𝑋near(𝑖,𝑑+1) (𝑑 + 1)
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.

(3)

With the increase of 𝑑, 𝐸
1
(𝑑) will be gradually stabilized;

therefore, the minimum 𝑑 that stabilizes 𝐸
1
(𝑑) is set as the

embedding dimension. However, it is difficult to determine
whether the curve of 𝐸

1
(𝑑) is stable due to the limited length

of samples.Therefore, supplementary criteria are proposed as
shown in

𝐸
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(4)

where 𝐸
2
(𝑑) will be changed with the increasing of 𝑑 if

the sample is deterministic. Besides, more details of the
description are presented in [32].

2.2. Joint Approximate Diagonalization of Eigen-Matrices
(JADE). The JADE algorithm is widely used in blind source
separation (BSS) [33]; it is based on a standard linear data
model that can be expressed as follows:

𝑥 (𝑡) = 𝐴𝑠 (𝑡) + 𝑛 (𝑡) , (5)

where 𝑥(𝑡) is the source signal that mixed with noise, 𝑛(𝑡)
is additive noise, and 𝑠(𝑡) is the source signal, which can be
obtained by transfer matrix𝐴. The JADE can be summarized
as follows:

(a) Signal whitening is as follows:

𝑧 (𝑡) = 𝑊𝑥 (𝑡) ,

𝑊 = [(𝜇
1
− 𝜎)
−1/2

ℎ
1
, . . . , (𝜇

𝑛
− 𝜎)
−1/2

ℎ
𝑛
]
𝐻

,

(6)
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Figure 1: The structure of ELM.

where 𝑧(𝑡) is whitened signal, 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
is the

eigenvalue of sample, ℎ
1
, ℎ
2
, . . . , ℎ

𝑛
is the correspond-

ing eigenvector, and 𝜎 is the noise variance.
(b) Calculate the fourth-order cumulants [34]

𝑄
𝑧
= {Cum (𝑧

𝑖
, 𝑧
𝑗
, 𝑧
𝑘
, 𝑧
𝑙
) | 1 ≤ 𝑖, 𝑗, 𝑘, 𝑙 ≤ 𝑑} , (7)

where 𝑑 is the dimensionality of the vector 𝑧.
(c) Calculate the unitary matrix

�̂� = argmin∑
𝑖

off (𝑈
#
𝑄
𝑧
(𝑀
𝑖
) 𝑈) , 1 ≤ 𝑖 ≤ 𝑛, (8)

where # denotes the pseudo-inverse, “off” is the
square of the nondiagonal elements, “argmin” is the
argument of a complex number, and 𝑈 is a rotation
matrix.

(d) The single model can be separated as

𝑠 (𝑡) = �̂�𝑥 (𝑡) , (9)

where �̂� = �̂�𝑊
#.

In this paper, JADE is firstly applied in dimensionality
reduction and feature extraction. The single model can be
obtained through Eigen-decomposition of the fourth-order
cumulative matrix of the multivariate data. This not only
is simpler than PCA and fast-ICA algorithm but also can
improve the robustness of the results. However, the original
features have different units and dimension, and it is difficult
to distinguish between the contributions of each feature to the
overall feature.

2.3. Extreme Learning Machine (ELM). ELM is an efficient
learning algorithm for classification and prediction in SLFNs,
the structure of ELM as shown in Figure 1. It can randomly
generate the bias and input weights of hidden nodes. More-
over, it can immediately get the result without the puzzle of a
local minimum [35].

Suppose there are 𝑁 samples (𝑋
𝑖
, 𝑡
𝑖
), where 𝑋

𝑖
denotes

the feature and 𝑡
𝑖
denotes the target value. Then the model of

SLFNs with �̃� hidden nodes can be described as below:
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𝑇 is the weight vector connecting the
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𝑗
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𝑗
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Then above𝑁 equation can be written compactly as
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Thus the output weight 𝛽 can be written as

𝛽 = 𝐻
+
𝑇, (14)

where𝐻+ = (𝐻
𝑇
𝐻)
−1
𝐻
𝑇.

