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We reformulate the mathematical model for the 2D sedimentation in an estuary as a coupled nonlinear differential system.
Combining the mass-conservation character of the discontinuous Galerkin method and the jump-capturing property of Lesaint-
Raviart upwind technique, we design an upwind discontinuous Galerkin finite element method, which obeys the local mass
conservation and possesses good stability. Our theoretical analysis shows that there exists a unique solution to the numerical
procedure and the discrete solution permits O(ℎ𝑘 + Δ𝑡) convergence rate. Numerical experiments are conducted to verify our
theoretical findings. This may provide a theoretical principle for better understanding of the mechanism and morphological
characters of sedimentation at estuaries.

1. Introduction

This article is initiated from our project “Numerical Sim-
ulation for the Sedimentation at Yellow River’s Estuary.”
It is known that the estuary of Yellow River is a weak-
tidal, arenose, frequently swinging, and accumulated firth. Its
sedimentation is heavily influenced by the reduced amount of
water but a relatively large amount of sand from the upstream
and the oceanic dynamics such as the tide, current, and wave
in the littoral region. Numerical modeling and simulation
for the flow and sedimentation are very important means
of quantitatively predicting the formation and development
of the delta and the evolution of the fluvial bed, as well as
the silt deposition transport, and then providing a theoretical
principle for better understanding of the mechanism and
morphological characters of the sedimentation.Thiswill be of
great significance for the further development of YellowRiver
delta.

Based upon the literature of the sedimentation studies
[1–5] for estuaries, theoretically we reformulate the mathe-
matical model for 2D sedimentation as a combination of 4
governing equations: the flow continuity equation, the flow
motion equation, the sediment continuity equation, and the
bed deformation equation, in which the first two equations

describe the water dynamics of the littoral region and the last
two are for the dynamics of sediment deposition.

From the point of view of numerical and applicable
issue, there are two important ingredients which should
be strengthened in designing an ideal numerical procedure
for this model. The first one is that the procedure should
obey the local mass/momentum conservation law to reflect
the physical characteristics of the dynamics of the flow
and sediment, and the second is that the procedure should
recognize the flowdirection so that the procedure can capture
the jumps or interfaces and maintain the good stability
since the velocity of the fluid is much larger than that of
the sediment deposition. For this purpose, we recall the
mass-conservation character of the discontinuous Galerkin
method and the jump-capturing property of upwind tech-
nique and attempt to use these merits so as to design a
strongly stable and locally conservative numerical procedure
for the mathematical model.

The goals of this article are as follows: (1) in the flow
continuity equation, we reformulate the mathematical model
by taking the bed height𝑍𝑏 varying with time so that the flow
continuity equation is naturally coupled with the sediment
continuity equation and the bed deformation equation. By
doing so, the mathematical model can much better describe
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the practical sediment process compared to the simplified
case of 𝑍𝑏-constant [6–8] and (2) by introducing the Broken
Sobolev spaces and applying the discontinuous Galerkin
method to discrete those space-derivative terms to design
a nonsymmetric interior penalty Galerkin (NIPG) method.
Considering the fact that the flow velocity U is much larger
than that of the sediment deposition, we pay our special
attention to those terms involving U by inserting Lesaint-
Raviart upwind technique [9]. Therefore, an upwind discon-
tinuous Galerkin finite element method is proposed for the
reformulated mathematical model. (3) With the help of the
induction argument, we prove that the upwind discontinuous
Galerkin finite elementmethod possesses good stability, from
which the existence and uniqueness of the discrete solution
follow. (4) Combining the proof that the discrete depth𝐻𝑛 of
the fluid possesses a positive lower bound, we prove that the
approximate solutions for the depth of fluid 𝐻, the velocity
U, the sediment concentration 𝑆, and the bed height 𝑍𝑏 are
of O(ℎ𝑘 + Δ𝑡) convergence rates, respectively. (5) Numerical
experiments are conducted to verify the theoretical findings,
stability, local conservation property, and convergence rates.

The achievement of these five goals constitutes the main
content of the article, presented in Sections 2–6, respectively.
For simplicity of presentation, we will use𝑊𝑚,𝑝(𝐸) to denote
the usual Sobolev spaces that provided the norm ‖ ⋅ ‖𝑚,𝑝,𝐸 and
the seminorm | ⋅ |𝑚,𝑝,𝐸 for any 2D domain 𝐸. When 𝑝 = 2
and 𝐸 = Ω, the subscript 𝑝 and Ω will be omitted. We also
let (⋅, ⋅) and ⟨⋅, ⋅⟩ stand for the inner products on 𝐸 and on the
edges 𝜕𝐸, respectively, and ‖ ⋅ ‖ denotes their 𝐿2-norms.𝐶 is a
generic constant and 𝜀 is a small positive constant, whichmay
take different values at different places but independent of the
triangulation parameters ℎ and Δ𝑡. We define 𝐿𝑝(𝑎, 𝑏; 𝑋) ={𝑓 : ∫𝑏

𝑎
‖𝑓(⋅, 𝑡)‖𝑝𝑋𝑑𝑡 < ∞}, where if 𝑝 = ∞, the integral is

replaced with the essential supreme.

2. Reformulation of the Mathematical Model

Let Ω be a bounded polygonal domain in 𝑅2, and let [0, 𝑇]
be a time interval. Then, the sediment transportation model
at an estuary can be described by the following 4 governing
equations defined over the space-time domain Ω × (0, 𝑇];
here we ignore the Coriolis force, since it does not affect the
correctness of the model.

The flow continuity equation is
𝜕𝐻𝜕𝑡 + ∇ ⋅ (𝑈𝐻) = 0, (1)

the flow motion equation is
𝜕𝑈𝜕𝑡 + 𝑈 ⋅ ∇𝑈 + 𝑔∇𝑍 + 𝜏𝑈 − 𝜇Δ𝑈 = 0, (2)

the sediment continuity equation is
𝜕𝑆𝜕𝑡 + 𝑈 ⋅ ∇𝑆 − 𝑐0Δ𝑆 + 𝑎𝜔𝐻 (𝑆 − 𝑆∗) = 0, (3)

and the bed deformation equation is
𝜕𝑍𝑏𝜕𝑡 − 𝑎𝜔𝛾󸀠 (𝑆 − 𝑆∗) = 0, (4)

Γ2

Γ2

Γ1 Γ3
Ω

Figure 1: The illustration ofΩ.

where the unknowns 𝐻,𝑍, 𝑆, 𝑈 = (𝑢, V)𝑇 and 𝑍𝑏 =𝑍 − 𝐻 denote the depth of water, the water level, the
sediment concentration, the vertical mean velocity, and the
bed height, respectively; 𝑆∗ is the sediment carrying capacity,𝑔 is the gravitational acceleration, 𝜏 = 𝑔(√𝑢2 + V2/𝑐2𝐻),𝑐 = (1/𝑛)𝐻1/6 denotes the Chezy coefficient, 𝑛 denotes
Manning’s roughness coefficient, 𝜇 is the viscosity coefficient,𝑐0 is the sediment diffusion coefficient, 𝑎 is the coefficient of
saturation recovery,𝜔 is the settling velocity of sediment, and𝛾󸀠 is the sediment dry bulk density.

In the uncoupled sedimentation model [5] and the
shallowwater system (SWS) [10, 11], (1) is replaced by 𝜕𝑍/𝜕𝑡+∇ ⋅ (𝑈𝑍) = 0. It means that the flow continuity equation
is not coupled with the bed deformation equation; in other
words, the bed height 𝑍𝑏 was assumed to be independent of
time in the flow continuity equation. Therefore, the shallow
water equations (1) and (2) and the sediment deposition
models (3) and (4) can be solved separately. We remark
that this assumption will lead to a simple calculation, but
it is unreasonable in the real process of sediment transport.
In this paper, we assume 𝑍𝑏 changes with time in shallow
water equations, so that the flow continuity equation is much
naturally coupled with the sediment continuity equation and
the bed deformation equation.

Without loss of generality, the boundary of the domain
is decomposed into three parts: the inflow part Γ1, the rigid
boundary Γ2, and the outflow part Γ3 (see Figure 1), and the
initial-boundary conditions are prescribed as

𝐻(𝑥, 𝑦, 0) = 𝐻0 (𝑥, 𝑦) ,
𝑈 (𝑥, 𝑦, 0) = 𝑈0 (𝑥, 𝑦) ,
𝑆 (𝑥, 𝑦, 0) = 𝑆0 (𝑥, 𝑦) ,

𝑍𝑏 (𝑥, 𝑦, 0) = 𝑍𝑏0 (𝑥, 𝑦) ,
(5)

𝑈 = 𝑈̂,
𝑈̂ ⋅ n < 0,

𝑆 = 𝑆̂,
𝐻 = 𝐻̂,

on Γ1,
𝑈 = 0,
𝜕𝑆𝜕n = 0,

on Γ2,



Mathematical Problems in Engineering 3

𝑈 = 𝑈̂,
𝑈̂ ⋅ n > 0,
𝜕𝑆𝜕n = 0,

on Γ3,
(6)

where the initial values 𝐻0, 𝑈0, 𝑆0, 𝑍𝑏0 and the boundary
conditions 𝑈̂, 𝐻̂, 𝑆̂ are given data, and n denotes the unit
outward normal vector to 𝜕Ω.

3. The Upwind Discontinuous Galerkin Finite
Element Procedure

In this section, we shall revisit the Broken Sobolev spaces and
modify those terms involving U by Lesaint-Raviart upwind
technique and then apply the discontinuousGalerkinmethod
to discrete those space-derivative terms in (1)–(4) to design
an upwind nonsymmetric interior penalty Galerkin (NIPG)
method.

3.1. Revisiting the Broken Sobolev Spaces. We begin this
subsection by recalling some notations of the triangulation
for the given domain Ω. We let 𝜀ℎ be a quasi-uniform
subdivision ofΩwith element 𝐸; letΩℎ = ⋃𝐸∈𝜀ℎ

𝐸, ℎ𝐸 denote
the diameter of 𝐸, and ℎ = max{ℎ𝐸}. Further we need to
describe the edges of an element and the functions defined
on them. We denote, by 𝑒, any edge of an element 𝐸 ∈ 𝜀ℎ,
and then 𝑒 belongs to either its interior or boundary of Ω.
We also denote, by Γℎ, the set of interior edges. If 𝑒 ∈ 𝜕Ω,
the unit normal vector ne of 𝐸 is taken to be outward to 𝜕Ω,
or if 𝑒 is a common edge of two neighbor elements 𝐸+𝑒 and𝐸−𝑒 , we understand that ne is oriented from 𝐸−𝑒 to 𝐸+𝑒 . For any
function V of 𝐻1(𝜀ℎ), we denote by V± its traces on 𝐸+𝑒 and𝐸−𝑒 and define its average and jump by {V} = (V+ + V−)/2 and[V] = V− − V+, respectively. When 𝑒 ∈ 𝜕Ω, we naturally define{V} = [V] = V−.With the help of these notions, we present the
definitions of the Broken Sobolev spaces and the functionals
on thewhole edges.TheBroken Sobolev spaces𝐻𝑠(𝜀ℎ) for any
real number 𝑠 ≥ 1 are defined by

𝐻𝑠 (𝜀ℎ) = {V ∈ 𝐿2 (Ω) : V|𝐸 ∈ 𝐻𝑠 (𝐸) , ∀𝐸 ∈ 𝜀ℎ} , (7)

equipped with the norm

‖|V|‖𝐻𝑠(𝜀ℎ) = (∑
𝐸∈𝜀ℎ

‖V‖2𝐻𝑠(𝐸))
1/2 . (8)

Here ‖V‖2𝐻𝑠(𝐸) = (∑|𝛼|≤𝑠 ‖𝐷𝛼V‖20,𝐸)1/2 with 𝐷𝛼V are being the𝛼th-order generalized derivatives of V. The functionals with

respect to the averages and jumps on the whole edges are
defined by

𝐽1: (𝐻1 (𝜀ℎ))2 × (𝐻1 (𝜀ℎ))2 󳨀→ 𝑅,
𝐽1 (𝑉,𝑊) = ∑

𝑒∈Γℎ∪𝜕Ω

𝜎1𝑒|𝑒| ⟨[𝑉] , [𝑊]⟩𝑒 ,
𝐽2: (𝐻1 (𝜀ℎ)) × (𝐻1 (𝜀ℎ)) 󳨀→ 𝑅,
𝐽2 (V, 𝑤) = ∑

𝑒∈Γℎ∪Γ1

𝜎2𝑒|𝑒| ⟨[V] , [𝑤]⟩𝑒 ,

(9)

where |𝑒| is the length of 𝑒 and the selected nonnegative real
numbers 𝜎1𝑒 , 𝜎2𝑒 are called penalty parameters.

3.2. Variational Formulation for the Mathematical Model. Let𝜑 be any function in 𝐻1(𝜀ℎ). We multiply (1) by suitable test
functions 𝜑 on each element 𝐸, apply the Green formula, and
then sum the resulting equations over the domain to obtain
the variational form for the flow continuity equation

(𝐻𝑡, 𝜑) − ∑
𝐸∈𝜀ℎ

(𝐻𝑈, ∇𝜑)𝐸 + ∑
𝑒∈Γℎ

⟨{𝐻𝑈} ⋅ ne, [𝜑]⟩𝑒
+ ∑
𝑒∈Γ1

⟨𝐻̂𝑈̂ ⋅ ne, 𝜑⟩𝑒 + ∑
𝑒∈Γ2∪Γ3

⟨𝐻𝑈̂ ⋅ ne, 𝜑⟩𝑒 = 0,
∀𝜑 ∈ 𝐻1 (𝜀ℎ) .

