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Bus bunching is one of the most serious problems of urban bus systems. Bus bunching increases waiting and travel time of
passengers. Many bus systems use schedules to reach equal headways. Compared to the idea of schedules and the target headway
introduced later, we propose a new method to improve the efficiency of a bus system and avoid bus bunching by boarding limits.
Our solution can be effectively implemented when buses cannot travel as planned because of bad road conditions and dynamic
demands at bus stops. Besides, using ourmethod, bus headways reach the state with equal headways dynamically and spontaneously
without drivers’ explicit intervention. Moreover, the method can improve the level of the bus service and reduce total travel time of
passengers. We verify our method using an ideal bus route and a real bus route, both showing the success of the proposed method.

1. Bus Bunching

It is always desirable for buses to run on a route with equal
headways. Nevertheless, this is often difficult to accomplish
due to complex conditions related to traffic on the road and
demands from passengers at bus stops. Naturally, some buses
become slow and some fast. Moreover, the phenomenon
becomes more serious if no steps are taken. For example, if
a bus is delayed for some reason, the bus will slow down and
the headway between it and the bus before it will be larger
than the normal headway. Therefore, more passengers will
arrive at the next stop for the bus, whichwill cause even larger
delay. Similarly, the headway between the bus and the bus
behind it will become smaller than the expected headway,
and there would be fewer passengers at the stop when the
next bus arrives, which will make the next bus even faster. In
other words, the fast bus will be faster, and the slow one will
be slower. This phenomenon will exaggerate like a snowball,
where small headways will become smaller and large head-
ways will become larger, and if we do nothing, two buses will
finally meet at some time, which is called bus bunching.

There are two main negative effects of bus bunching. One
is that it increases the waiting time of passengers, because
larger gaps allow more passengers to arrive at the stop and
these passengers will wait for longer time. The other one is

regarding wasting capacity, because fast buses take on fewer
passengers and are nearly empty. So, in order to resist such
negative effects, we provide an effective method.

We propose a self-adjustingmethod to equalize headways
and provide superior quality service for passengers based on
dynamic boarding limits. Our method does not use either
the target headway or a schedule. We decide the number
of passengers to be rejected to board on a control point
according to both headways before and behind the bus.
Headways will be adjusted spontaneously after a disruption.
Drivers can drive carefully without having to check their time
or locations. Passengers on a bus will not waste their time
waiting for departure, and themanagementwill be freed from
designing a schedule.

2. Overview of Solutions

Bus bunching has long been understood and studied, yet it
is still difficult to correct. Newell and Potts [1] propose the
notion of bus bunching. To summarize previous studies, there
are two groups of methods to resolve bus bunching. One is
to make fast buses slow down, and the other is to make slow
buses speed up, and then the headways between buses can be
equalized.
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Barnett [2] focuses on computing the delays of buses
after disruption. Turnquist and Blume [3] propose holding
strategies to increase service regularity. Hickman [4] provides
a comprehensive summary of previous studies on headway
control. Fu and Yang [5] propose a scheme which can
minimize the variation of headways and provide better
service for passengers. Zhao et al. [6] propose a control
model based on negotiation between two agents: one aboard
the bus and the other at a stop. Zolfaghari et al. [7]
discuss the objective that minimizes both passengers at a
stop and those who have to wait for more than one bus.
Puong and Wilson [8] extend their study by including extra
waiting time endured by passengers into their objective func-
tion. Delgado et al. [9] develop a deterministic optimization
model capable of incorporating holding and boarding limits.
Cats et al. [10, 11] evaluate different holding strategies for
improving service reliability. Ibarra-Rojas et al. [12] present
a comprehensive review, discussing recent studies as well as
works not addressed in previous reviews.

In the US, municipal bus routes are typically managed
by target schedules. Under target schedules, the management
has to spend a lot of time to make a reasonable schedule to
provide the best service. And all the efforts will be useless if a
bus lags behind the schedule.

Daganzo [13] proposes a scheme including the target
headway to remit bus bunching. According to his model,
there is a control point, and every bus arriving at the control
point adjusts its headway according to the previous headway.