Although the ELM is faster than other machine learning
algorithms, its accuracy is still dependent on feature extrac-
tion.

3. The Proposed Method for
Bearing RUL Prediction

In the abovementionedmethods, the PSR has superiormerits
for characterizing nonlinear time series. The JADE focuses
on feature fusion or dimensionality reduction. The ELM is
an effective learning algorithm with fast training speed. A
bearing RUL prediction scheme combined with the three
methods is introduced in this paper.
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Table 1: List of the original extracted features.
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Where 𝑆𝑖 is a spectrum for 𝑖 = 1, 2, . . . ,𝑁,𝑁 is the number of spectrum lines, and 𝑓𝑖 is the frequency value of the 𝑖th spectrum line.

JADE

Bearing 
vibration signal

ELM model RUL
prediction

ELM

Original features 
calculation

Time domain

Frequency
domain

Entire life cycle 

Bearing 
vibration signal

Current data

New features 
extraction

PSR SS

Weight

Feature weighting 

Normalization

Training 
sample

Testing 
sample

Figure 2: Principle of the proposed method based on PSR and JADE.

The scheme is exhibited in Figure 2 and can be described
as follows.

Step 1 (original feature extraction). A total of 16 statistical
features are shown in Table 1 including 8 time domain
features and 8 frequency domain features. 𝐹1 to 𝐹8 are the
mean, root mean square, RMS amplitude, absolute average,
skewness, waveform index, impulsion index, and kurtosis
index, respectively.𝐹9–𝐹16 are the frequency domain feature,
which indicates the degree of dispersion or concentration
of the spectrum, and the change of the dominant frequency
band.

Step 2 (PSR for each feature). The autocorrelation function is
employed to select the time delay and Cao’s algorithm is used
to determine the embedding dimension. All the features are
reconstructed by PSR with the same parameter.

Step 3 (between-class and within-class scatter (𝑆𝑆) for feature
weighting). Based on the feature phase space distribution,
𝑆𝑆 is used to describe the classification ability of features
quantitatively for different degradation states. Suppose that

there are 𝐶 classes that are established by degradation states
and the 𝑖th class vector is 𝑥𝑖 = (𝑥
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where 𝑚
𝑖
is the mean vector for samples in the 𝑖th class and

𝑚 is the mean vector for all classes. The between-class scatter
𝑆
𝑏
denotes the scattered degree in different classes while the

within-class scatter 𝑆
𝑤
indicates the concentration among

the same class. Therefore, the classification ability can be
evaluated through the 𝑆𝑆. The weight of each original feature
is calculated as follows:

𝑤
𝑖
=

𝑆𝑆
𝑖

∑
𝑗=16

𝑗=1
𝑆𝑆
𝑗

. (16)

Step 4 (JADE for feature fusion). In this step, every feature
that is extracted in Step 1 can be seen as a “source signal,” and
the JADE is introduced to separate the single model from the
16 source signals that have been normalized and weighted.
However, the separated unidimensional vector is mixed by
noise. Therefore, the exponentially weighted moving average
(EWMA) is used for denoising, which is defined as follows:

𝑥
𝑡
= (1 − 𝛼) 𝑥

𝑡−1
+ 𝛼𝑥
𝑡
, (17)

where𝛼 ∈ [0, 1] is the smoothing factor, and it generally takes
between 0.05 and 0.25 [36].

Step 5 (prediction model training). Based on Steps 1–4, the
fused feature vector with real RUL (𝑋

𝑗
, 𝑡
𝑗
) is input into ELM,

where 𝑗 is the index of the samples. The bias and input
weights of hidden nodes in ELM are randomly generated.
Then the model with �̃� hidden nodes can be constructed as
∑
�̃�

𝑖=1
𝛽
𝑖
𝑔
𝑖
(𝑋
𝑗
) = ∑

�̃�

𝑖=1
𝛽
𝑖
𝑔(𝑊
𝑖
⋅ 𝑋
𝑗
+ 𝑏
𝑖
) = 𝑜
𝑗
, where 𝑤

𝑖
is the

weight connecting the 𝑖th hidden and the input nodes, 𝑏
𝑖
is

the bias of hidden layer nodes, which are randomly assigned,
and 𝑜 is the output value. 𝛽

𝑖
is the weight connecting the 𝑖th

hidden and output nodes, where the best value can minimize
the error between output 𝑜

𝑗
and real RUL 𝑡

𝑗
. And then the

fused feature vector of testing samples is input into the trained
prediction model for running bearing RUL prediction.