(10)

Similarly, we obtain the variational forms for the rest of the
three equations (2)–(4):

(𝑈𝑡, Φ) + (𝑈 ⋅ ∇𝑈,Φ) −∑
𝐸

(𝑔 (𝐻 + 𝑍𝑏) , ∇Φ)
+ ∑
𝑒∈Γℎ∪Γ2∪Γ3

⟨𝑔 {𝐻} , [Φ ⋅ 𝑛]⟩𝑒
+ ∑
𝑒∈Γℎ∪𝜕Ω

⟨𝑔 {𝑍𝑏} , [Φ ⋅ 𝑛]⟩𝑒 + (𝜏𝑈,Φ)
+∑

𝐸

𝜇 (∇𝑈, ∇Φ)𝐸 − ∑
𝑒∈Γℎ∪𝜕Ω

𝜇 ⟨∇𝑈 ⋅ ne, [Φ]⟩𝑒
+ ∑
𝑒∈Γℎ∪𝜕Ω

𝜇 ⟨{∇Φ ⋅ ne} , [𝑈]⟩𝑒
+ 𝐽1 (𝑈,Φ) = ∑

𝑒∈𝜕Ω

𝜇 ⟨∇Φ ⋅ ne, 𝑈̂⟩
𝑒

+ ∑
𝑒∈𝜕Ω

𝜎1𝑒|𝑒| ⟨𝑈̂, Φ⟩
𝑒
− ∑
𝑒∈Γ1

⟨𝑔𝐻̂,Φ ⋅ 𝑛⟩
𝑒
,

∀Φ ∈ (𝐻1 (𝜀ℎ))2 ,
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(𝑆𝑡, 𝜓) −∑
𝐸

(𝑆∇ ⋅ 𝑈, 𝜓)𝐸 −∑
𝐸

(𝑆𝑈, ∇𝜓)𝐸
+ ∑
𝑒∈Γℎ∪𝜕Ω

⟨{𝑆𝑈} ⋅ ne, [𝜓]⟩𝑒 +∑
𝐸

𝑐0 (∇𝑆, ∇𝜓)𝐸
− ∑
𝑒∈Γℎ∪Γ1

𝑐0 ⟨∇𝑆 ⋅ ne, [𝜓]⟩𝑒
+ ∑
𝑒∈Γℎ∪Γ1

𝑐0 ⟨{∇𝜓 ⋅ ne} , [𝑆]⟩𝑒 + (𝑎𝜔𝐻 (𝑆 − 𝑆∗) , 𝜓)
+ 𝐽2 (𝑆, 𝜓) = ∑

𝑒∈Γ1

𝑐0 ⟨∇𝜓 ⋅ ne, 𝑆̂⟩𝑒 + ∑
𝑒∈Γ1

𝜎2𝑒|𝑒| ⟨𝑆̂, 𝜓⟩𝑒 ,
∀𝜓 ∈ 𝐻1 (𝜀ℎ) ,

(𝑍𝑏𝑡, 𝜙) = 𝑎𝜔𝛾󸀠 (𝑆 − 𝑆∗, 𝜙) , ∀𝜙 ∈ 𝐻1 (𝜀ℎ) .
(11)

Consequently, the variational formulation corresponding to
models (1)–(4) is defined as to find the map {𝐻,𝑈, 𝑆, 𝑍𝑏} :[0, 𝑇] 󳨃→ (𝐻1(𝜀ℎ))2 × (𝐻1(𝜀ℎ))2 × 𝐻1(𝜀ℎ) × 𝐻1(𝜀ℎ), satisfying
(10)-(11).

3.3. The Upwind Discontinuous Galerkin Finite Element
Scheme. Assume that 𝑘 is a positive integer and𝑃𝑘(𝐸)denotes
the space of polynomials of degree less than or equal to 𝑘 on𝐸. Then, the finite element spaces used later are chosen to be
the subspace of𝐻𝑠(𝜀ℎ) defined by

D𝑘 (𝜀ℎ) = {V ∈ 𝐿2 (Ω) : V|𝐸 ∈ 𝑃𝑘 (𝐸) , ∀𝐸 ∈ 𝜀ℎ} . (12)

For time discretization we divide the time interval [0, T] by
the nodes 𝑡𝑛 (𝑛 = 0, 1, . . . , 𝑁) with time step Δ𝑡 = 𝑇/𝑁 and
let 𝑢𝑛(𝑥, 𝑦) be the node-function value of 𝑢(𝑡, 𝑥, 𝑦).

Considering the dominance of convection in a real
sedimentation process, we hope that the numerical procedure
should recognize the direction of the flow, so as to design a
stable algorithm. For this purpose, we introduce the upwind
values for 𝐻 and 𝑆 on the interior edge 𝑒 by 𝐻up and 𝑆up,
respectively. First we define the upwind values of𝐻 and 𝑆 on
the interior edge 𝑒 by𝐻up and 𝑆up, respectively as follows:

𝐻up = {{{
𝐻− if {𝑈} ⋅ ne > 0,
𝐻+ if {𝑈} ⋅ ne ≤ 0,

𝑆up = {{{
𝑆− if {𝑈} ⋅ ne > 0,
𝑆+ if {𝑈} ⋅ ne ≤ 0.

(13)

In discretization, we use backward Euler’s scheme to
approximate the time derivatives and use the nonsymmetric
interior penalty Galerkin method to the diffusion part, in
which the average values of 𝐻, 𝑆 on interior edge are
replaced by 𝐻up, 𝑆up and the nonlinear convective term 𝑈 ⋅∇𝑈 is handled by the Lesaint-Raviart upwind technique.

By doing so, the desired stability can be guaranteed. For
easy computation we use, for example, 𝑈𝑛𝐻𝑛+1 instead of𝑈𝑛+1𝐻𝑛+1 to linearize the nonlinear terms.

Upon these ideas, we propose our fully upwind dis-
continuous Galerkin finite element procedure (UWDG) as
follows: find the map {𝐻𝑛

ℎ , 𝑈𝑛
ℎ , 𝑆𝑛ℎ, 𝑍𝑛

𝑏ℎ} : {𝑡𝑛}𝑁𝑛=0 󳨃→ D𝑘(𝜀ℎ) ×(D𝑘(𝜀ℎ))2 ×D𝑘(𝜀ℎ) ×D𝑘(𝜀ℎ) satisfying
(𝐻𝑛+1

ℎ − 𝐻𝑛
ℎΔ𝑡 , 𝜑) − ∑

𝐸∈𝜀ℎ

(𝐻𝑛+1
ℎ 𝑈𝑛

ℎ , ∇𝜑)𝐸
+ ∑
𝑒∈Γℎ

⟨𝐻𝑛+1,up
ℎ

{𝑈𝑛
ℎ} ⋅ ne, [𝜑]⟩𝑒

+ ∑
𝑒∈Γ1

⟨𝐻̂𝑛+1𝑈𝑛
ℎ ⋅ ne, 𝜑⟩

𝑒

+ ∑
𝑒∈Γ2∪Γ3

⟨𝐻𝑛+1
ℎ 𝑈𝑛

ℎ ⋅ ne, 𝜑⟩𝑒 = 0, ∀𝜑 ∈ D𝑘 (𝜀ℎ) ,

(14)

(𝑈𝑛+1
ℎ − 𝑈𝑛

ℎΔ𝑡 ,Φ) +∑
𝐸

(𝑈𝑛
ℎ ⋅ ∇𝑈𝑛+1

ℎ , Φ)
𝐸

+∑
𝐸

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 (𝑈𝑛+1,int
ℎ − 𝑈𝑛+1,ext

ℎ ) , Φint⟩
𝜕𝐸−

−∑
𝐸

(𝑔 (𝐻𝑛+1
ℎ + 𝑍𝑛+1

𝑏ℎ ) , ∇Φ)
+ ∑
𝑒∈Γℎ∪Γ2∪Γ3

⟨𝑔 {𝐻𝑛+1
ℎ } , [Φ ⋅ ne]⟩𝑒

+ ∑
𝑒∈Γℎ∪𝜕Ω

⟨𝑔 {𝑍𝑛+1
𝑏ℎ } , [Φ ⋅ ne]⟩𝑒 + (𝜏𝑛ℎ𝑈𝑛+1

ℎ , Φ)
+∑

𝐸

𝜇 (∇𝑈𝑛+1
ℎ , ∇Φ)

𝐸

− ∑
𝑒∈Γℎ∪𝜕Ω

𝜇 ⟨{∇𝑈𝑛+1
ℎ } ⋅ ne, [Φ]⟩

𝑒

+ ∑
𝑒∈Γℎ∪𝜕Ω

𝜇 ⟨{∇Φ ⋅ ne} , [𝑈𝑛+1
ℎ ]⟩

𝑒

+ 𝐽1 (𝑈𝑛+1
ℎ , Φ) = ∑

𝑒∈𝜕Ω

𝜇⟨∇Φ ⋅ ne, 𝑈̂𝑛+1⟩
𝑒

+ ∑
𝑒∈𝜕Ω

𝜎1𝑒|𝑒| ⟨𝑈̂𝑛+1, Φ⟩
𝑒
− ∑
𝑒∈Γ1

⟨𝑔𝐻̂𝑛+1, Φ ⋅ ne⟩
𝑒
,

∀Φ ∈ (D𝑘 (𝜀ℎ))2 ,

(15)

(𝑆𝑛+1ℎ − 𝑆𝑛ℎΔ𝑡 , 𝜔) −∑
𝐸

(𝑆𝑛+1ℎ ∇ ⋅ 𝑈𝑛
ℎ , 𝜔)𝐸

−∑
𝐸

(𝑆𝑛+1ℎ 𝑈𝑛
ℎ , ∇𝜔)𝐸 + ∑

𝑒∈Γℎ

⟨𝑆𝑛+1,up
ℎ

{𝑈𝑛
ℎ} ⋅ ne, [𝜔]⟩𝑒
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+ ∑
𝑒∈Γ1

⟨𝑆̂𝑛+1𝑈𝑛
ℎ ⋅ ne, 𝜔⟩

𝑒
+ ∑
𝑒∈Γ2∪Γ3

⟨𝑆𝑛+1ℎ 𝑈𝑛
ℎ ⋅ ne, 𝜔⟩𝑒

+∑
𝐸

𝑐0 (∇𝑆𝑛+1ℎ , ∇𝜔)
𝐸

− ∑
𝑒∈Γℎ∪Γ1

𝑐0 ⟨{∇𝑆𝑛+1ℎ } ⋅ ne, [𝜔]⟩𝑒
+ ∑
𝑒∈Γℎ∪Γ1

𝑐0 ⟨{∇𝜔 ⋅ ne} , [𝑆𝑛+1ℎ ]⟩
𝑒

+ ( 𝑎𝜔𝐻𝑛
ℎ

(𝑆𝑛+1ℎ − 𝑆∗) , 𝜔)
+ 𝐽2 (𝑆𝑛+1ℎ , 𝜔) = ∑

𝑒∈Γ1

𝑐0 ⟨∇𝜔 ⋅ ne, 𝑆̂𝑛+1⟩
𝑒

+ ∑
𝑒∈Γ1

𝜎2𝑒|𝑒| ⟨𝑆̂𝑛+1, 𝜔⟩𝑒
, ∀𝜔 ∈ D𝑘 (𝜀ℎ) ,

(16)

(𝑍𝑛+1
𝑏ℎ − 𝑍𝑛

𝑏ℎΔ𝑡 , 𝜙) = 𝑎𝜔𝛾󸀠 (𝑆𝑛+1ℎ − 𝑆∗, 𝜙) ,
∀𝜙 ∈ D𝑘 (𝜀ℎ) .

(17)

The initial values 𝐻0
ℎ , 𝑈0

ℎ , 𝑆0ℎ, and 𝑍0
𝑏ℎ also are clarified by

their 𝐿2-orthogonal projections:
(𝐻0 − 𝐻0

ℎ , 𝜑) = 0, ∀𝜑 ∈ D𝑘 (𝜀ℎ) ,
(𝑈0 − 𝑈0

ℎ , Φ) = 0, ∀Φ ∈ (D𝑘 (𝜀ℎ))2 ,
(𝑆0 − 𝑆0ℎ, 𝜔) = 0, ∀𝜔 ∈ D𝑘 (𝜀ℎ) ,

(𝑍𝑏0 − 𝑍0
𝑏ℎ, 𝜙) = 0, ∀𝜙 ∈ D𝑘 (𝜀ℎ) .

(18)

Here 𝜏𝑛ℎ = 𝑔(‖𝑈𝑛
ℎ‖𝑙2/𝑐2𝐻𝑛

ℎ ), 𝜕𝐸− = {𝑥 ∈ 𝜕𝐸 : {𝑈𝑛
ℎ } ⋅ ne < 0},

Vint, and Vext denote the interior and exterior traces of V on𝜕𝐸−. If 𝜕𝐸− ∈ 𝜕Ω, then Vext = V̂, Vint = V.

4. Stability Analysis

In this section, we shall analyze the stability of the upwind
DG scheme and prove the existence and uniqueness of
the discrete solution by borrowing some lemmas from the
literature on finite elements and making some reasonable
hypotheses.

