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This paper deals with the boundary layer flow of electrically conducting dusty fluid over a stretching surface in the presence of
applied magnetic field. The governing partial differential equations of the problem are transformed to nonlinear nondimensional
coupled ordinary differential equations using suitable similarity transformations. The problem is now fully specified in terms of
characterizing parameters known as fluid particle interaction parameter, magnetic field parameter, and mass concentration of
dust particles. An exact analytical solution of the resulting boundary value problem is presented that works for all values of the
characterizing parameters. The effects of these parameters on the velocity field and the skin friction coefficient are presented
graphically and in the tabular form, respectively.We emphasize that an approximate numerical solution of this problemwas available
in the literature but no analytical solution was presented before this study.

1. Introduction

During the last few decades several exact analytical solutions
are developed for the one-dimensional flow of Newtonian
and non-Newtonian fluids; however, only limited success
has been achieved for two- and three-dimensional flows.
This is because of the nonlinear nature of the Navier Stokes
equations for the viscous fluid and more complex constitu-
tive equations for non-Newtonian fluids. Further difficulty
arises when the governing equations are coupled nonlinear
equations. Although numerous numerical and approximate
techniques are available to compute solution of the fluid
dynamics problems, the advantage of the exact analytical
solution lies in mathematical ingenuity and the strength
of the solution to explain physics of fluid flow. The exact
analytical solution can also be considered as bench mark for
further numerical and approximate investigations. Some of
the exact solutions for the laminar flow of Newtonian and
non-Newtonian fluids are given in [1–8].

Dusty fluid model flows have been a subject of special
interest in recent studies due to their two-phase nature. This

phenomenon occurs in fluid (liquid or gas) flows containing
a distribution of solid particles. For example, motion of the
dusty air in fluidization problems and the chemical process
in which raindrops are formed by coalescence of small dust
particles. Cosmic dust, which is formed due to the mixing
of dust particles and gas, is primary precursor for planetary
systems. The production of tails of comet 238 is due to
emission of ionized gas and the dust particles from the comet
body.The application of the dusty fluid can also be visualized
in the processes such as nuclear reactor cooling, atmospheric
fallout, powder technology, dust collection, acoustics, paint
spray, rain erosion, sedimentation, performance of solid fuel
rock nozzles, and guided missiles. These facts have expedited
the consideration of modeling, solving, and analyzing the
flow of dusty fluids.

Keeping interest in two-phase flows, many researchers
worked the dusty fluid model for various flow configura-
tion and the boundary conditions. However, realizing the
difficulty of nonlinear coupled equations, no attempt has
been made in working out any analytical solution.Therefore,
the solutions given by them are through numerical and
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approximate schemes. A brief background history of dusty
fluid is presented now. The study on laminar flow of dusty
fluid is initiated by Saffman [9]. Chakrabarti [10] investigated
the flow of dusty gas in the boundary layer region. The
flow of dusty fluid over semi-infinite plate was discussed by
Datta andMishra [11]. Vajravelu andNayfeh [12] analyzed the
hydromagnetic flow of dusty fluid over stretching surface in
the presence of suction velocity. Gireesha et al. [13] obtained
the numerical solution for the two-dimensional boundary
layer flow and heat transfer of dusty fluid over stretching
surface. Numerical solution of MHD flow and heat transfer
of dusty fluid over a linearly stretching sheet was given by
Gireesha et al. [14]. Ramesh et al. [15] considered MHD
boundary layer flow of dusty fluid over inclined stretching
sheet. Later on, Gireesha et al. [16] examined thermal radi-
ation effects of MHD flow of dusty fluid over exponentially
stretching sheet. We once again mention that all of these
studies involve numerical or approximate solutions, whereas
no exact analytical solution is provided so far.

The study of MHD flow is significant due to its many
engineering applications such as the cooling of reactors,
electrostatic precipitation, power generators, MHD pumps,
accelerators, petroleum industry, and the design of heat
exchangers. Furthermore, MHD flow plays important role in
petroleum industries, agriculture, geophysics, astrophysics,
solar physics, metrology, and the motion of earth’s core.
Keeping in view the importance of MHD flow and the
importance of exact solution, we present exact analytical
solution for the MHD boundary layer flow of dusty fluid
over a stretching surface. Another distinctive aspect of this
study is the presentation of mathematical result for the
nonlinear coupled partial differential equations which are
usually handled numerically (as has been in the case of
dusty fluid). The mathematical methodology consists of
converting the modeled equations into self-similar form
characterized by dusty and magnetic parameters, using the
known similarity transformations.The coupled equations are
then solved analytically based on the solution given by Crane
[1]. The exact solution is calculated for the flow field and
the skin friction in terms of the characterizing parameters
such asmass concentration of dust particles, the fluid particle
interaction parameter, and the magnetic parameter.