4. Experimental Results and Analysis

4.1. Experimental Data Set Description. In order to evaluate
the effectiveness of the proposed feature fusion scheme for

RUL prediction, the entire life cycle bearing data originated
from the Center for Intelligent Maintenance Systems [37]
is analyzed. The experimental data sets are collected from
run-to-failure bearing test on the designed test platform
(Figure 3). Four bearings are installed on a shaft.The rotation
speed is kept at 2000 r/min by using an AC motor coupled
to the shaft via rub belts. A 6000 lb radial load is applied
onto the bearing and shaft by using a spring mechanism.
A PCB 353B33 High Sensitivity Quartz ICP Accelerometer
was installed on bearing housing. A vibration data sample of
20480 points was collected every 10 minutes by a National
Instruments DAQCard-6062E data acquisition card. The
sampling rate is set as 20 kHz, the vibration data are recorded
on the test bench, and more details can be found in [38].

4.2. Original Feature Extraction. In this paper, 100 groups
of training samples are selected from the run-to-failure
bearing data, and the data samples adjacent to the training
data samples are regarded as testing samples. The length of
every group’s data is set to 1680 points. Take outer-race-
fault case as an example; the acquired run-to-failure bearing
data is (𝑋

1
, 𝑋
2
, . . . , 𝑋

984
), where 𝑋

𝑖
is the 𝑖th acquired data

sample and 𝑖 ranges from 1 to 984. The training samples
can be selected as (𝑋

90
, 𝑋
99
, . . . , 𝑋

981
) and the testing sam-

ples can be selected as (𝑋
91
, 𝑋
100

, . . . , 𝑋
982

), where 𝑋
𝑗

=

(𝑥
1
, 𝑥
2
, . . . , 𝑥

1680
) and 𝑗 is the index of samples and ranges

from 1 to 100.
The 16 original features (as shown in Table 1) are extracted

from the training samples and illustrated in Figures 4–6.
However, these features are not robust in characterizing the
degradation process. Take 𝐹12 as an example; it performs
well in inner-race-fault case and roller-fault case but performs
badly in outer-race-fault case. Therefore, it is very important
to extract a robust and favorable feature from the original
features, which can better express the bearing degradation.
In addition, from these extracted features, it can probably be
found that the time ratio of each operation stage (including
normal, slight degradation, and serious degradation) in
the outer-race-fault case, inner-race-fault case, and roller-
fault case is about 0.5 : 0.4 : 0.1, 0.6 : 0.3 : 0.1, and 0.5 : 0.2 : 0.3,
respectively.
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Figure 4: The extracted 16 features of outer-race-fault case.
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Figure 5: The extracted 16 features of inner-race-fault case.

4.3. Phase Space Reconstitution. As the high dimensional
phase space can grasp the nature of time series much
better, the PSR is then applied to reconstruct the original
feature vector to the phase space before the following feature
contribution evaluation using 𝑆𝑆.

In this paper, the autocorrelation function and Cao’s
algorithm are employed to identify the time delay and
embedding dimension. Take 𝐹1 of outer-race-fault case as an
example; the results are shown in Figure 7. Figure 7(a) shows
that 𝐶

𝑖
(𝜏) changes with the increase of delay time, and the
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Figure 6: The extracted 16 features of roller-fault case.
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Figure 7: (a) Curve of 𝐶
𝑖
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(𝑑) and 𝐸
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(𝑑).

minimum 𝜏 that makes 𝐶
𝑖
(𝜏) lower than 1 − 1/𝑒 could be

considered as the most optimal time delay. From Figure 7(b),
it can be seen that 𝐸

1
(𝑑) keeps stable when 𝑑 is larger than 10,

and𝐸
2
(𝑑) randomly fluctuates with𝑑. Consequently, the time

delay is set to 1 and embedding dimension is set to 10. Then
other features are processed as the abovementionedmethods,
and the phase points distribution of different operational
stages is shown in Figures 8–10 (two dimensions are chosen

to reflect the phase point distribution for better observation
experience).