4.1. Some Lemmas and Hypotheses. To conduct convergence
analysis in the next section we need to define the 𝐿2-
orthogonal projections for the unknowns {𝐻,𝑈, 𝑆, 𝑍𝑏}.These
projections are maps {𝐻̃, 𝑈̃, 𝑆̃, 𝑍𝑏} : [0, 𝑇] 󳨃→ D𝑘(𝜀ℎ) ×(D𝑘(𝜀ℎ))2 ×D𝑘(𝜀ℎ) ×D𝑘(𝜀ℎ) satisfying

(𝐻 − 𝐻̃, 𝜑) = 0, ∀𝜑 ∈ D𝑘 (𝜀ℎ) ,
(𝑈 − 𝑈̃, Φ) = 0, ∀Φ ∈ (D𝑘 (𝜀ℎ))2 ,

(𝑆 − 𝑆̃, 𝜔) = 0, ∀𝜔 ∈ D𝑘 (𝜀ℎ) ,
(𝑍𝑏 − 𝑍𝑏, 𝜙) = 0, ∀𝜙 ∈ D𝑘 (𝜀ℎ) .

(19)

Following the practical background of a real sedimenta-
tion process, we shall make some reasonable hypotheses on
the exact solutions of the model.

(H1) There exists a unique solution {𝐻,𝑈, 𝑆, 𝑍𝑏} to the
models (1)–(4). Then, one can deduce, at least, the
existence of the variational formulations (10)-(11).

(H2) There is a positive constant 𝐻∗ such that 𝐻∗ ≤𝐻(𝑥, 𝑡).
(H3) 𝐻0(𝑥) ∈ 𝐻𝑘+1(Ω), 𝑈0(𝑥) ∈ (𝐻𝑘+1(Ω))2, 𝑆0(𝑥) ∈𝐻𝑘+1(Ω), and 𝑍𝑏0(𝑥) ∈ 𝐻𝑘+1(Ω).
(H4) 𝐻(𝑥, 𝑡) ∈ 𝐿2(0, 𝑇;𝐻𝑘+1(Ω) ∩𝑊1

∞(Ω)),𝑈(𝑥, 𝑡) ∈ 𝐿2(0,𝑇; (𝐻𝑘+1(Ω))2 ∩ (𝑊1
∞(Ω))2), 𝑆(𝑥, 𝑡) ∈ 𝐿2(0, 𝑇;𝐻𝑘+1(Ω)∩𝑊1

∞(Ω)), and𝑍𝑏(𝑥, 𝑡) ∈ 𝐿2(0, 𝑇;𝐻𝑘+1(Ω)).
(H5) 𝜕2𝐻/𝜕𝑡2 ∈ 𝐿2(0, 𝑇; 𝐿2(Ω)), 𝜕2𝑈/𝜕𝑡2 ∈ 𝐿2(0, 𝑇;𝐿2(Ω)), 𝜕2𝑆/𝜕𝑡2 ∈ 𝐿2(0, 𝑇; 𝐿2(Ω)), and 𝜕2𝑍𝑏/𝜕𝑡2 ∈𝐿2(0, 𝑇; 𝐿2(Ω)).
(H6) 𝜕𝑈/𝜕𝑡 ∈ 𝐿2(0, 𝑇; (𝐻1(Ω))2 ∩ (𝐿∞(Ω))2) and 𝜕𝐻/𝜕𝑡 ∈𝐿2(0, 𝑇; 𝐿2(Ω)).
Next we introduce the following lemmas which are

crucial to our convergence analysis.

Lemma 1 (see [12–14]). Assume that (H4)–(H6) hold and𝐻̃, 𝑈̃, 𝑆̃ and 𝑍𝑏 are defined in (19). Then, the following error
estimates hold for 0 ≤ 𝑝 ≤ ∞ and 0 ≤ 𝑙 ≤ 𝑘 + 1:

󵄩󵄩󵄩󵄩󵄩𝐻 − 𝐻̃󵄩󵄩󵄩󵄩󵄩𝑙,𝑝,Ω ≤ 𝐶ℎ𝑘+1−𝑙 ‖𝐻‖𝑘+1,𝑝,Ω ,
󵄩󵄩󵄩󵄩󵄩𝑈 − 𝑈̃󵄩󵄩󵄩󵄩󵄩𝑙,𝑝,Ω ≤ 𝐶ℎ𝑘+1−𝑙 ‖𝑈‖𝑘+1,𝑝,Ω ,
󵄩󵄩󵄩󵄩󵄩𝑆 − 𝑆̃󵄩󵄩󵄩󵄩󵄩𝑙,𝑝,Ω ≤ 𝐶ℎ𝑘+1−𝑙 ‖𝑆‖𝑘+1,𝑝,Ω ,

󵄩󵄩󵄩󵄩󵄩𝑍𝑏 − 𝑍𝑏

󵄩󵄩󵄩󵄩󵄩𝑙,𝑝,Ω ≤ 𝐶ℎ𝑘+1−𝑙 󵄩󵄩󵄩󵄩𝑍𝑏
󵄩󵄩󵄩󵄩𝑘+1,𝑝,Ω .

(20)

Lemma 2 (trace theorem [12, 15]). Assume that V ∈ 𝐻𝑠(𝐸)
and 𝐸 ∈ 𝜀ℎ.Then, there exists a constant 𝐶 > 0 such that

‖V‖0,𝑒 ≤ 𝐶 |𝑒|1/2 |𝐸|−1/2 (‖V‖0,𝐸 + ℎ ‖∇V‖0,𝐸) ,
∀𝑒 ∈ 𝜕𝐸, 𝑠 ≥ 1,

󵄩󵄩󵄩󵄩∇V ⋅ ne
󵄩󵄩󵄩󵄩0,𝑒 ≤ 𝐶 |𝑒|1/2 |𝐸|−1/2 (‖∇V‖0,𝐸 + ℎ 󵄩󵄩󵄩󵄩󵄩∇2V

󵄩󵄩󵄩󵄩󵄩0,𝐸) ,
∀𝑒 ∈ 𝜕𝐸, 𝑠 ≥ 2.

(21)

In particular, if V ∈ 𝑃𝑘(𝐸), then
‖V‖0,𝑒 ≤ 𝐶ℎ−1/2 ‖V‖0,𝐸 , ∀𝑒 ∈ 𝜕𝐸, 𝑠 ≥ 1,

󵄩󵄩󵄩󵄩∇V ⋅ ne
󵄩󵄩󵄩󵄩0,𝑒 ≤ 𝐶ℎ−1/2 ‖∇V‖0,𝐸 , ∀𝑒 ∈ 𝜕𝐸, 𝑠 ≥ 2. (22)
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Lemma3 (discreteGronwall inequality [15, 16]). Assume that
the nonnegative sequences 𝑎𝑛, 𝑏𝑛 and 𝑐𝑛 satisfy

𝑎𝑛 + Δ𝑡 𝑛∑
𝑖=0

𝑏𝑖 ≤ 𝐵 + 𝐶Δ𝑡 𝑛∑
𝑖=0

𝑎𝑖 + Δ𝑡 𝑛∑
𝑖=0

𝑐𝑖, ∀𝑛 ≥ 0. (23)

Then, we have

𝑎𝑛 + Δ𝑡 𝑛∑
𝑖=0

𝑏𝑖 ≤ 𝑒𝐶(𝑛+1)Δ𝑡(𝐵 + Δ𝑡 𝑛∑
𝑖=0

𝑐𝑖) . (24)

Lemma 4 (inverse inequalities [12, 16]). Let 𝜒 ∈ D𝑘(𝜀ℎ).
Then, there is a constant 𝐾0 > 0 such that

󵄩󵄩󵄩󵄩𝜒󵄩󵄩󵄩󵄩𝐿∞ ≤ 𝐾0ℎ−1 󵄩󵄩󵄩󵄩𝜒󵄩󵄩󵄩󵄩 , ∀𝜒 ∈ D𝑘 (𝜀ℎ) ,
󵄩󵄩󵄩󵄩𝜒󵄩󵄩󵄩󵄩𝐻1 ≤ 𝐾0ℎ−1 󵄩󵄩󵄩󵄩𝜒󵄩󵄩󵄩󵄩 , ∀𝜒 ∈ D𝑘 (𝜀ℎ) . (25)

Lemma 5 (boundedness). Assume that ℎ is sufficiently small.
Then, there is a constant 𝐶 > 0 such that, for ∀𝑛 ≥ 0,

(a) 󵄩󵄩󵄩󵄩󵄩𝐻̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≥ 𝐻∗2 ,
(b) 󵄩󵄩󵄩󵄩󵄩𝐻̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) + 󵄩󵄩󵄩󵄩󵄩𝑈̃𝑛󵄩󵄩󵄩󵄩󵄩(𝐿∞(Ω))2 + 󵄩󵄩󵄩󵄩󵄩𝑆̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≤ 𝐶. (26)

Proof. Combining the definition of 𝐻̃, the hypotheses (H2)
and (H4), and Lemma 1, we obtain

󵄩󵄩󵄩󵄩󵄩𝐻̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≥ 󵄩󵄩󵄩󵄩𝐻𝑛󵄩󵄩󵄩󵄩𝐿∞(Ω) − 󵄩󵄩󵄩󵄩󵄩𝐻̃𝑛 − 𝐻𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)
≥ 𝐻∗ − 𝐾ℎ 󵄩󵄩󵄩󵄩𝐻𝑛󵄩󵄩󵄩󵄩1,∞,Ω . (27)

Let ℎ0 = min{1, 𝐻∗/2𝐾‖𝐻𝑛‖1,∞,Ω}; then if ℎ < ℎ0, we have
󵄩󵄩󵄩󵄩󵄩𝐻̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≥ 𝐻∗2 . (28)

On the other hand, by the triangle inequality, we can deduce

󵄩󵄩󵄩󵄩󵄩𝐻̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≤ 󵄩󵄩󵄩󵄩𝐻𝑛󵄩󵄩󵄩󵄩𝐿∞(Ω) + 󵄩󵄩󵄩󵄩󵄩𝐻̃𝑛 − 𝐻𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)
≤ (1 + 𝐾ℎ) 󵄩󵄩󵄩󵄩𝐻𝑛󵄩󵄩󵄩󵄩1,∞,Ω ,

󵄩󵄩󵄩󵄩󵄩𝑈̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≤ 󵄩󵄩󵄩󵄩𝑈𝑛󵄩󵄩󵄩󵄩𝐿∞(Ω) + 󵄩󵄩󵄩󵄩󵄩𝑈̃𝑛 − 𝑈𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)
≤ (1 + 𝐾ℎ) 󵄩󵄩󵄩󵄩𝑈𝑛󵄩󵄩󵄩󵄩1,∞,Ω ,

󵄩󵄩󵄩󵄩󵄩𝑆̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≤ 󵄩󵄩󵄩󵄩𝑆𝑛󵄩󵄩󵄩󵄩𝐿∞(Ω) + 󵄩󵄩󵄩󵄩󵄩𝑆̃𝑛 − 𝑆𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)
≤ (1 + 𝐾ℎ) 󵄩󵄩󵄩󵄩𝑆𝑛󵄩󵄩󵄩󵄩1,∞,Ω .

(29)

Let 𝐶 = (1 + 𝐾ℎ0)max{‖𝐻𝑛‖1,∞,Ω, ‖𝑈𝑛‖1,∞,Ω, ‖𝑆𝑛‖1,∞,Ω};
then if ℎ < ℎ0, we have󵄩󵄩󵄩󵄩󵄩𝐻̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) + 󵄩󵄩󵄩󵄩󵄩𝑈̃𝑛󵄩󵄩󵄩󵄩󵄩(𝐿∞(Ω))2 + 󵄩󵄩󵄩󵄩󵄩𝑆̃𝑛󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≤ 𝐶. (30)

4.2. Stability Estimate. Preceding the proof of the stability for
(14)–(18), we first present a bounded estimate for𝐻ℎ, 𝑈ℎ, 𝑆ℎ,
and 𝑍𝑏ℎ. Since its proof involves an induction argument with
the error bounds of these unknowns we here only give its
presentation in Lemma 6, whose detailed proof can be found
at the last part of the next section.