Bartholdi and Eisenstein [16] propose a self-coordinating
measure. According to their model, the authors abandon
the target schedule and target headway and delay a bus
at the control point for a duration related to the headway
so that headways tend to equalize even in the presence of
perturbations.

Liang et al. [14] propose a self-adaptive control scheme to
equalize the headways of buses with little slack in a single line
automatically. In theirmethod, they just need the information
from the current bus at the control point, its leading bus,
and following bus. Also they make contrast between the
proposed method and previous self-equalizing methods to
get conclusion.

Sánchez-Mart́ınez et al. [15] formulate a mathematical
model for holding control optimization that reflects dynamic
running times and demand. Their model can be used to
produce a plan of holding times for both the current state
of the system and expected changes in running times and
demand. The effectiveness of the model within a simulation
environment is evaluated to show the advantages of their
method.

Based on these studies, we provide our view on the meth-
ods that have been previously proposed or implemented.The
traffic state and travel speeds of passengers are significantly
influenced if we allow the fast bus to decelerate on an urban
road. Besides, if we let the fast bus stop at a station for
some extra time beyond what is necessary to take on the
passengers, there will be some negative influence on the buses
of other lines which stop at this station as well. Moreover, the
passengers on board want to arrive at the destination quickly.
Further, it is impossible to make a slow bus fast when the bus

is running on an urban road because of the traffic. So the
proposed method uses boarding limits at control stations to
control buses.

We propose a self-adjusting control system based on the
method of boarding limits, where we abandon the ideas
of the target scheme, target headway, and bus holding. We
successfully avoid unnecessary wasting of time at stations,
and in our model buses stop at a station just to take on
passengers. If the bus system is disturbed, the entire system
will stabilize spontaneously in a short time without wasting
time of passengers on board, where the headways on the route
will spontaneously become equal.

3. Self-Adjusting Method Based on
Boarding Limits

Consider an ideal system, a circle route with a control point,
and 𝑛 buses running on it, where the average velocity of every
bus is identical.The length of the route is 𝐿, and the direction
of buses running on it is from 0 to 𝐿. 𝐿 is, in fact, the same
point of the circle as 0. Rejection will be implemented at the
control point. Let the bus that just arrived at the control point
be bus 1, let the one before bus 1 in the direction of travel be
bus 2, and let the bus behind bus 1 be bus 𝑛. The headway ℎ

𝑖

is the time in which a bus covers the distance between bus 𝑖
and bus 𝑖 + 1. Also the headway ℎ

𝑛
is the time bus 𝑛 needs to

run from its current location to the location of bus 1. For each
moment 𝑡, we use the vector lt = (𝑙𝑡

1
, 𝑙
𝑡

2
, . . . , 𝑙

𝑡

𝑛
) to express the

locations of the buses at time 𝑡, where 0 = 𝑙𝑡
1
≤ 𝑙
𝑡

2
≤ ⋅ ⋅ ⋅ ≤ 𝑙

𝑡

𝑛
≤

𝐿. Similarly, we use the vector ht = (ℎ𝑡
1
, ℎ
𝑡

2
, . . . , ℎ

𝑡

𝑛
) to express

the headways of the buses at time 𝑡, where ℎ𝑡
𝑖
= (𝑙
𝑡

𝑖+1
− 𝑙
𝑡

𝑖
)/V

for all buses (2 ≤ 𝑖 ≤ 𝑛 − 1) and ℎ𝑡
𝑛
= (𝐿 − 𝑙

𝑡

𝑛
)/V for bus 𝑛,

except for bus 1, which will stop at the control point so that
its headway will be changed to equalize the headways.

3.1. Ideal Model Using Dynamic Boarding Limits. When a bus
(bus 1) arrives at the control point, we consider the relation
between ℎ𝑡

1
and ℎ𝑡
𝑛
and then decide if the rejection is required.