4.4. Feature Fusion Based on JADE and SS. 𝑆𝑆 is then
employed to evaluate the contributions of the feature. As
shown in Figure 11, the abscissa is the feature number which
has been described in Table 1. The ordinate is the value of
𝑆𝑆 which is the evaluation index of feature. The greater the



8 Mathematical Problems in Engineering

Normal
Slight degradation
Serious degradation

0 0.5 1
0

0.5

1
F1

0 0.5 1
0

0.5

1
F2

0 0.2 0.4
0

0.2

0.4
F9

0 0.2 0.4
0

0.2

0.4
F10

0 0.5 1
0

0.5

1
F3

0 0.5 1
0

0.5

1
F4

0 0.5 1
0

0.5

1
F11

0 0.5 1
0

0.5

1
F12

0 0.05 0.1
0

0.05

0.1
F5

0 0.2 0.4
0

0.2

0.4
F6

0 0.5 1
0

0.5

1
F13

0 0.5 1
0

0.5

1
F14

0 0.5 1
0

0.5

1
F7

0 0.5 1
0

0.5

1
F8

0 0.5 1
0

0.5

1
F15

0 0.5 1
0

0.5

1
F16

Figure 8: The phase points distribution of outer-race-fault case in two dimensions.

𝑆𝑆, the better the identifiable capacity of bearing degradation
states. Take inner-race-fault case as an example; it can be
seen that 𝐹1, 𝐹5, 𝐹7, and 𝐹8 cannot effectively characterize
or distinguish different degradation stages, and 𝐹3 provides
excellent preference for distinguishing of different degrada-
tion states. The weights of every feature can be calculated as
𝑤
𝑖
= 𝑆𝑆
𝑖
/∑
𝑗=16

𝑗=1
𝑆𝑆
𝑗
. Besides, 𝐹12 performs well in roller-fault

case but performs badly in outer-race-fault case. Therefore,
it is very important to extract a robust feature that could be
adapted to different cases.

The JADE is then applied to fuse the weighted features.
In order to improve the sensitivity and reliability of the
fused feature in the bearing slight degradation, the EWMA
is employed for denoising according to (17), where the
smoothing factor is selected as 0.2. After all of the steps, the
new feature vector can be extracted and shown in Figure 12.

4.5. Prediction Performance. In this step, the fused feature
vector and the corresponding real RUL are input into the
ELM to construct the RUL prediction model. The data
samples adjacent to the training data samples are used to test
the model. Results are shown in Figure 13. It can be seen

that the predicted RUL is coinciding fairly well with the real
RUL, which indicates that the feature fusion method and
constructed ELMmodel can achieve an ideal result. However,
the RULprediction accuracy is relatively high in the first stage
as the vibration is relatively stable. The slight fault stage is
always complex and sharp fluctuation also happens at this
stage. The vibration at the serious fault stage is more regular,
which can lead to higher prediction accuracy.

The PCA and ICA as the representative linear dimen-
sionality reduction methods are applied on the same data to
compare with the proposed method. The root mean square
error (RMSE) is selected to evaluate the RUL prediction
accuracy which can be defined as

RMSE = √

𝑛

∑

𝑖=1

(𝑡
𝑖
− 𝑦
𝑖
)
2

, 𝑖 = 1, 2, . . . , 𝑛, (18)

where 𝑡
𝑖
is the real RUL and 𝑦

𝑖
is the predicted RUL.

Considering the problem of repeatability, the ELM is
applied on the same training data 10 times, and the average
of the RMSE is selected to evaluate the prediction accuracy.
The results of comparison are shown in Tables 2–4. It can
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Figure 9: The phase points distribution of inner-race-fault case in two dimensions.

Table 2: Predicted accuracy of outer-race-fault case.