For the concise expositionwe decompose the errors in the
following manner: let

𝐻ℎ − 𝐻 = 𝑒𝐻 + 𝜃𝐻 š (𝐻ℎ − 𝐻̃) + (𝐻̃ − 𝐻) ,
𝑈ℎ − 𝑈 = 𝑒𝑈 + 𝜃𝑈 š (𝑈ℎ − 𝑈̃) + (𝑈̃ − 𝑈) ,
𝑆ℎ − 𝑆 = 𝑒𝑆 + 𝜃𝑆 š (𝑆ℎ − 𝑆̃) + (𝑆̃ − 𝑆) ,

𝑍𝑏ℎ − 𝑍𝑏 = 𝑒𝑍𝑏 + 𝜃𝑍𝑏 š (𝑍𝑏ℎ − 𝑍𝑏) + (𝑍𝑏 − 𝑍𝑏) .
(31)

Lemma 6 (boundedness of approximate solution). There
exists a small positive constant ℎ0 such that when 0 < ℎ ≤ ℎ0
and Δ𝑡 = 𝑜(ℎ), for ∀𝑛 ≥ 0,

(a) 󵄩󵄩󵄩󵄩𝐻𝑛
ℎ
󵄩󵄩󵄩󵄩𝐿∞(Ω) ≥ 𝐻∗4 ,

(b) 󵄩󵄩󵄩󵄩𝑒𝑛𝐻󵄩󵄩󵄩󵄩𝐿∞(Ω) + 󵄩󵄩󵄩󵄩𝑒𝑛𝑈󵄩󵄩󵄩󵄩(𝐿∞(Ω))2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑆󵄩󵄩󵄩󵄩𝐿∞(Ω) ≤ 𝐻∗4 . (32)

Theorem 7 (stability estimate). There exists a constant 𝐶
independent of ℎ and Δ𝑡 such that for all𝑚 (0 < 𝑚 ≤ 𝑁),
󵄩󵄩󵄩󵄩𝐻𝑚

ℎ
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑈𝑚

ℎ
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑆𝑚ℎ 󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑍𝑚

𝑏ℎ
󵄩󵄩󵄩󵄩 ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝐻0

ℎ

󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑈0
ℎ

󵄩󵄩󵄩󵄩󵄩
+ 󵄩󵄩󵄩󵄩󵄩𝑆0ℎ󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑍0

𝑏ℎ

󵄩󵄩󵄩󵄩󵄩 + (Δ𝑡)1/2 ∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩󵄩∇𝑈0
ℎ

󵄩󵄩󵄩󵄩󵄩
+ (Δ𝑡)1/2 𝐽1 (𝑈0

ℎ , 𝑈0
ℎ))

+ 𝐶(Δ𝑡𝑚−1∑
𝑛=1

∑
𝑒∈𝜕Ω

𝜎1𝑒|𝑒| 󵄩󵄩󵄩󵄩󵄩󵄩𝑈̂𝑛+1󵄩󵄩󵄩󵄩󵄩󵄩20,𝑒
+ Δ𝑡𝑚−1∑

𝑛=1

∑
𝑒∈Γ1

𝜎2𝑒|𝑒| 󵄩󵄩󵄩󵄩󵄩󵄩𝑆̂𝑛+1󵄩󵄩󵄩󵄩󵄩󵄩
2

0,𝑒
+ Δ𝑡𝑚−1∑

𝑛=1

∑
𝑒∈Γ1

󵄩󵄩󵄩󵄩󵄩󵄩𝐻̂𝑛+1󵄩󵄩󵄩󵄩󵄩󵄩20,𝑒)
1/2 .

(33)

Proof. Setting 𝜑 = 𝐻𝑛+1
ℎ in (14), using Green’s formula for the

second term on the left-hand side, we have

− ∑
𝐸∈𝜀ℎ

(𝐻𝑛+1
ℎ 𝑈𝑛

ℎ , ∇𝐻𝑛+1
ℎ )

𝐸
= −12 ∑

𝐸∈𝜀ℎ

(𝑈𝑛
ℎ , ∇ (𝐻𝑛+1

ℎ )2)
𝐸

= 12 ∑
𝐸∈𝜀ℎ

(∇ ⋅ 𝑈𝑛
ℎ , 𝐻𝑛+1,2

ℎ )
𝐸

− 12 ∑
𝑒∈Γℎ

⟨[𝐻𝑛+1,2
ℎ 𝑈𝑛

ℎ ⋅ ne] , 1⟩𝑒
− 12 ∑

𝑒∈𝜕Ω

⟨𝑈𝑛
ℎ ⋅ ne, 𝐻𝑛+1,2

ℎ ⟩
𝑒
.

(34)
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Using [𝑎𝑏] = [𝑎]{𝑏} + {𝑎}[𝑏], we see that
− 12 ∑

𝑒∈Γℎ

⟨[𝐻𝑛+1,2
ℎ 𝑈𝑛

ℎ ⋅ ne] , 1⟩𝑒
+ ∑
𝑒∈Γℎ

⟨𝐻𝑛+1,up
ℎ

{𝑈𝑛
ℎ} ⋅ ne, [𝐻𝑛+1

ℎ ]⟩
𝑒

= −12 ∑
𝑒∈Γℎ

⟨[𝐻𝑛+1,2
ℎ ] , {𝑈𝑛

ℎ} ⋅ ne⟩𝑒
− 12 ∑

𝑒∈Γℎ

⟨{𝐻𝑛+1,2
ℎ } , [𝑈𝑛

ℎ] ⋅ ne⟩𝑒
+ ∑
𝑒∈Γℎ

⟨𝐻𝑛+1,up
ℎ

{𝑈𝑛
ℎ} ⋅ ne, [𝐻𝑛+1

ℎ ]⟩
𝑒

= 12 ∑
𝑒∈Γℎ

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 , [𝐻𝑛+1
ℎ ]2⟩

𝑒

− 12 ∑
𝑒∈Γℎ

⟨{𝐻𝑛+1,2
ℎ } , [𝑈𝑛

ℎ] ⋅ ne⟩𝑒 .

(35)

Combining (34) and (35), we rewrite (14) as the following
form:

(𝐻𝑛+1
ℎ − 𝐻𝑛

ℎΔ𝑡 ,𝐻𝑛+1
ℎ )

+ 12 ∑
𝑒∈Γℎ

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 , [𝐻𝑛+1
ℎ ]2⟩

𝑒

= −12 ∑
𝐸∈𝜀ℎ

(∇ ⋅ 𝑈𝑛
ℎ , 𝐻𝑛+1,2

ℎ )
𝐸

+ 12 ∑
𝑒∈Γℎ

⟨{𝐻𝑛+1,2
ℎ } , [𝑈𝑛

ℎ] ⋅ ne⟩𝑒
+ 12 ∑

𝑒∈Γ1

⟨𝑈𝑛
ℎ ⋅ ne, 𝐻𝑛+1,2

ℎ ⟩
𝑒

− ∑
𝑒∈Γ1

⟨𝐻̂𝑛+1𝑈𝑛
ℎ ⋅ ne, 𝐻𝑛+1

ℎ ⟩
𝑒

− ∑
𝑒∈Γ2∪Γ3

⟨𝑈𝑛
ℎ ⋅ ne, 𝐻𝑛+1,2

ℎ ⟩ = 5∑
𝑖=1

𝐼𝑖.

(36)

Next we estimate the values of the five terms 𝐼𝑖. By Lemma 6
and Young’s inequality, we obtain

󵄨󵄨󵄨󵄨𝐼1󵄨󵄨󵄨󵄨 ≤ 𝜀∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝑈𝑛
ℎ
󵄩󵄩󵄩󵄩2 + 𝐶 󵄩󵄩󵄩󵄩󵄩𝐻𝑛+1

ℎ

󵄩󵄩󵄩󵄩󵄩2 . (37)

Using the trace theorem, we have

󵄨󵄨󵄨󵄨𝐼2󵄨󵄨󵄨󵄨 ≤ 𝐶∑
𝑒∈Γℎ

(𝜎1𝑒|𝑒|)
1/2 󵄩󵄩󵄩󵄩[𝑈𝑛

ℎ]󵄩󵄩󵄩󵄩𝐿2(𝑒)
⋅ (𝜎1𝑒|𝑒|)

−1/2 󵄩󵄩󵄩󵄩󵄩{𝐻𝑛+1
ℎ }󵄩󵄩󵄩󵄩󵄩𝐿2(𝑒)

≤ 𝜀𝐽1 (𝑈𝑛
ℎ , 𝑈𝑛

ℎ) + 𝐶 󵄩󵄩󵄩󵄩󵄩𝐻𝑛+1
ℎ

󵄩󵄩󵄩󵄩󵄩2 ,
(38)

where 𝐽1(𝑈𝑛
ℎ , 𝑈𝑛

ℎ ) is the bilinear form defined in Section 3.1.

Similarly,

󵄨󵄨󵄨󵄨𝐼3󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐼4󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐼5󵄨󵄨󵄨󵄨 ≤ 𝜀𝐽1 (𝑈𝑛
ℎ , 𝑈𝑛

ℎ) + 𝐶 󵄩󵄩󵄩󵄩󵄩𝐻𝑛+1
ℎ

󵄩󵄩󵄩󵄩󵄩2 . (39)

Combining (1/2)(𝑎2 − 𝑏2) ≤ (𝑎 − 𝑏)𝑎 and (37)–(39), (36)
becomes

12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝐻𝑛+1
ℎ

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝐻𝑛
ℎ
󵄩󵄩󵄩󵄩2)

≤ 𝜀∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝑈𝑛
ℎ
󵄩󵄩󵄩󵄩2 + 𝐶 󵄩󵄩󵄩󵄩󵄩𝐻𝑛+1

ℎ

󵄩󵄩󵄩󵄩󵄩2 + 𝜀𝐽1 (𝑈𝑛
ℎ , 𝑈𝑛

ℎ) . (40)

Similarly, setting Φ = 𝑈𝑛+1
ℎ in (15), 𝜔 = 𝑆𝑛+1ℎ in (16), and 𝜙 =𝑍𝑛+1

𝑏ℎ in (17) and using the same techniques, we have

12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑈𝑛+1
ℎ

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑈𝑛
ℎ
󵄩󵄩󵄩󵄩2) + 󵄩󵄩󵄩󵄩󵄩𝜏1/2𝑈𝑛+1

ℎ

󵄩󵄩󵄩󵄩󵄩2
+∑

𝐸

󵄩󵄩󵄩󵄩󵄩𝜇1/2∇𝑈𝑛+1
ℎ

󵄩󵄩󵄩󵄩󵄩2 + 𝐽1 (𝑈𝑛+1
ℎ , 𝑈𝑛+1

ℎ )
≤ 𝐶(∑

𝑒∈Γ1

󵄩󵄩󵄩󵄩󵄩󵄩𝐻̂𝑛+1󵄩󵄩󵄩󵄩󵄩󵄩2𝐿2(𝑒) + 󵄩󵄩󵄩󵄩󵄩𝐻𝑛+1
ℎ

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑍𝑛+1
𝑏ℎ

󵄩󵄩󵄩󵄩󵄩2

+ 󵄩󵄩󵄩󵄩󵄩𝑈𝑛+1
ℎ

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑈𝑛
ℎ
󵄩󵄩󵄩󵄩2) + 𝜀∑

𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩󵄩∇𝑈𝑛+1
ℎ

󵄩󵄩󵄩󵄩󵄩2

+ 𝐶 ∑
𝑒∈𝜕Ω

𝜎1𝑒|𝑒| 󵄩󵄩󵄩󵄩󵄩󵄩𝑈̂𝑛+1󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(𝑒) ,
12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑆𝑛+1ℎ

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑆𝑛ℎ󵄩󵄩󵄩󵄩2) +∑
𝐸

󵄩󵄩󵄩󵄩󵄩𝑐1/20 ∇𝑆𝑛+1ℎ

󵄩󵄩󵄩󵄩󵄩2

+ 𝐽2 (𝑒𝑛+1𝑆 , 𝑒𝑛+1𝑆 ) ≤ 𝜀(𝐽1 (𝑈𝑛
ℎ , 𝑈𝑛

ℎ) + ∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝑈𝑛
ℎ
󵄩󵄩󵄩󵄩2

+ ∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩󵄩∇𝑆𝑛+1ℎ

󵄩󵄩󵄩󵄩󵄩2 + ∑
𝑒∈Γ1

𝜎2𝑒|𝑒| 󵄩󵄩󵄩󵄩󵄩󵄩𝑆̂𝑛+1󵄩󵄩󵄩󵄩󵄩󵄩𝐿2(𝑒)) + 𝐶(󵄩󵄩󵄩󵄩󵄩𝑆𝑛+1ℎ

󵄩󵄩󵄩󵄩󵄩2

+ 󵄩󵄩󵄩󵄩𝑈𝑛
ℎ
󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝐻𝑛

ℎ
󵄩󵄩󵄩󵄩2) ,

12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑍𝑛+1
𝑏ℎ

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑍𝑛
𝑏ℎ
󵄩󵄩󵄩󵄩2) ≤ 𝐶 󵄩󵄩󵄩󵄩󵄩𝑆𝑛+1ℎ

󵄩󵄩󵄩󵄩󵄩2 + 𝜀 󵄩󵄩󵄩󵄩𝑍𝑛
𝑏ℎ
󵄩󵄩󵄩󵄩2 .

(41)

Multiplying (40)-(41) by 2Δ𝑡, summing both sides with
respect to 𝑛 over 𝑛 = 0, 1, 2, . . . , 𝑚 − 1, and using the discrete
Gronwall inequality (Lemma 3), we complete the proof of
Theorem 7.

From Theorem 7, we see that if the initial-boundary
conditions (5)-(6) are zero, then 𝐻𝑛

ℎ , 𝑈𝑛
ℎ , 𝑆𝑛ℎ, 𝑍𝑛

𝑏ℎ (∀𝑛 > 0)
are all equal to zero. This implies that the solution of the
UWDG scheme (14)–(18) is unique and thus the existence.

Theorem 8 (existence and uniqueness). For ∀𝑛 > 0, there
exists a unique solution {𝐻𝑛

ℎ , 𝑈𝑛
ℎ , 𝑆𝑛ℎ, 𝑍𝑛

𝑏ℎ} to theUWDG scheme
(14)–(18).
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5. Convergence Analysis

In this section, we shall conduct error estimates for the
UWDG solution and prove the O(ℎ𝑘 + Δ𝑡) convergence
rate based upon the prior-estimate techniques and induction
argument. Combining these error estimates and applying the
induction argument again, we give the detailed proof for the
boundedness of the approximate solution stated in Lemma 6.