We consider just the two adjacent headways (ℎ𝑡
1
and ℎ𝑡

𝑛
,

𝑡 = 1, 2, . . . , 𝑚) and our goal is to make the two adjacent
headways equal after the three buses related to ℎ𝑡

1
and ℎ𝑡

𝑛

pass through the control point. A sketch map is presented
in Figure 1. Some parameters used in our formulas and their
implications are described as follows:

𝑅
𝑡: the number of passengers who arrive at the control

point between time 𝑡 and time 𝑡 + 1.
𝑥
𝑡: the number of the passengers that should be

refused by bus 1 at the control point at time 𝑡.
𝑝: the average time a passenger needs to get on the
bus.
𝑤: the number of the passengers arriving at the
control point in one minute.
V: the average travel speed between two adjacent
control points.
𝑡
∗: the dwell time of bus 1 at the control point.
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Figure 1: The bus system.

Theorem 1. When a bus arrives at the control point at time
t, there are two situations: one is 𝑥𝑡 ≤ 0, and then we need
not control the bus; the other is 𝑥𝑡 > 0, and then we will take
rejection control. Considering the situation of 𝑥𝑡 > 0, if more
than 𝑥𝑡 persons are waiting for a bus, 𝑥𝑡 persons should be
rejected, and the other persons (𝑅𝑡−𝑥𝑡)will get on; if less than𝑥𝑡
or just 𝑥𝑡 persons are waiting for a bus, all persons (𝑅𝑡) should
be rejected, where

𝑥
𝑡
=

ℎ
𝑡

1
− ℎ
𝑡

𝑛

3𝑝

+

2 × 𝑅
𝑡

3

−

ℎ
𝑡

𝑛
× 𝑤

3

. (1)

The headways of buses will stabilize at 𝐻 described as
follows:

𝐻 =

𝐿/V + 𝑛 × 𝑡∗

𝑛

=

𝐿

𝑛 × V (1 − 𝑤 × 𝑝)
. (2)

Proof.
Time 𝑡. The location of the bus at the control point is 0, which
can be described as follows:

𝑙
𝑡

1
= 0, (3)

and the positions of buses change from moment 𝑡 to 𝑡 + 1 as
described below.

Time t + 1. First,

𝑙
𝑡+1

1
= 0. (4)

Second, the location of bus 2 at time 𝑡+1 can be calculated
according to the location of bus 1 and the dwell time of bus 1
at the control point at time 𝑡, which can be described as 𝑡∗ =
(𝑅
𝑡
−𝑥
𝑡
) × 𝑝. (𝑅𝑡 −𝑥𝑡)means the number of the persons who

will be taken, so the dwell time 𝑡∗ is decided by the number of
the persons who will be taken (𝑅𝑡 − 𝑥𝑡) and the average time
a passenger needs to get on the bus (𝑝).

Therefore,

𝑙
𝑡+1

2
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𝑡

1
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𝑡

𝑛
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𝑡
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𝑛
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𝑡
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(5)

and then we can obtain all other locations at time 𝑡 + 1 from
the locations at time 𝑡:

𝑙
𝑡+1

𝑖
= 𝑙
𝑡

𝑖−1
+ ℎ
𝑡

𝑛
× V (𝑖 = 3, 4, 5, . . . , 𝑛) . (6)

Time t + 2. Similarly, the positions of buses change from
moment 𝑡 + 1 to 𝑡 + 2 as described below:

𝑙
𝑡+2

1
= 0, (7)

𝑙
𝑡+2

2
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𝑡+1

1
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𝑡
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= (ℎ
𝑡+1

𝑛
− (𝑅
𝑡+1
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𝑡
) × 𝑝) × V,

(8)

𝑙
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𝑖−1
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𝑡+1

𝑛
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As the time changes, the headways of buses at time 𝑡 + 1
change as follows. We use formula (5) to obtain

ℎ
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1
=
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By combining formulas (5) and (6), we further have

ℎ
𝑡+1

2
=

𝑙
𝑡+1

3
− 𝑙
𝑡+1

2

V

=

(𝑙
𝑡

2
+ ℎ
𝑡

𝑛
× V) − (ℎ𝑡

𝑛
− (𝑅
𝑡
− 𝑥
𝑡
) × 𝑝) × V

V

=

𝑙
𝑡

2
+ (𝑅
𝑡
− 𝑥
𝑡
) × 𝑝 × V

V
=

𝑙
𝑡

2

V
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𝑡
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1
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𝑡
) × 𝑝.