Training Testing
Number of training

data RMSE Number of testing
data RMSE

PCA 100 12.549 100 13.526
ICA 100 12.605 100 14.108
JADE 100 8.872 100 10.018

be seen that the proposed feature extraction is better than
the traditional two methods, which proves the merits of the
proposed method for fusing original features.

5. Conclusions

A novel feature extraction method that integrates the PSR,
𝑆𝑆, and JADE is introduced in this paper. The contribution
of the original features is considered according to 𝑆𝑆 that
derived from phase point distribution after PSR. The JADE

Table 3: Predicted accuracy of inner-race-fault case.

Training Testing
Number of training

data RMSE Number of testing
data RMSE

PCA 100 16.073 100 17.548
ICA 100 16.165 100 17.103
JADE 100 14.552 100 14.846

Table 4: Predicted accuracy of roller-fault case.

Training Testing
Number of training

data RMSE Number of testing
data RMSE

PCA 100 9.668 100 9.124
ICA 100 9.650 100 9.077
JADE 100 9.105 100 8.227
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Figure 10: The phase points distribution of roller-fault case in two dimensions.
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is employed to fuse the features. Based on the extracted
advanced features, the ELM is employed to construct the RUL
prediction model.

A set of experimental case studies are presented to verify
the effectiveness of the proposedmethod.The results indicate
that the proposed method is appropriate for RUL prediction
and even performs better than the traditional methods.
The introduced JADE joint PSR and 𝑆𝑆 feature extraction
method is a multifeature fusion method that can inhibit the
nonsensitive features while enhancing the superior features.
It is also suitable for other machine RUL predictions, such as
cutting tools and gears.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

The authors would like to thank the Center for Intelligent
Maintenance Systems (IMS), University of Cincinnati, for
providing free download of the rolling element bearing fault
data sets.This work is supported by the National Natural Sci-
ence Foundation ofChina (51505001), EducationDepartment
Key Projects of Anhui Province (KJ2013A010), and Natural
Science Foundation of Anhui Province (1508085SQE212 and
1408085ME81).



12 Mathematical Problems in Engineering

References

[1] S. Nandi, H. A. Toliyat, and X. Li, “Condition monitoring and
fault diagnosis of electrical motors—a review,” IEEE Transac-
tions on Energy Conversion, vol. 20, no. 4, pp. 719–729, 2005.

[2] A. Heng, S. Zhang, A. C. C. Tan, and J. Mathew, “Rotating
machinery prognostics: state of the art, challenges and oppor-
tunities,” Mechanical Systems and Signal Processing, vol. 23, no.
3, pp. 724–739, 2009.

[3] A. K. S. Jardine,D. Lin, andD. Banjevic, “A review onmachinery
diagnostics and prognostics implementing condition-based
maintenance,”Mechanical Systems and Signal Processing, vol. 20,
no. 7, pp. 1483–1510, 2006.

[4] J. Z. Sikorska, M. Hodkiewicz, and L. Ma, “Prognostic mod-
elling options for remaining useful life estimation by industry,”
Mechanical Systems and Signal Processing, vol. 25, no. 5, pp.
1803–1836, 2011.

[5] K. Javed, R. Gouriveau, N. Zerhouni, and P. Nectoux, “Enabling
health monitoring approach based on vibration data for accu-
rate prognostics,” IEEE Transactions on Industrial Electronics,
vol. 62, no. 1, pp. 647–656, 2015.

[6] Q. He, X. Ding, and Y. Pan, “Machine fault classification based
on local discriminant bases and locality preserving projections,”
Mathematical Problems in Engineering, vol. 2014, Article ID
923424, 12 pages, 2014.

[7] S. Zhang and W. Li, “Bearing condition recognition and degra-
dation assessment under varying running conditions using
NPE and SOM,” Mathematical Problems in Engineering, vol.
2014, Article ID 781583, 10 pages, 2014.

[8] X.Wang, Y. Zheng, Z. Zhao, and J.Wang, “Bearing fault diagno-
sis based on statistical locally linear embedding,” Sensors, vol. 15,
no. 7, pp. 16225–16247, 2015.

[9] B. Samanta and K. R. Al-Balushi, “Artificial neural network
based fault diagnostics of rolling element bearings using time-
domain features,”Mechanical Systems and Signal Processing, vol.
17, no. 2, pp. 317–328, 2003.