5.1. Error Equations. First, we derive the error equation of the
flow continuous equation (1). Choosing the test function 𝜑 =𝑒𝑛+1𝐻 in (10) and (14), subtracting (10) from (14), and using the
definition of 𝜃𝐻 in (31), we derive the error equation for the
flow continuous equation as follows:

(𝑒𝑛+1𝐻 − 𝑒𝑛𝐻Δ𝑡 , 𝑒𝑛+1𝐻 ) − ∑
𝐸∈𝜀ℎ

(𝑒𝑛+1𝐻 𝑈𝑛
ℎ , ∇𝑒𝑛+1𝐻 )

𝐸

+ ∑
𝑒∈Γℎ

⟨𝑒𝑛+1,up𝐻 {𝑈𝑛
ℎ} ⋅ ne, [𝑒𝑛+1𝐻 ]⟩

𝑒

= −((𝐻𝑛+1 − 𝐻𝑛

Δ𝑡 − 𝐻𝑛+1
𝑡 ) , 𝑒𝑛+1𝐻 )

+ ∑
𝐸∈𝜀ℎ

((𝐻̃𝑛+1𝑈𝑛
ℎ − 𝐻𝑛+1𝑈𝑛+1) , ∇𝑒𝑛+1𝐻 )

− ∑
𝑒∈Γℎ

⟨𝐻̃𝑛+1,up {𝑈𝑛
ℎ} ⋅ ne − 𝐻𝑛+1𝑈𝑛+1 ⋅ ne, [𝑒𝑛+1𝐻 ]⟩

𝑒

− ∑
𝑒∈Γ1

⟨𝐻̂𝑛+1𝑈𝑛
ℎ ⋅ ne − 𝐻̂𝑛+1𝑈̂𝑛+1 ⋅ ne, 𝑒𝑛+1𝐻 ⟩

𝑒

− ∑
𝑒∈Γ2∪Γ3

⟨𝐻𝑛+1
ℎ 𝑈𝑛

ℎ ⋅ ne − 𝐻𝑛+1𝑈̂𝑛+1 ⋅ ne, 𝑒𝑛+1𝐻 ⟩
𝑒
.

(42)

Taking into account that there is no diffusion term in the
flow continuous equation (1), we apply Green’s formula to the
second term on the left-hand side

− ∑
𝐸∈𝜀ℎ

(𝑒𝑛+1𝐻 𝑈𝑛
ℎ , ∇𝑒𝑛+1𝐻 )

𝐸
= −12 ∑

𝐸∈𝜀ℎ

(𝑈𝑛
ℎ , ∇ (𝑒𝑛+1𝐻 )2)

𝐸

= 12 ∑
𝐸∈𝜀ℎ

(∇ ⋅ 𝑈𝑛
ℎ , 𝑒𝑛+1,2𝐻 )

𝐸

− 12 ∑
𝑒∈Γℎ

⟨[𝑒𝑛+1,2𝐻 𝑈𝑛
ℎ ⋅ ne] , 1⟩𝑒

− 12 ∑
𝑒∈𝜕Ω

⟨𝑈𝑛
ℎ ⋅ ne, 𝑒𝑛+1,2𝐻 ⟩

𝑒
.

(43)

Using [𝑎𝑏] = [𝑎]{𝑏} + {𝑎}[𝑏], we obtain
− 12 ∑

𝑒∈Γℎ

⟨[𝑒𝑛+1,2𝐻 𝑈𝑛
ℎ ⋅ ne] , 1⟩𝑒

+ ∑
𝑒∈Γℎ

⟨𝑒𝑛+1,up𝐻 {𝑈𝑛
ℎ} ⋅ ne, [𝑒𝑛+1𝐻 ]⟩

𝑒

= −12 ∑
𝑒∈Γℎ

⟨[𝑒𝑛+1,2𝐻 ] , {𝑈𝑛
ℎ} ⋅ ne⟩𝑒

− 12 ∑
𝑒∈Γℎ

⟨{𝑒𝑛+1,2𝐻 } , [𝑈𝑛
ℎ] ⋅ ne⟩𝑒

+ ∑
𝑒∈Γℎ

⟨𝑒𝑛+1,up𝐻 {𝑈𝑛
ℎ} ⋅ ne, [𝑒𝑛+1𝐻 ]⟩

𝑒

= 12 ∑
𝑒∈Γℎ

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 , [𝑒𝑛+1𝐻 ]2⟩
𝑒

− 12 ∑
𝑒∈Γℎ

⟨{𝑒𝑛+1,2𝐻 } , [𝑈𝑛
ℎ] ⋅ ne⟩𝑒 .

(44)

Similarly, we use Green’s formula for the second term on the
right-hand side; thus

∑
𝐸∈𝜀ℎ

((𝐻̃𝑛+1𝑈𝑛
ℎ − 𝐻𝑛+1𝑈𝑛+1) , ∇𝑒𝑛+1𝐻 )

= −∑
𝐸∈𝜀ℎ

(∇ ⋅ (𝐻̃𝑛+1𝑈𝑛
ℎ − 𝐻𝑛+1𝑈𝑛+1) , 𝑒𝑛+1𝐻 )

+ ∑
𝑒∈Γ1

⟨(𝐻̃𝑛+1𝑈𝑛
ℎ − 𝐻̂𝑛+1𝑈̂𝑛+1) ⋅ ne, 𝑒𝑛+1𝐻 ⟩

+ ∑
𝑒∈Γℎ

⟨[𝑒𝑛+1𝐻 (𝐻̃𝑛+1𝑈𝑛
ℎ − 𝐻𝑛+1𝑈𝑛+1) ⋅ ne] , 1⟩

𝑒

+ ∑
𝑒∈Γ2∪Γ3

⟨(𝐻̃𝑛+1𝑈𝑛
ℎ − 𝐻𝑛+1𝑈̂𝑛+1) ⋅ ne, 𝑒𝑛+1𝐻 ⟩

𝑒
.

(45)

Combining (43)–(45), we rewrite the error equation (42) into
the following form:

(𝑒𝑛+1𝐻 − 𝑒𝑛𝐻Δ𝑡 , 𝑒𝑛+1𝐻 ) + 12 ∑
𝑒∈Γℎ

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 , [𝑒𝑛+1𝐻 ]2⟩
𝑒

+ 12 ∑
𝑒∈Γ1

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝐻 ⟩

𝑒
+ 12

⋅ ∑
𝑒∈Γ2∪Γ3

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝐻 ⟩

𝑒

= −((𝐻𝑛+1 − 𝐻𝑛

Δ𝑡 − 𝐻𝑛+1
𝑡 ) , 𝑒𝑛+1𝐻 ) − 12

⋅ ∑
𝐸∈𝜀ℎ

(∇ ⋅ 𝑈𝑛
ℎ , 𝑒𝑛+1,2𝐻 )

𝐸
+ 12
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⋅ ∑
𝑒∈Γℎ

⟨{𝑒𝑛+1,2𝐻 } , [𝑈𝑛
ℎ] ⋅ ne⟩𝑒 + 12

⋅ ∑
𝑒∈Γ1

⟨(𝑈𝑛
ℎ − 𝑈̂𝑛) ⋅ ne, 𝑒𝑛+1,2𝐻 ⟩

𝑒

− ∑
𝐸∈𝜀ℎ

(∇ ⋅ (𝐻̃𝑛+1𝑈𝑛
ℎ − 𝐻𝑛+1𝑈𝑛+1) , 𝑒𝑛+1𝐻 )

+ ∑
𝑒∈Γℎ

⟨[𝑒𝑛+1𝐻 (𝐻̃𝑛+1𝑈𝑛
ℎ − 𝐻𝑛+1𝑈𝑛+1) ⋅ ne] , 1⟩

𝑒

− ∑
𝑒∈Γℎ

⟨𝐻̃𝑛+1,up {𝑈𝑛
ℎ} ⋅ ne − 𝐻𝑛+1𝑈𝑛+1 ⋅ ne, [𝑒𝑛+1𝐻 ]⟩

𝑒

+ ∑
𝑒∈Γ1

⟨(𝐻̃𝑛+1 − 𝐻̂𝑛+1)𝑈𝑛
ℎ ⋅ ne, 𝑒𝑛+1𝐻 ⟩

𝑒
− 12

⋅ ∑
𝑒∈Γ2∪Γ3

⟨(𝑈𝑛
ℎ − 𝑈̂𝑛) ⋅ ne, 𝑒𝑛+1,2𝐻 ⟩ .

(46)

Similarly, we obtain the other three error equations

(𝑒𝑛+1𝑈 − 𝑒𝑛𝑈Δ𝑡 , 𝑒𝑛+1𝑈 ) + (𝜏𝑛+1𝑒𝑛+1𝑈 , 𝑒𝑛+1𝑈 )
+∑

𝐸

𝜇 (∇𝑒𝑛+1𝑈 , ∇𝑒𝑛+1𝑈 )
𝐸
+ 𝐽1 (𝑒𝑛+1𝑈 , 𝑒𝑛+1𝑈 )

= −((𝑈𝑛+1 − 𝑈𝑛

Δ𝑡 − 𝑈𝑛+1
𝑡 ) , 𝑒𝑛+1𝑈 )

+∑
𝐸

(𝑈𝑛+1 ⋅ ∇𝑈𝑛+1 − 𝑈𝑛
ℎ ⋅ ∇𝑈𝑛+1

ℎ , 𝑒𝑛+1𝑈 )
𝐸

−∑
𝐸

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 (𝑈𝑛+1,int
ℎ − 𝑈𝑛+1,ext

ℎ ) , 𝑒𝑛+1,int𝑈 ⟩
𝜕𝐸−

− (𝜏𝑛+1𝜃𝑛+1𝑈 , 𝑒𝑛+1𝑈 ) + ((𝜏𝑛+1 − 𝜏𝑛ℎ)𝑈𝑛+1
ℎ , 𝑒𝑛+1𝑈 )

−∑
𝐸

𝜇 (∇𝜃𝑛+1𝑈 , ∇𝑒𝑛+1𝑈 )
𝐸

+ ∑
𝑒∈Γℎ∪𝜕Ω

𝜇 ⟨{∇𝜃𝑛+1𝑈 } ⋅ ne, [𝑒𝑛+1𝑈 ]⟩
𝑒

− ∑
𝑒∈Γℎ∪𝜕Ω

𝜇 ⟨{∇𝑒𝑛+1𝑈 ⋅ ne} , [𝜃𝑛+1𝑈 ]⟩
𝑒

− 𝐽1 (𝜃𝑛+1𝑈 , 𝑒𝑛+1𝑈 ) +∑
𝐸

(𝑒𝑛+1𝐻 , ∇𝑒𝑛+1𝑈 )
+∑

𝐸

(𝜃𝑛+1𝐻 , ∇𝑒𝑛+1𝑈 ) +∑
𝐸

(𝑒𝑛+1𝑍𝑏
, ∇𝑒𝑛+1𝑈 )

+∑
𝐸

(𝜃𝑛+1𝑍𝑏
, ∇𝑒𝑛+1𝑈 )

− ∑
𝑒∈Γℎ∪Γ2∪Γ3

⟨𝑔 ({𝑒𝑛+1𝐻 } + {𝜃𝑛+1𝐻 }) , [𝑒𝑛+1𝑈 ⋅ ne]⟩𝑒
− ∑
𝑒∈Γℎ∪𝜕Ω

⟨𝑔 ({𝑒𝑛+1𝑍𝑏
} + {𝜃𝑛+1𝑍𝑏

}) , [𝑒𝑛+1𝑈 ⋅ ne]⟩𝑒 ,
(𝑒𝑛+1𝑆 − 𝑒𝑛𝑆Δ𝑡 , 𝑒𝑛+1𝑆 ) + 12 ∑

𝑒∈Γℎ

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 , [𝑒𝑛+1𝑆 ]2⟩
𝑒

+ 12 ∑
𝑒∈Γ1

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝑆 ⟩

𝑒

+ 12 ∑
𝑒∈Γ2∪Γ3

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝑆 ⟩

𝑒

+∑
𝐸

𝑐0 (∇𝑒𝑛+1𝑆 , ∇𝑒𝑛+1𝑆 )
𝐸
+ 𝐽2 (𝑒𝑛+1𝑆 , 𝑒𝑛+1𝑆 )

= −((𝑆𝑛+1 − 𝑆𝑛Δ𝑡 − 𝑆𝑛+1𝑡 ) , 𝑒𝑛+1𝑆 )
+∑

𝐸

(𝑆𝑛+1ℎ ∇ ⋅ 𝑈𝑛
ℎ − 𝑆𝑛+1∇ ⋅ 𝑈𝑛+1, 𝑒𝑛+1𝑆 )

𝐸

− 12∑
𝐸

(∇ ⋅ 𝑈𝑛
ℎ , 𝑒𝑛+1,2𝑆 )

+ 12 ∑
𝑒∈Γℎ

⟨{𝑒𝑛+1,2𝑆 } , [𝑈𝑛
ℎ ⋅ ne]⟩𝑒

− ∑
𝑒∈Γ1

⟨𝑆̂𝑛+1𝑈𝑛
ℎ ⋅ ne − 𝑆̃𝑛+1𝑈𝑛

ℎ ⋅ ne, 𝑒𝑛+1𝑆 ⟩
𝑒

+ 12 ∑
𝑒∈Γ1

⟨𝑈𝑛
ℎ ⋅ ne − 𝑈𝑛 ⋅ ne, 𝑒𝑛+1,2𝑆 ⟩

𝑒

+∑
𝐸

(∇ ⋅ (𝑆𝑛+1𝑈𝑛+1 − 𝑆̃𝑛+1𝑈𝑛
ℎ) , 𝑒𝑛+1𝑆 )