2. Description of the Problem

Consider a steady of two-dimensional laminar boundary
layer flow of an electrically conducting viscous incompress-
ible dusty fluid over a semi-infinite surface. The surface is
stretching with the velocity 𝑢𝑤(𝑥) = 𝑐𝑥, where the positive
constant 𝑐 is the stretching rate. Cartesian coordinate system
is located in such a way that 𝑥-axis and 𝑦-axis are taken
along (and normal to) the surface, respectively, while the
origin of the system is located at the leading edge. The shape
of dust particles is assumed to be spherical with uniform
size and constant number density. Considering these physical
assumptions, along with the boundary layer approximations,

the governing equations for the flow of dusty fluid together
with the boundary conditions are given as (see [14])

𝜕𝑢𝜕𝑥 + 𝜕V𝜕𝑦 = 0,
𝑢𝜕𝑢𝜕𝑥 + V

𝜕𝑢𝜕𝑦 = ]
𝜕2𝑢𝜕𝑦2 + 𝛾𝜏 (𝑢𝑝 − 𝑢) − 𝜎𝐵02𝜌 𝑢,

𝜕𝑢𝑝𝜕𝑥 + 𝜕V𝑝𝜕𝑦 = 0,
𝑢𝑝 𝜕𝑢𝑝𝜕𝑥 + V𝑝

𝜕𝑢𝑝𝜕𝑦 = 1𝜏 (𝑢 − 𝑢𝑝) ,
𝑦 = 0; 𝑢 = 𝑢𝑤 (𝑥) , V = 0,
𝑦 → ∞; 𝑢 = 0, 𝑢𝑝 = 0, V𝑝 = V,

(1)

where 𝑢 and 𝑢𝑝 (similarly V and V𝑝) are the 𝑥 and 𝑦 com-
ponents of fluid and the dust particles velocity, respectively.
Parameter 𝛾 = 𝑚𝑁/𝜌 denotes the mass concentration of dust
particles; 𝜏 = 𝑚/𝐾 is the relaxation time of particle phase
and 𝜌, ], 𝜎, and 𝐵0 represent the density, kinematic viscosity,
electrical conductivity of the fluid, and induced magnetic
field, respectively. The terms appearing in 𝛾 and 𝜏 are the
Stokes resistance (𝐾), the number density (𝑁), and the mass
of the dust particle (𝑚).

We define the following similarity transformations [14]:

𝜂 = √ 𝑐
]
𝑦,

𝑢 = 𝑐𝑥𝑓 (𝜂) ,
V = −√𝑐]𝑓 (𝜂) ,
𝑢𝑝 = 𝑐𝑥𝑔 (𝜂) ,
V𝑝 = −√𝑐]𝑔 (𝜂) ,

(2)

where prime () represents differentiation with respect to 𝜂.
Introducing transformations (2) in (1), we get the following
self-similar boundary value problem:

𝑓 + 𝑓𝑓 − 𝑓2 + 𝛽𝛾 (𝑔 − 𝑓) −𝑀𝑓 = 0,
𝑔𝑔 − 𝑔2 + 𝛽 (𝑓 − 𝑔) = 0,

𝑓 (0) = 0,
𝑓 (0) = 1,
𝑓 (∞) = 0,
𝑔 (𝜂) = 0,
𝑔 (𝜂) = 𝑓 (𝜂)

as 𝜂 → ∞,

(3)
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Table 1: Comparison of skin friction coefficient for various values of 𝛽 andM with Gireesha et al. [17].

𝑀 Gireesha et al. [17]𝛽 = 0 Exact solution Gireesha et al. [17]𝛽 = 0.5 Exact solution

0.2 1.000 1.000000 1.034 1.033505
0.2 1.095 1.095445 1.126 1.126114
0.5 1.224 1.224745 1.252 1.252251
1.0 1.414 1.414214 1.438 1.438101
1.2 1.483 1.483240 1.506 1.506032
1.5 1.581 1.581139 1.602 1.602540
2.0 1.732 1.732051 1.751 1.751609

where 𝛽 and 𝑀 are the fluid particle interaction parameter
and magnetic parameter, respectively, and are defined by

𝛽 = 1𝑐𝜏 = 𝐾𝑐𝑚,
𝑀 = 𝜎𝐵02𝑐𝜌 .

(4)

The skin friction coefficient 𝐶𝑓 and the shear stress 𝜏𝑤 are
defined as

𝐶𝑓 = −𝜏𝑤𝜌𝑢𝑤2 ,
𝜏𝑤 = 𝜇(𝜕𝑢𝜕𝑦)

𝑦=0 .
(5)

Using transformation (2), the dimensionless skin friction
coefficient is defined by Re𝑥

−1/2𝐶𝑓 = −𝑓(0), where Re𝑥 =𝑐𝑥2/𝜐 is the local Reynolds number.
In the next section, we will present the exact analytical

solution of these equations.