[10] Y. Zhang, H. Zuo, and F. Bai, “Classification of fault location and
performance degradation of a roller bearing,”Measurement, vol.
46, no. 3, pp. 1178–1189, 2013.

[11] A. Malhi and R. X. Gao, “PCA-based feature selection scheme
for machine defect classification,” IEEE Transactions on Instru-
mentation and Measurement, vol. 53, no. 6, pp. 1517–1525, 2004.

[12] K. Schweizer, P. C. Cattin, R. Brunner, B. Müller, C. Huber, and
J. Romkes, “Automatic selection of a representative trial from
multiple measurements using Principle Component Analysis,”
Journal of Biomechanics, vol. 45, no. 13, pp. 2306–2309, 2012.

[13] C. Zang, M. I. Friswell, and M. Imregun, “Structural damage
detection using independent component analysis,” Structural
Health Monitoring, vol. 3, no. 1, pp. 69–83, 2004.

[14] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimension-
ality reduction and data representation,” Neural Computation,
vol. 15, no. 6, pp. 1373–1396, 2003.

[15] Z. Zhang and H. Zha, “Principal manifolds and nonlinear
dimensionality reduction via tangent space alignment,” SIAM
Journal on Scientific Computing, vol. 26, no. 1, pp. 313–338, 2004.

[16] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduc-
tion by locally linear embedding,” Science, vol. 290, no. 5500,
pp. 2323–2326, 2000.

[17] Q. Jiang, M. Jia, J. Hu, and F. Xu, “Machinery fault diagnosis
using supervised manifold learning,” Mechanical Systems and
Signal Processing, vol. 23, no. 7, pp. 2301–2311, 2009.

[18] X. Song, D. Ta, and W. Wang, “Analysis of superimposed
ultrasonic guided waves in long bones by the joint approximate
diagonalization of eigen-matrices algorithm,” Ultrasound in
Medicine and Biology, vol. 37, no. 10, pp. 1704–1713, 2011.

[19] G. F.Wang, Y. B. Li, and Z. G. Luo, “Fault classification of rolling
bearing based on reconstructed phase space and Gaussian
mixture model,” Journal of Sound and Vibration, vol. 323, no.
3–5, pp. 1077–1089, 2009.

[20] X. Ding, Q. He, and N. Luo, “A fusion feature and its improve-
ment based on locality preserving projections for rolling
element bearing fault classification,” Journal of Sound and
Vibration, vol. 335, pp. 367–383, 2015.

[21] S. Dong and T. Luo, “Bearing degradation process prediction
based on the PCA and optimized LS-SVM model,” Measure-
ment, vol. 46, no. 9, pp. 3143–3152, 2013.

[22] W. Caesarendra, A. Widodo, and B.-S. Yang, “Combination of
probability approach and support vector machine towards
machine health prognostics,” Probabilistic Engineering Mechan-
ics, vol. 26, no. 2, pp. 165–173, 2011.

[23] C. Sun, Z. Zhang, and Z. He, “Research on bearing life pre-
diction based on support vector machine and its application,”
Journal of Physics: Conference Series, vol. 305, no. 1, Article ID
012028, 2011.

[24] G. S. Vijay, H. S. Kumar, P. P. Srinivasa, N. S. Sriram, and R. B. K.
N. Rao, “Evaluation of effectiveness of wavelet based denoising
schemes using ANN and SVM for bearing condition classifi-
cation,” Computational Intelligence and Neuroscience, vol. 2012,
Article ID 582453, 12 pages, 2012.

[25] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning
machine: theory and applications,”Neurocomputing, vol. 70, no.
1–3, pp. 489–501, 2006.

[26] F. Liu, Y. Liu, F. Chen, and B. He, “Residual life prediction
for ball bearings based on joint approximate diagonalization of
eigen matrices and extreme learning machine,” Proceedings of
the Institution of Mechanical Engineers—Part C, 2015.

[27] A. Grigorievskiy, Y. Miche, A.-M. Ventelä, E. Séverin, and A.
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