− ∑
𝑒∈Γℎ

⟨[𝑒𝑛+1𝑆 (𝑆𝑛+1𝑈𝑛+1 − 𝑆̃𝑛+1𝑈𝑛
ℎ) ⋅ ne] , 1⟩

𝑒

− 12 ∑
𝑒∈Γ2∪Γ3

⟨𝑈𝑛
ℎ ⋅ ne − 𝑈𝑛 ⋅ ne, 𝑒𝑛+1,2𝑆 ⟩

− ∑
𝑒∈Γℎ

⟨𝑆̃𝑛+1,up {𝑈𝑛
ℎ} ⋅ ne − 𝑆𝑛+1𝑈𝑛+1 ⋅ ne, [𝑒𝑛+1𝑆 ]⟩

𝑒

−∑
𝐸

𝑐0 (∇𝜃𝑛+1𝑆 , ∇𝑒𝑛+1𝑆 )
𝐸

+ ∑
𝑒∈Γℎ∪𝜕Ω

𝑐0 ⟨{∇𝜃𝑛+1𝑆 } ⋅ ne, [𝑒𝑛+1𝑆 ]⟩
𝑒

− ∑
𝑒∈Γℎ∪𝜕Ω

𝑐0 ⟨{∇𝑒𝑛+1𝑆 ⋅ ne} , [𝜃𝑛+1𝑆 ]⟩
𝑒

+ ((𝑎𝜔𝐻𝑛
ℎ

− 𝑎𝜔𝐻𝑛+1
)𝑆∗, 𝑒𝑛+1𝑆 )

− ( 𝑎𝜔𝐻𝑛+1
(𝑒𝑛+1𝑆 + 𝜃𝑛+1𝑆 ) , 𝑒𝑛+1𝑆 )

+ (( 𝑎𝜔𝐻𝑛+1
− 𝑎𝜔𝐻𝑛

ℎ

)𝑆𝑛+1ℎ , 𝑒𝑛+1𝑆 ) − 𝐽2 (𝜃𝑛+1𝑆 , 𝑒𝑛+1𝑆 ) ,
(𝑒𝑛+1𝑍𝑏

− 𝑒𝑛𝑍𝑏Δ𝑡 , 𝑒𝑛+1𝑍𝑏
)
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= −((𝑍𝑛+1
𝑏 − 𝑍𝑛

𝑏Δ𝑡 − 𝑍𝑛+1
𝑏𝑡 ) , 𝑒𝑛+1𝑍𝑏

)
+ (𝑎𝜔𝛾󸀠 (𝑒𝑛+1𝑆 + 𝜃𝑛+1S ) , 𝑒𝑛+1𝑍𝑏

) .
(47)

5.2. Error Estimates. Webegin this subsection by deriving the
error estimate for the water depth 𝑒𝐻 stated in (46). For this
we denote the right-hand terms of (46) by 𝐼1+𝐼2+⋅ ⋅ ⋅+𝐼9 and
estimate them term by term.

For 𝐼1, we use Cauchy-Schwarz’s inequality and Young’s
inequality to give

󵄨󵄨󵄨󵄨𝐼1󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨((
𝐻𝑛+1 − 𝐻𝑛

Δ𝑡 − 𝐻𝑛+1
𝑡 ) , 𝑒𝑛+1𝐻 )󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 + 𝐶 (Δ𝑡)2 .
(48)

By noting that𝑈𝑛
ℎ = 𝑒𝑛𝑈+𝜃𝑛𝑈+𝑈𝑛 and Lemma 6 (boundedness

of approximate solution), we split 𝐼2 as the sum of 𝐼12 + 𝐼22 + 𝐼32
and estimate them separately;

𝐼2 = −12 ∑
𝐸∈𝜀ℎ

(∇ ⋅ 𝑈𝑛
ℎ , 𝑒𝑛+1,2𝐻 )

𝐸

= −12 ∑
𝐸∈𝜀ℎ

(∇ ⋅ (𝑒𝑛𝑈 + 𝜃𝑛𝑈 + 𝑈𝑛) , 𝑒𝑛+1,2𝐻 )
𝐸
= 3∑

𝑖=1

𝐼𝑖2,
(49)

in which,

𝐼12 = −12 ∑
𝐸∈𝜀ℎ

(∇ ⋅ 𝑒𝑛𝑈, 𝑒𝑛+1,2𝐻 )
𝐸
≤ 𝐶∑

𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇ ⋅ 𝑒𝑛𝑈󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩
≤ 𝜀∑

𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝑒𝑛𝑈󵄩󵄩󵄩󵄩2 + 𝐶 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 ,
𝐼22 = −12 ∑

𝐸∈𝜀ℎ

(∇ ⋅ 𝜃𝑛𝑈, 𝑒𝑛+1,2𝐻 )
𝐸
≤ 𝐶∑

𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇ ⋅ 𝜃𝑛𝑈󵄩󵄩󵄩󵄩 ⋅ 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 + 𝐶∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝜃𝑛𝑈󵄩󵄩󵄩󵄩2 ,
𝐼32 = −12 ∑

𝐸∈𝜀ℎ

((∇ ⋅ 𝑈𝑛) , 𝑒𝑛+1,2𝐻 )
E
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 .

(50)

Collecting the estimates for these 3 terms, we obtain the
bound of 𝐼2:

󵄨󵄨󵄨󵄨𝐼2󵄨󵄨󵄨󵄨 ≤ 𝜀 ∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝑒𝑛𝑈󵄩󵄩󵄩󵄩2 + 𝐶 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 + 𝐶∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝜃𝑛𝑈󵄩󵄩󵄩󵄩2 . (51)

Similarly, for 𝑒 on the interior edge, [𝑈𝑛
ℎ] = [𝑒𝑛𝑈]+[𝜃𝑛𝑈]+[𝑈𝑛] =[𝑒𝑛𝑈] + [𝜃𝑛𝑈], so we split 𝐼3 as the sum of 𝐼13 + 𝐼23 and estimate

them separately:

𝐼3 = 12 ∑
𝑒∈Γℎ

⟨{𝑒𝑛+1,2𝐻 } , [𝑈𝑛
ℎ] ⋅ 𝑛𝑒⟩𝑒

= 12 ∑
𝑒∈Γℎ

⟨{𝑒𝑛+1,2𝐻 } , ([𝑒𝑛𝑈] + [𝜃𝑛𝑈]) ⋅ 𝑛𝑒⟩𝑒 =
2∑
𝑖=1

𝐼𝑖3,
(52)

in which

𝐼13 = 12 ∑
𝑒∈Γℎ

⟨{𝑒𝑛+1,2𝐻 } , [𝑒𝑛𝑈] ⋅ 𝑛𝑒⟩𝑒
≤ 𝐶∑

𝑒∈Γℎ

󵄩󵄩󵄩󵄩[𝑒𝑛𝑈]󵄩󵄩󵄩󵄩0,𝑒 ⋅ 󵄩󵄩󵄩󵄩󵄩{𝑒𝑛+1𝐻 }󵄩󵄩󵄩󵄩󵄩0,𝑒
≤ 𝐶∑

𝑒∈Γℎ

(𝜎1𝑒|𝑒|)
1/2 󵄩󵄩󵄩󵄩[𝑒𝑛𝑈]󵄩󵄩󵄩󵄩0,𝑒 ⋅ (𝜎1𝑒|𝑒|)

−1/2 󵄩󵄩󵄩󵄩󵄩{𝑒𝑛+1𝐻 }󵄩󵄩󵄩󵄩󵄩0,𝑒
≤ 𝜀𝐽1 (𝑒𝑛𝑈, 𝑒𝑛𝑈) + 𝐶 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 ,
𝐼23 = 12 ∑

𝑒∈Γℎ

⟨{𝑒𝑛+1,2𝐻 } , [𝜃𝑛𝑈] ⋅ 𝑛𝑒⟩𝑒
≤ 𝐶∑

𝑒∈Γℎ

󵄩󵄩󵄩󵄩[𝜃𝑛𝑈]󵄩󵄩󵄩󵄩0,𝑒 ⋅ 󵄩󵄩󵄩󵄩󵄩{𝑒𝑛+1𝐻 }󵄩󵄩󵄩󵄩󵄩0,𝑒
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 + 𝐶ℎ−2∑
𝐸

(󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩0,𝐸 + ℎ𝐸 󵄩󵄩󵄩󵄩∇𝜃𝑛𝑈󵄩󵄩󵄩󵄩0,𝐸)2 .

(53)

Collecting the estimates for these 2 terms, we obtain the
bound of 𝐼3

󵄨󵄨󵄨󵄨𝐼3󵄨󵄨󵄨󵄨 ≤ 𝜀𝐽1 (𝑒𝑛𝑈, 𝑒𝑛𝑈) + 𝐶 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2
+ 𝐶ℎ−2∑

𝐸

(󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩0,𝐸 + ℎ𝐸 󵄩󵄩󵄩󵄩∇𝜃𝑛𝑈󵄩󵄩󵄩󵄩0,𝐸)2 . (54)

Similarly, we obtain the bounds for 𝐼4, 𝐼8, and 𝐼9󵄨󵄨󵄨󵄨𝐼4󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐼8󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐼9󵄨󵄨󵄨󵄨
≤ 𝜀𝐽1 (𝑒𝑛𝑈, 𝑒𝑛𝑈) + 𝐶 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2
+ 𝐶ℎ−2∑

𝐸

(󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩0,𝐸 + ℎ𝐸 󵄩󵄩󵄩󵄩∇𝜃𝑛𝑈󵄩󵄩󵄩󵄩0,𝐸)2

+ 𝐶ℎ−2∑
𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩0,𝐸 + ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩0,𝐸)2 .
(55)

For 𝐼5, we use the identity
𝐻𝑛+1𝑈𝑛+1 − 𝐻̃𝑛+1𝑈𝑛

ℎ = −𝜃𝑛+1𝐻 𝑈𝑛+1

+ 𝐻̃𝑛+1 (𝑈𝑛+1 − 𝑈𝑛)
+ 𝐻̃𝑛+1 (𝑈𝑛 − 𝑈𝑛

ℎ) ,
(56)
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and the triangle inequality to give

󵄨󵄨󵄨󵄨𝐼5󵄨󵄨󵄨󵄨 ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 + ∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2𝐻1 + (Δ𝑡)2

+ ∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩2𝐻1 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑈󵄩󵄩󵄩󵄩2) + 𝜀∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝑒𝑛𝑈󵄩󵄩󵄩󵄩2 .
(57)

For 𝐼6 and 𝐼7, we apply the equality
[𝑎𝑏] = {𝑎} [𝑏] + [𝑎] {𝑏} ,
{𝑎𝑏} = {𝑎} {𝑏} + 14 [𝑎] [𝑏] , (58)

to have

󵄨󵄨󵄨󵄨𝐼6󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨𝐼7󵄨󵄨󵄨󵄨 ≤ 𝜀𝐽1 (𝑒𝑛𝑈, 𝑒𝑛𝑈) + 𝐶 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2
+ 𝐶ℎ−2∑

𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩0,𝐸 + ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩0,𝐸)2

+ 𝐶ℎ−2∑
𝐸

(󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩0,𝐸 + ℎ𝐸 󵄩󵄩󵄩󵄩∇𝜃𝑛𝑈󵄩󵄩󵄩󵄩0,𝐸)2 .
(59)

Combining the bounds (48)–(59) for 𝐼𝑖 (𝑖 = 1, 2, . . . , 9) to
obtain the estimate for the right-hand terms then applying(1/2)(𝑎2−𝑏2) ≤ (𝑎−𝑏)𝑎 to the first term on the left-hand side
of (46), we finally have the estimate for the water depth 𝑒𝐻

12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛𝐻󵄩󵄩󵄩󵄩2) + 12
⋅ ∑
𝑒∈Γℎ

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 , [𝑒𝑛+1𝐻 ]2⟩
𝑒
+ 12

⋅ ∑
𝑒∈Γ1

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝐻 ⟩

𝑒
+ 12

⋅ ∑
𝑒∈Γ2∪Γ3

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝐻 ⟩

𝑒
≤ 𝜀(∑

𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝑒𝑛𝑈󵄩󵄩󵄩󵄩2

+ 𝐽1 (𝑒𝑛𝑈, 𝑒𝑛𝑈)) + 𝐶 (Δ𝑡)2 + 𝐶(󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2

+ ∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2𝐻1 + ∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩2𝐻1 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑈󵄩󵄩󵄩󵄩2)
+ 𝐶ℎ−2∑

𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸) + ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2

+ 𝐶ℎ−2∑
𝐸

(󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩𝐿2(𝐸) + ℎ𝐸 󵄩󵄩󵄩󵄩∇𝜃𝑛𝑈󵄩󵄩󵄩󵄩𝐿2(𝐸))2 .