(11)

Calculations for the other headways (formulas (12)) based
on formula (6) and the relation between headways and
locations are presented below:

ℎ
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(12)

The headways of buses at time 𝑡 + 2 can be described as
follows. The headway of bus 1 at time 𝑡 + 2 can be described
by formula (13) according to (8), and the headway of bus 2 at
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time 𝑡 + 2 can be described by formula (14) according to (8),
(9), and (10):

ℎ
𝑡+2

1
=

𝑙
𝑡+2

2
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1
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2
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2
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𝑡
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(14)

Formulas (15) can be deduced from formula (9) as follows:

ℎ
𝑡+2

𝑖
=

𝑙
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𝑖
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𝑛
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𝑡+1
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+ ℎ
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𝑛
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𝑛
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𝑙
𝑡+1

𝑛
− 𝑙
𝑡+1
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V

= ℎ
𝑡+1

𝑛−1
.

(15)

Using the above, we can obtain the headway of every bus
in the system at time 𝑡 + 1 and time 𝑡 + 2:

ℎ
𝑡+1

1
= ℎ
𝑡

𝑛
− (𝑅
𝑡
− 𝑥
𝑡
) × 𝑝, (16)

ℎ
𝑡+1

2
= ℎ
𝑡

1
+ (𝑅
𝑡
− 𝑥
𝑡
) × 𝑝, (17)

ℎ
𝑡+1

𝑖
= ℎ
𝑡

𝑖−1
(𝑖 = 3, 4, 5, . . . , 𝑛) , (18)

ℎ
𝑡+2

1
= ℎ
𝑡+1

𝑛
− (𝑅
𝑡+1
+ 𝑥
𝑡
) × 𝑝, (19)

ℎ
𝑡+2

2
= ℎ
𝑡+1

1
+ (𝑅
𝑡+1
+ 𝑥
𝑡
) × 𝑝, (20)

ℎ
𝑡+2

𝑖
= ℎ
𝑡+1

𝑖−1
(𝑖 = 3, 4, 5, . . . , 𝑛) . (21)

In order to make the headways of two subsequent buses
equal after the three buses related run through the control

point, we use the following equation to calculate the number
of passengers to be rejected:

ℎ
𝑡+2

3
= ℎ
𝑡+2

2
. (22)

By substituting formula (21) for 𝑖 = 3 into formula (22),
we can get the following relation:

ℎ
𝑡+1

2
= ℎ
𝑡+2

2
. (23)

Combining formulas (17) and (20) with (23), the equation
can be described as follows:

ℎ
𝑡

1
+ (𝑅
𝑡
− 𝑥
𝑡
) × 𝑝 = ℎ

𝑡+1

1
+ (𝑅
𝑡+1
+ 𝑥
𝑡
) × 𝑝. (24)

We assume the relationship between the number of
passengers arriving at the station and the headways of two
buses as follows:

𝑅
𝑡
= ℎ
𝑡

1
× 𝑤 (𝑡 = 1) , (25)

𝑅
𝑡
= ℎ
𝑡−1

𝑛
× 𝑤 (𝑡 = 2, 3, 4, . . . , 𝑚) . (26)

Combining formulas (26) and (24), we get the following
formula:

ℎ
𝑡

1
+ (𝑅
𝑡
− 𝑥
𝑡
) × 𝑝 = ℎ

𝑡+1

1
+ (ℎ
𝑡

𝑛
× 𝑤 + 𝑥

𝑡
) × 𝑝. (27)

We further obtain formulas (28) as follows:

ℎ
𝑡

1
+ 2 × 𝑝 × 𝑅

𝑡
− ℎ
𝑡

𝑛
− ℎ
𝑡

𝑛
× 𝑤 × 𝑝 = 3 × 𝑝 × 𝑥

𝑡
,

𝑥
𝑡
=

ℎ
𝑡

1
+ 2 × 𝑝 × 𝑅

𝑡
− ℎ
𝑡

𝑛
− ℎ
𝑡

𝑛
× 𝑤 × 𝑝

3 × 𝑝

=

ℎ
𝑡

1
− ℎ
𝑡

𝑛

3 × 𝑝

+

2 × 𝑅
𝑡

3

−

ℎ
𝑡

𝑛
× 𝑤

3

.