3. Exact Analytical Solution

Based upon the solution given by Crane [1], we propose
that the nonlinear coupled equations (3) admit exponentially
decaying solution of the form

𝑓 = 𝛼1 + 𝛼2𝑒−𝛼3𝜂,
𝑔 = 𝛼4 + 𝛼5𝑒−𝛼6𝜂, (6)

where 𝛼𝑖,𝑠 (for 𝑖 = 1, . . . , 6) are arbitrary constants.The values
of these constants can be determined by putting the solution
(6) in (3). This yields

𝛼1 = −𝛼2 = 𝛼4 = 1𝜁 ,
𝛼3 = 𝛼6 = −𝜁,
𝛼5 = − 𝛽𝜁 (1 + 𝛽) ,

(7)

where the term 𝜁 is given as

𝜁 = √1 +𝑀 + 𝛽𝛾1 + 𝛽 . (8)

Substituting the values of 𝛼𝑖,𝑠 (for 𝑖 = 1, . . . , 6) from (7) into
(6), we get closed form exact solution:

𝑓 = 1𝜁 (1 − 𝑒−𝜁𝜂) ,
𝑔 = 1𝜁 (1 − 𝛽1 + 𝛽𝑒−𝜁𝜂) ,

(9)

It is worth noting that the solution given in (9) works for
all values of 𝛽, 𝛾, and 𝑀. The physical quantities like the
velocities of fluid and the dust particles and the skin friction
coefficient are now expressed as

𝑓 (𝜂) = 𝑒−𝜁𝜂,
𝑔 (𝜂) = 𝛽1 + 𝛽𝑒−𝜁𝜂,

−𝑓 (0) = 𝜁 = √1 +𝑀 + 𝛽𝛾1 + 𝛽 .
(10)

The numerical solution of (3) exists in the literature, but
the exact analytical closed from solution is presented here
for the first time. Now using these results one can easily
interpret the effects of dusty fluid parameters on the physical
quantities without using any numerical scheme. It will not be
out of place to make a comparison with the numerical results
presented by Gireesha et al. [17] using Runge Kutta Fehlberg
fourth-fifth-order method (RKF45 Method). An excellent
match is found between the two results as shown in Table 1.

We also present the graphs for velocity profiles (Figures
1(a) and 1(b)) for different values of parameters 𝑀 and 𝛽
and compare these results with the numerical results given
in [14].This comparison will further validate the authenticity
of the two solutions. From Figure 1, we observe that both the
fluid velocity and the velocity of dust particles decrease with
increasing 𝑀. This is because increasing magnetic field the
opposing Lorentz force increases resulting in the decrease of
the fluid velocity. Effects of fluid particle interaction 𝛽, mass
concentration of dust particles 𝛾, and themagnetic parameter
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Figure 1: Effects of𝑀 (a) and 𝛽 (b) on the velocity profiles.

Table 2: Skin friction coefficient for various values of 𝛽, 𝛾, and𝑀.

𝛾 𝛽 𝑀 −𝑓(0)
0.2 1.437591
0.5 0.5 1.0 1.471960
1.0 1.527525

0.2 1.420094
0.1 0.5 1.0 1.425950

1.0 1.431782
2.0 1.741647

0.1 0.5 5.0 2.456284
10.0 3.321646

𝑀 on the skin friction coefficient are given in Table 2. It is
observed that skin friction increases with increasing values
of 𝛽, 𝛾, and 𝑀. This happens because increase in these
parameters produces resistance to the flow and the skin
friction increases.

4. Conclusion

An exact analytical solution for the MHD boundary layer
flow of dusty fluid over a linearly stretching surface is
presented. This result is uniformly valid for all values of
physical characterizing parameters arising in the flow of
dusty fluid. Expressions for the velocity and the skin friction
are presented for the flow configuration. The results are
compared with the existing study giving good agreement.
This work provides a base for further research in undertaking
analytical solutions of dusty fluid flow over stretching surface.
Exact solution forMHDflow for viscoelastic non-Newtonian

fluid can be obtained using the analysis of this paper that will
be reported in a subsequent study.

Nomenclature

𝐵0: Induced magnetic field (kg−1 s−2A−1)𝑐: Stretching rate (s−1)𝐶𝑓: Skin friction coefficient𝑓: Dimensionless stream function for fluid
velocity𝑔: Dimensionless stream function for
particle velocity𝐾: Stokes resistance (kg s−1)𝑚: Mass of the dust particle (kg)𝑀: Magnetic parameter𝑁: Number density of dust particle (m−3)

Re𝑥: Local Reynolds number𝑢𝑤: Stretching velocity (m s−1)𝑢, V: Components of fluid velocity along 𝑥- and𝑦-axes (m s−1)𝑢𝑝, V𝑝: Components of particle velocity along 𝑥-
and 𝑦-axes (m s−1)𝑥, 𝑦: Cartesian coordinates (𝑥-axis is aligned
along the stretching surface and 𝑦-axis is
normal to it) (m).

Greek Symbols

𝛼𝑖: Arbitrary constants𝛽: Fluid particle interaction parameter𝜂: Similarity variable𝛾: Mass concentration of dust particles
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]: Kinematic viscosity of the fluid (m2 s−1)𝜇: Dynamic viscosity of the fluid (kgm−1 s−1)𝜌: Fluid density (kgm−3)𝜏: Relaxation time of particle phase (s)𝜎: Electrical conductivity of the fluid
(kg−1m−3 s3A2)𝜏𝑤: Shear stress at the surface (kgm−1 s−2)𝜓: Stream function (m2 s−1).

Superscripts

: Differentiation with respect to 𝜂
Subscripts

𝑝: Dust particle𝑤: Condition at surface.
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