(60)

Combining the hypotheses (H2)–(H6) and Lemmas 1–6
and using the same method and technique as these used in
(48)–(59), we can obtain the error estimates of 𝑒𝑈, 𝑒𝑆, 𝑒𝑍𝑏

for the rest of the error equations (47). Here we only give the
results:12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛𝑈󵄩󵄩󵄩󵄩2) + 󵄩󵄩󵄩󵄩󵄩𝜏1/2𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2
+∑

𝐸

󵄩󵄩󵄩󵄩󵄩𝜇1/2∇𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2 + 𝐽1 (𝑒𝑛+1𝑈 , 𝑒𝑛+1𝑈 )
≤ 𝜀(∑

𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩󵄩∇𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2 + 𝐽1 (𝑒𝑛𝑈, 𝑒𝑛𝑈)) + 𝐶(󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2

+ 󵄩󵄩󵄩󵄩𝑒𝑛𝐻󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑈󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩2)
+ 𝐶(∑

𝐸

󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2𝐻1 + 󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝜃𝑛𝐻󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩2

+ 󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩2)
+ 𝐶∑

𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸) + ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2

+ 𝐶∑
𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸) + ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2

+ 𝐶∑
𝐸

(󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸) + ℎ𝐸 󵄩󵄩󵄩󵄩󵄩Δ𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2

+ 𝐶ℎ−2∑
𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸) + ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2
+ 𝐶 (Δ𝑡)2 ,

12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛𝑆󵄩󵄩󵄩󵄩2) +∑
𝐸

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑐
12
0 ∇𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

+ 𝐽2 (𝑒𝑛+1𝑆 , 𝑒𝑛+1𝑆 ) + 12 ∑
𝑒∈Γℎ

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 , [𝑒𝑛+1𝑆 ]2⟩
𝑒

+ 12 ∑
𝑒∈Γ1

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝑆 ⟩

𝑒
+ 12

⋅ ∑
𝑒∈Γ2∪Γ3

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝑆 ⟩

𝑒
≤ 𝜀(∑

𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩󵄩∇𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2

+ ∑
𝐸∈𝜀ℎ

󵄩󵄩󵄩󵄩∇𝑒𝑛𝑈󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2 + 𝐽1 (𝑒𝑛𝑈, 𝑒𝑛𝑈)

+ 𝐽2 (𝑒𝑛+1𝑆 , 𝑒𝑛+1𝑆 )) + 𝐶(󵄩󵄩󵄩󵄩𝑒𝑛𝐻󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑈󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2

+∑
𝐸

󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩2𝐻1 +∑
𝐸

󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2𝐻1 + 󵄩󵄩󵄩󵄩𝜃𝑛𝐻󵄩󵄩󵄩󵄩2)
+ 𝐶ℎ−2∑

𝐸

(󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩𝐿2(𝐸) + ℎ𝐸 󵄩󵄩󵄩󵄩∇𝜃𝑛𝑈󵄩󵄩󵄩󵄩𝐿2(𝐸))2
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+ 𝐶ℎ−2∑
𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸) + ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2

+ 𝐶∑
𝐸

(󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸) + ℎ𝐸 󵄩󵄩󵄩󵄩󵄩Δ𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2

+ 𝐶 (Δ𝑡)2 ,
12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩󵄩𝑒𝑛𝑍𝑏󵄩󵄩󵄩󵄩󵄩2) ≤ 𝐶 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩2
+ 󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩2) + 𝐶 (Δ𝑡)2 .
(61)

Considering (1)–(4) is a coupled sedimentationmodel, we
need to combine (60) and (61) to get the error estimates of𝑒𝐻, 𝑒𝑈, 𝑒𝑆, 𝑒𝑍𝑏 . For sufficiently small 𝜀, we have

12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛𝐻󵄩󵄩󵄩󵄩2) + 12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛𝑈󵄩󵄩󵄩󵄩2)
+ 12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2 − 󵄩󵄩󵄩󵄩𝑒𝑛𝑆󵄩󵄩󵄩󵄩2) + 12Δ𝑡 (󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩2

− 󵄩󵄩󵄩󵄩󵄩𝑒𝑛𝑍𝑏󵄩󵄩󵄩󵄩󵄩2) + 12 ∑
𝑒∈Γℎ

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 , [𝑒𝑛+1𝐻 ]2⟩
𝑒
+ 12

⋅ ∑
𝑒∈Γ1

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝐻 ⟩

𝑒
+ 12

⋅ ∑
𝑒∈Γ2∪Γ3

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝐻 ⟩

𝑒
+ 󵄩󵄩󵄩󵄩󵄩𝜏1/2𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2

+∑
𝐸

󵄩󵄩󵄩󵄩󵄩𝜇1/2∇𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2 +∑
𝐸

󵄩󵄩󵄩󵄩󵄩𝑐1/20 ∇𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2 + 𝐽1 (𝑒𝑛+1𝑈 ,
𝑒𝑛+1𝑈 ) + 𝐽2 (𝑒𝑛+1𝑆 , 𝑒𝑛+1𝑆 ) + 12
⋅ ∑
𝑒∈Γℎ

⟨󵄨󵄨󵄨󵄨{𝑈𝑛
ℎ} ⋅ ne

󵄨󵄨󵄨󵄨 , [𝑒𝑛+1𝑆 ]2⟩
𝑒
+ 12

⋅ ∑
𝑒∈Γ1

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝑆 ⟩

𝑒
+ 12

⋅ ∑
𝑒∈Γ2∪Γ3

⟨󵄨󵄨󵄨󵄨󵄨𝑈̂𝑛 ⋅ ne
󵄨󵄨󵄨󵄨󵄨 , 𝑒𝑛+1,2𝑆 ⟩

𝑒
≤ 𝐶(󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝐻󵄩󵄩󵄩󵄩2

+ 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩𝑒𝑛𝑈󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩2)
+ 𝐶∑

𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩2𝐻1 + 󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2𝐻1 + 󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩2𝐻1 + 󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2𝐻1
+ 󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩2𝐻1) + 𝐶ℎ−2∑
𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸)

+ ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝐻

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2 + 𝐶ℎ−2∑
𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸)
+ ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2 + 𝐶ℎ−2∑
𝐸

(󵄩󵄩󵄩󵄩𝜃𝑛𝑈󵄩󵄩󵄩󵄩𝐿2(𝐸)
+ ℎ𝐸 󵄩󵄩󵄩󵄩∇𝜃𝑛𝑈󵄩󵄩󵄩󵄩𝐿2(𝐸))2 + 𝐶ℎ−2∑

𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸)
+ ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2 + 𝐶∑
𝐸

(󵄩󵄩󵄩󵄩󵄩𝜃𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸)
+ ℎ𝐸 󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2 + 𝐶∑
𝐸

(󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸)
+ ℎ𝐸 󵄩󵄩󵄩󵄩󵄩Δ𝜃𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2 + 𝐶∑
𝐸

(󵄩󵄩󵄩󵄩󵄩∇𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸)
+ ℎ𝐸 󵄩󵄩󵄩󵄩󵄩Δ𝜃𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩𝐿2(𝐸))2 + 𝐶 (Δ𝑡)2 .
(62)

Multiplying both sides of (62) by 2Δ𝑡, summing from 𝑛 = 0
to 𝑛 = 𝑚 − 1 (0 < 𝑚 ≤ 𝑁), and using Lemmas 1 and 3, we
have

󵄩󵄩󵄩󵄩𝑒𝑚𝐻󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑒𝑚𝑈󵄩󵄩󵄩󵄩 + (𝑚−1∑
𝑛=0

Δ𝑡 󵄩󵄩󵄩󵄩󵄩∇𝑒𝑛+1𝑈

󵄩󵄩󵄩󵄩󵄩2)
1/2 + 󵄩󵄩󵄩󵄩𝑒𝑚𝑆 󵄩󵄩󵄩󵄩

+ (𝑚−1∑
𝑛=0

Δ𝑡 󵄩󵄩󵄩󵄩󵄩∇𝑒𝑛+1𝑆

󵄩󵄩󵄩󵄩󵄩2)
1/2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑚𝑍𝑏󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶̂ (ℎ𝑘 + Δ𝑡) .

(63)

Here, we use 𝐶̂ to replace 𝐶 to denote the generic constant in
order to prove Lemma 6.

By using the triangle inequality and Lemma 1, we can
get the main conclusion for the 𝐿2 norm error estimate of
the UWDG scheme. But the process of (63) needs Lemma 6
(boundedness of approximate solution); now we use an
induction argument to prove Lemma 6 for 𝑘 > 1.
Proof. We shall use the induction argument to Lemma 6. For𝑛 = 0, considering the definitions of 𝐻0

ℎ , 𝑈0
ℎ , 𝑆0ℎ, 𝑍0

𝑏ℎ and
Lemma 1, it is easy to get that the lemma holds valid, that is
to say,

(a) 󵄩󵄩󵄩󵄩󵄩𝐻0
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≥ 𝐻∗4 ,
(b) 󵄩󵄩󵄩󵄩󵄩𝑒0𝐻󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) + 󵄩󵄩󵄩󵄩󵄩𝑒0𝑈󵄩󵄩󵄩󵄩󵄩(𝐿∞(Ω))2 + 󵄩󵄩󵄩󵄩󵄩𝑒0𝑆󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≤ 𝐻∗4 . (64)

Assuming Lemma 6 holds for 𝑛 = 𝑚 (𝑚 = 0, 1, 2, . . . , 𝑁−1),
then repeat the derivation process of (63) above; for 𝑛 = 𝑚+1,
we obtain

󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝐻

󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝑈

󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝑆

󵄩󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝑍𝑏

󵄩󵄩󵄩󵄩󵄩 ≤ 𝐶̂ (ℎ𝑘 + Δ𝑡) . (65)
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By the converse inequality (Lemma 4), we have󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝐻

󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) + 󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝑈

󵄩󵄩󵄩󵄩󵄩(𝐿∞(Ω))2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝑆

󵄩󵄩󵄩󵄩󵄩L∞(Ω)
≤ 𝐶̂𝐾0ℎ−1 (ℎ𝑘 + Δ𝑡) . (66)

Here 𝐶̂ is the generic constant in (63) and 𝐾0 is the constant
in Lemma 4.

Let ℎ0 = min{1,𝐻∗/8𝐶̂𝐾0}; then when ℎ, 𝑡 satisfy 0 <ℎ ≤ ℎ0 and Δ𝑡 = 𝑜(ℎ), we obtain
󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝐻

󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) + 󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝑈

󵄩󵄩󵄩󵄩󵄩(𝐿∞(Ω))2 + 󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝑆

󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≤ 𝐻∗4 . (67)

On the other hand, combining Lemma 5 and the triangle
inequality, we find

󵄩󵄩󵄩󵄩󵄩𝐻𝑚+1
ℎ

󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) ≥ 󵄩󵄩󵄩󵄩󵄩󵄩𝐻̃𝑚+1󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω) − 󵄩󵄩󵄩󵄩󵄩𝑒𝑚+1𝐻

󵄩󵄩󵄩󵄩󵄩𝐿∞(Ω)
≥ 𝐻∗2 − 𝐶̂𝐾0ℎ−1 (ℎ𝑘 + Δ𝑡) ≥ 𝐻∗4 . (68)

Therefore, Lemma 6 holds and (63) is true for∀𝑛 (0 ≤ 𝑛 ≤𝑁). Considering the above analysis result and combining the
triangle inequality ‖V − Vℎ‖ ≤ ‖𝑒V‖ + ‖𝜃V‖ and Lemma 1, we
can prove that the approximate solutions for the depth of fluid𝐻, the velocity U, the sediment concentration 𝑆, and the bed
height 𝑍𝑏 are of O(ℎ𝑘 + Δ𝑡) convergence rates, respectively.
Theorem 9. Assume that the hypotheses (H1)–(H6) hold,𝑘 > 1, ℎ, and Δ𝑡 are sufficiently small, there is constant 𝐶
independent of ℎ andΔ𝑡, andΔ𝑡 = 𝑜(ℎ), such that the following
suboptimal a priori error estimate holds:󵄩󵄩󵄩󵄩𝐻𝑛 − 𝐻𝑛

ℎ
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑈𝑛 − 𝑈𝑛

ℎ
󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑆𝑛 − 𝑆𝑛ℎ󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑍𝑛

𝑏 − 𝑍𝑛
𝑏ℎ
󵄩󵄩󵄩󵄩

+ 󵄩󵄩󵄩󵄩𝑒𝑚𝑆 󵄩󵄩󵄩󵄩 + ( 𝑛∑
𝑗=1

Δ𝑡 󵄩󵄩󵄩󵄩󵄩∇ (𝑈𝑗 − 𝑈𝑗

ℎ
)󵄩󵄩󵄩󵄩󵄩2)

1/2

+ ( 𝑛∑
𝑗=1

Δ𝑡 󵄩󵄩󵄩󵄩󵄩∇ (𝑆𝑗 − 𝑆𝑗
ℎ
)󵄩󵄩󵄩󵄩󵄩2)

1/2

≤ 𝐶 (ℎ𝑘 + Δ𝑡) .
(69)

6. Algorithm Flow and Computational Cost

In dealing with practical issues, there are three steps: collect-
ing the river terrain data, selecting the hydrologic parameter,
and program calculation. These steps are carefully displayed
in the following text and Figure 2.

Step 1. Collect the river terrain data and determine the
computational domain, the initial-boundary conditions, and
the time range.

Step 2. Obtain the hydrologic parameters by properly select-
ing the sediment carrying capacity, Manning’s roughness
coefficient, the viscosity coefficient, the sediment diffusion
coefficient, the coefficient of saturation recovery, the settling
velocity of sediment, and the sediment dry bulk density.