(28)

So when a bus arrives at the control point at time 𝑡, if 𝑥𝑡 ≤
0, no one will be rejected; if more than 𝑥𝑡 persons are waiting
for a bus, 𝑥𝑡 persons should be rejected; and if less than 𝑥𝑡 or
just 𝑥𝑡 persons are waiting for a bus, all persons (𝑅𝑡) should
be rejected.

According to our model, after a few circles, the headway
will be stabilized at a fixed value, derived as follows.

The stable headway is the average travel time of 𝑛 buses
(29). Consider the derivation process in one circle, from the
time a bus arrives at the control point to the time it arrives
at the control point next time; each bus on the route runs
one circle. And each bus passes the control point and drives
passengers one time. So the total travel time of 𝑛 buses is
composed of running time (𝐿/V) and total dwell time (𝑛×𝑡∗),
and the headway between every two buses is the average of
total time just as formula (29).

The dwell time of every bus at the control point is related
to the number of passengers who are waiting for buses and
the average time (𝑝) a passenger needs to get on the bus. In a
stable system, no passengers should be resisted and headways
are equal, so the number of passengers who are waiting for
buses can be described as the number (𝑅𝑡 = 𝐻 × 𝑤) of
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passengers who arrive at the control point between time 𝑡 and
time 𝑡 + 1. Then we can obtain formula (30):

𝐻 =

(𝐿/V + 𝑛 × 𝑡∗)
𝑛

, (29)

𝐻 × 𝑤 × 𝑝 = 𝑡
∗
, (30)

where 𝐿 is the length of the route and𝐻 is the stable headway.
From formula (29) and formula (30), we can obtain the stable
𝑡
∗ and𝐻 as follows:

𝑡
∗
=

𝐿 × 𝑤 × 𝑝

(1 − 𝑤 × 𝑝) × 𝑛 × V
,

𝐻 =

𝐿/V + 𝑛 × 𝑡∗

𝑛

=

𝐿

𝑛 × V × (1 − 𝑤 × 𝑝)
.

(31)

3.2. Verification of the IdealModel. According to the formulas
in Section 3.1, we assign a few values to the related parameters;
namely, 𝑛 = 4, ℎ(1, 1) = 12 (min), ℎ(1, 2) = 9 (min),
ℎ(1, 3) = 11 (min), ℎ(1, 4) = 8 (min), 𝑝 = 0.05 (min),
and 𝑤 = 0.5 (persons/min). The variation in headways can
be described by the number of buses arriving at the control
point; see Figure 2.

As can be seen in Figure 2, initially there are some
differences in the four headways, but they disappear as buses
pass the control point continually. In a short time, they
converge to the same value. Within a certain error range
(0.05), the headways stabilize after 28 buses pass the control
point. Hence, in an ideal bus system, after a disturbance, our
method can stabilize the system after a few circles, as shown
in the numerical simulation.

4. Verification on a Real Bus Route

In Section 3, we have shown that our method can balance
the headways under ideal conditions without considering
passengers’ arrivals and variations in speed. However, on a
real bus route, passengers’ arrival rate and speeds are the key
factors affecting the operation of vehicles. So we consider the
two factors in our verification and compare themethod based
on bus holding and our method based on rejection.

For our verification, we chose a circle bus route whose
length is 20000 meters. The time range is from 6:00 to 20:00.
There are 20 stations on the route. We set 3 control points;
their locations are at 4000 meters, 10000 meters, and 16000
meters, respectively. There are 9 buses running on the route.
We believe that the speed of buses varies with time. We
assume that passengers arrive at stations according to the
Poisson distribution.

Based on the assumptions, we compare the self-
coordinating bus route proposed by Bartholdi and Eisenstein
[16] and our self-adjusting method based on boarding limits.
In what follows, we call the self-coordinating bus route
method 1 and the self-adjusting method based on boarding
limits method 2. The headways in different states are shown
in Figure 3.
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Figure 2: Variation in headways.
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Figure 3: Comparison of headways.

In Figure 3, we provide the resulting headways of method
1 and method 2 based on the real bus route and method
2 based on the ideal bus route. Clearly, the headways of
the ideal bus route are smaller than those of method 1 and
method 2, and also the headways of method 2 (self-adjusting
method based on rejection) are smaller than the headways of
method 1 (self-coordinating method). The average headways
of method 1 and method 2 are 5.98 minutes and 5.15 minutes,
respectively. In other words, we can achieve better headways
using our method based on rejection and cut down the
spacing interval times between subsequent buses. As we can
see in Figure 3, the headways are all smaller than 6 minutes
except for the periods 8:00–9:00 and 17:00–18:00. However,
there are five time periods in which headways of method 1
are larger than 6 minutes. Therefore, using our method, the
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Figure 4: Travel speeds.

bus system can make one and a half circles more than using
method 1.

Apart from headways of buses, the travel speed is another
important factor of the performance of the bus system. In
Figure 4, the travel speeds of method 1 and method 2 are
shown. As can be seen in Figure 4, there is clear difference
between the travel speeds of the two methods. Using our
method, the travel speeds are larger than those of method 1 in
every hour of the day. The average difference is about 1m/s,
and the average speed of method 2 increases by 16.8%. The
travel speeds fluctuate as the time changes in a day.During the
morning peak and evening peak, our method 2 allows travel
speed of about 6m/s, but travel speed of method 1 is about
5m/s. Hence, our method can maintain high travel speeds
even during the morning or evening peak.

According to Figures 3 and 4, our method allows better
headways and better travel speed. We also calculate the
standard deviation of headways in Figure 5 to reflect the
volatility. Clearly, the standard deviation of headways using
our method is smaller than that of method 1 during all times.
Even in the evening peak, our method can adjust headways
with a small standard deviation.

Based on the comparison between method 2 and method
1, headways, travel speeds, and standard deviations of head-
ways using our method 2 are all better than those of method
1. And we compare the average travel times of passengers; see
Table 1.

Comparing the results, although the average waiting time
of passengers increases in our method, the time increases
by just 0.69 minutes. At the same time, the average time of
passengers on board decreases by 3.2 minutes. So the average
travel time of passengers decreases by 2.51 minutes or by
10.7%. So, overall, the total travel time of passengers is shorter
in our method.

5. Conclusion

Wefirst summarize previous studies and analyze their advan-
tages and disadvantages. We chose the self-coordinating bus

Table 1: Waiting time and other time characteristics.

Index Average
waiting time

Average time
on board

Average
travel time

Method 1 (min) 2.72 22.21 24.93
Method 2 (min) 3.41 19.01 22.42
Value added (min) 0.69 −3.2 −2.51
Percent increase (%) 25.37 −14.41 −10.07
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Figure 5: Standard deviations of headways.

route method that resists bus bunching to make comparison
with our method and call it method 1. The method provides
satisfactory results. But the average travel time based on
method 1 is too long, as bus holding affects the buses of other
routes which stop at the same station.

We propose a self-adjusting method based on rejection.
In our method, we abandon the idea of the target headway
and schedule. According to our method, buses run all
the time without wasting time except for stopping to take
passengers. Also, drivers do not have to pay attention to time
or schedule.

In comparisonwith othermethods, we analyze headways,
travel speeds, deviations of headways, and average travel
times of passengers. All of these indexes reflect the advantages
of our method based on boarding limits. Shorter headways,
higher travel speeds, smaller deviations, and shorter travel
times all certify that our method can resist bus bunching
effectively and naturally and improve the quality of service.
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[9] F. Delgado, J. C. Muñoz, R. Giesen, and A. Cipriano, “Real-time
control of buses in a transit corridor based on vehicle holding
and boarding limits,” Transportation Research Record, vol. 2090,
pp. 59–67, 2009.

[10] O. Cats, A. Larijani, H. N. Koutsopoulos, and W. Burghout,
“Impacts of holding control strategies on transit performance:
bus simulationmodel analysis,”Transportation Research Record,
vol. 2216, pp. 51–58, 2011.

[11] O. Cats, A. N. Larijani, Á. Ólafsdóttir, W. Burghout, I. J.
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