No

Yes

End

Output the results

Whether to reach the scheduled time?

By inserting the knowns on the n time
level into UWDG, calculate the unknowns 

Input the hydrologic parameters

Input the time and space step, get
triangular subdivision

Input terrain data, initial-boundary
conditions, and the time range

Begin

on the n + 1 time level

Figure 2: The flow chart.

Step 3. Program calculation step includes

(1) determining the time and space step to get triangular
subdivision;

(2) calculating 𝐻𝑛+1
ℎ , 𝑈𝑛+1

ℎ , 𝑆𝑛+1ℎ , 𝑍𝑛+1
𝑏ℎ , and the

unknowns on the 𝑛 + 1 time level, by inserting𝐻𝑛
ℎ , 𝑈𝑛

ℎ , 𝑆𝑛ℎ, 𝑍𝑛
𝑏ℎ, and the knowns on the 𝑛 time level

into the fully upwind discontinuous Galerkin finite
element procedure (UWDG);

(3) judging whether the scheduled time can be reached, if
it is reached, output the results and then the program
ends.

Now we analyze the computational cost of the UWDG
scheme. Because of the lack of continuity constraints between
mesh elements for the test functions, we must define the
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Table 1: Errors and convergence orders with 𝑡 = 1 and 𝑘 = 2.
(a)

ℎ Δ𝑡 ‖𝐻 − 𝐻ℎ‖ Order ‖𝑈 − 𝑈ℎ‖ Order1/2 1/16 1.0805e − 00 2.5258e − 011/4 1/128 5.7656e − 02 4.228 (2) 2.8826e − 02 3.131 (2)1/8 1/1024 1.4262e − 02 2.015 (2) 3.6902e − 03 2.966 (2)1/16 1/8192 3.8824e − 03 1.898 (2) 6.0486e − 04 2.789 (2)
(b)

ℎ Δ𝑡 󵄩󵄩󵄩󵄩𝑆 − 𝑆ℎ󵄩󵄩󵄩󵄩 Order 󵄩󵄩󵄩󵄩𝑍𝑏 − 𝑍𝑏ℎ
󵄩󵄩󵄩󵄩 Order1/2 1/16 7.0693e − 02 4.1697e − 021/4 1/128 8.3987e − 03 3.073 (2) 5.2262e − 03 2.996 (2)1/8 1/1024 9.5399e − 04 3.138 (2) 6.5837e − 04 2.988 (2)1/16 1/8192 1.2387e − 04 2.946 (2) 8.9013e − 05 2.886 (2)

basic functions for each triangle element. We usually use the
monomial functions as the basic functions; in 2D, the basic
functions are 𝜙𝑖(𝑥, 𝑦) = 𝑥𝐼𝑦𝐽, 𝐼 + 𝐽 = 𝑖, and 0 ≤ 𝑖 ≤ 𝑘.
Let N denote the total number of elements 𝐸; if 𝑘 = 1, 2
and 3, then the total degrees of freedom is 3N, 6N, and10N, respectively. N can be understood as the scale of the
computation, and N = 𝑂(ℎ−2) in 2D; here ℎ denote the
maximum diameter of elements.

From Step 3 above, in order to calculate the unknowns
on the 𝑛 + 1 time level of 𝐻𝑛+1

ℎ , 𝑈𝑛+1
ℎ , 𝑆𝑛+1ℎ , 𝑍𝑛+1

𝑏ℎ , we need
the knowns on the 𝑛 time level of𝐻𝑛

ℎ , 𝑈𝑛
ℎ , 𝑆𝑛ℎ, 𝑍𝑛

𝑏ℎ. Thus for𝑛 = 0, 1, . . . , 𝑁, the computational complexity 𝑇 (𝑛 + 1) has
𝑇 (𝑛 = 0) = 𝑂 (1) ,
𝑇 (𝑛 + 1) = 𝑇 (𝑛) + 𝑂 (1) . (70)

There are three steps to calculating the 𝑛 time level:
generate meshes, form the total coefficient matrix, and solve
linear equations. Let 𝑇1(𝑛), 𝑇2(𝑛), and 𝑇3(𝑛) denote the
computational complexity of three steps above; if we use
Delaunay triangulation algorithm to generatemeshes and use
iterativemethods to solve linear equations, the computational
complexity 𝑇(𝑛) has

𝑇 (𝑛) = 𝑇1 (𝑛) + 𝑇2 (𝑛) + 𝑇3 (𝑛)
= 𝑂 (N2) + 𝑂 (N) + 𝑂 (N2) = 𝑂 (N2) . (71)

FromTheorem 9, the choice of the time step must satisfyΔ𝑡 = 𝑜(ℎ) to ensure the convergence of the UWDG scheme.
Let Δ𝑡 = 𝑂(ℎ1+𝛼) (𝛼 > 0); then 𝑁 = 𝑇/Δ𝑡 = 𝑂(ℎ−1−𝛼), and
we have

𝑁 = 𝑂(N(1+𝛼)/2) . (72)

Combining (70)–(72), the computational cost is𝑂(N(5+𝛼)/2),
for example, 𝛼 = 1, that is to say, Δ𝑡 = 𝑂(ℎ2), the
computational cost is 𝑂(N3); 𝛼 = 2, Δ𝑡 = 𝑂(ℎ3), the
computational cost is 𝑂(N3.5).

7. Numerical Experiments

In this section, we perform two numerical experiments, one
is for unsteady state case and the other is for stationary-state
case, to verity the theoretically proven convergence results.

Example 1 (unsteady-state case). Let the domain Ω be the
unit square and the time interval be [0, 1]. The analytic and
smooth solution is prescribed to be

𝐻 = (𝑡 + 1) sin (𝜋𝑥) sin (𝜋𝑦) + 1,
𝑈 = [10𝑥 sin (2𝑡) sin (𝜋𝑥) sin (𝜋𝑦) , 10𝑦 cos (2𝑡) sin (𝜋𝑥)

⋅ sin (𝜋𝑦)] ,
𝑆 = (𝑡2 + 1) sin (𝜋𝑥) sin (𝜋𝑦) ,
𝑍𝑏 = 𝑎𝜔𝛾󸀠 [(13𝑡3 + 𝑡) sin (𝜋𝑥) sin (𝜋𝑦) − 𝑆∗𝑡] .

(73)

The boundary conditions, initial conditions, and the source
terms 𝑓𝐻, 𝑓𝑈, 𝑓𝑆, and 𝑓𝑍𝑏 are then completely determined.
We also let 𝜇 = 0.01, 𝑐0 = 0.01, and the coefficient of
saturation recovery 𝑎, settling velocity of sediment 𝜔, and the
sediment dry bulk density 𝛾󸀠 are all equal to one.

We choose the piecewise quadratic polynomials (𝑘 =2) and the piecewise linear polynomials (𝑘 = 1) in the
finite element space 𝐷𝑘(𝜀ℎ), respectively. The errors and
convergence orders in 𝐿2 norm are displayed in Tables 1 and
3. The 𝐿2(0, 1;𝐻1) norm and convergence orders between
the approximate solution and the analytic solution of 𝑈 and𝑆 are displayed in Table 2. The numbers in brackets are the
theoretically predicted convergence orders.

By the data in Tables 1–3, we see that the UWDG scheme
works well and the convergence order is greater than the
results theoretically predicted by (69), even for 𝑘 = 1 which
is not included inTheorem 9.

For simplicity of presentation, we use Figures 3 and 4 to
describe the contours of the sediment concentration 𝑆 and
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Figure 3: Contours of 𝑆: (a) is the numerical solution for 𝑘 = 2 and (b) is the exact solution, 𝑡 = 1.
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Figure 4: Velocity field: (a) is the numerical solution for 𝑘 = 2 and (b) is the exact solution, 𝑡 = 1.

the velocity field 𝑈 at 𝑡 = 1, respectively, and omit those of
the remaining unknowns.

Example 2 (stationary-state case). We further consider non-
constant bathymetry but stationary case. We take the domainΩ to be the unit square and the time interval to be [0, 1]. The
analytic and smooth solution is prescribed to be

𝐻 = sin (𝜋𝑥) sin (𝜋𝑦) + 1,
𝑈 = [10𝑥 sin (𝜋𝑥) sin (𝜋𝑦) , 10𝑦 sin (𝜋𝑥) sin (𝜋𝑦)] ,
𝑆 = sin (𝜋𝑥) sin (𝜋𝑦) ,

𝑍𝑏 = 𝑎𝜔𝛾󸀠 [𝑡 sin (𝜋𝑥) sin (𝜋𝑦) − 𝑆∗𝑡] .
(74)

The boundary conditions, initial conditions, and the source
terms 𝑓𝐻, 𝑓𝑈, 𝑓𝑆, and 𝑓𝑍𝑏 are then completely determined
by the analytic and smooth solution. We let 𝜇 = 0.01 and𝑐0 = 0.01 and also let the coefficient of saturation recovery𝑎, settling velocity of sediment 𝜔, and the sediment dry
bulk density 𝛾󸀠 be all equal to one. Further we assume that
Manning’s roughness coefficient is equal to zero; this forces
the ted shear stress 𝜏 to be equal to zero and (2) turns to be
a vortex without friction.The numerical results are displayed
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Table 2: 𝐿2(0, 1;𝐻1) errors and convergence orders with 𝑘 = 2.
ℎ Δ𝑡 ‖𝑈 − 𝑈ℎ‖𝐿2(0,1;𝐻1) Order ‖𝑆 − 𝑆ℎ‖𝐿2(0,1;𝐻1) Order
1/2 1/16 3.9640e − 00 9.3795e − 011/4 1/128 1.0055e − 00 1.979 (2) 2.5767e − 01 1.863 (2)1/8 1/1024 2.6188e − 01 1.941 (2) 6.6384e − 02 1.956 (2)1/16 1/8192 6.6941e − 02 1.968 (2) 1.6740e − 02 1.988 (2)

Table 3: Errors and convergence orders with 𝑡 = 1 and 𝑘 = 1.
(a)

ℎ Δ𝑡 ‖𝐻 − 𝐻ℎ‖ Order ‖𝑈 − 𝑈ℎ‖ Order1/2 1/8 5.7279e − 00 1.8258e − 001/4 1/32 1.7836e − 00 1.683 (1) 5.6527e − 01 1.692 (1)1/8 1/128 5.5102e − 01 1.694 (1) 1.2068e − 01 2.228 (1)1/16 1/512 1.7294e − 01 1.671 (1) 2.6058e − 02 2.211 (1)1/32 1/2048 6.1343e − 02 1.495 (1) 5.7693e − 03 2.175 (1)
(b)

ℎ Δ𝑡 󵄩󵄩󵄩󵄩𝑆 − 𝑆ℎ󵄩󵄩󵄩󵄩 Order 󵄩󵄩󵄩󵄩𝑍𝑏 − 𝑍𝑏ℎ
󵄩󵄩󵄩󵄩 Order1/2 1/8 5.1268e − 01 3.1549e − 011/4 1/32 1.6250e − 01 1.657 (1) 1.0736e − 01 1.555 (1)1/8 1/128 4.1680e − 02 1.963 (1) 2.7807e − 02 1.949 (1)1/16 1/512 1.0622e − 02 1.972 (1) 6.9953e − 03 1.991 (1)1/32 1/2048 2.6583e − 03 1.998 (1) 1.7455e − 03 2.003 (1)

Table 4: Errors and convergence orders with 𝑡 = 1 and 𝑘 = 2.
(a)

ℎ Δ𝑡 ‖𝐻 − 𝐻ℎ‖ Order ‖𝑈 − 𝑈ℎ‖ Order1/2 1/16 1.9997e − 00 6.9881e − 011/4 1/128 7.8374e − 01 1.351 (2) 7.0298e − 02 3.313 (2)1/8 1/1024 1.6547e − 01 2.243 (2) 6.6213e − 03 3.408 (2)1/16 1/8192 3.4031e − 02 2.282 (2) 7.3425e − 04 3.172 (2)
(b)

ℎ Δ𝑡 󵄩󵄩󵄩󵄩𝑆 − 𝑆ℎ󵄩󵄩󵄩󵄩 Order 󵄩󵄩󵄩󵄩𝑍𝑏 − 𝑍𝑏ℎ
󵄩󵄩󵄩󵄩 Order1/2 1/16 5.6456e − 02 3.8771e − 021/4 1/128 4.1348e − 03 3.771 (2) 3.7886e − 03 3.355 (2)1/8 1/1024 5.8254e − 04 2.827 (2) 4.6080e − 04 3.039 (2)1/16 1/8192 6.1174e − 05 3.251 (2) 5.7319e − 05 3.007 (2)

in Tables 4–6. The numbers in brackets are the theoretically
predicted convergence orders.

Our numerical tests show that the convergence accuracy
of the proposed UWDG scheme in this paper is at least as
sharp as 𝑂(ℎ𝑘 + Δ𝑡); the results are theoretically predicted by
(69), even for 𝑘 = 1 which is not included inTheorem 9.

8. Conclusions

In this paper, we design an upwind discontinuous Galerkin
finite element method for the 2D sedimentation in an estuary

as coupled nonlinear differential system, which obeys the
local mass conservation and possesses good stability. There
exists a unique solution to the numerical procedure and
the discrete solution permits O(ℎ𝑘 + Δ𝑡) convergence rate.
Numerical experiments are conducted to verify our theoreti-
cal findings.
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Table 5: 𝐿2(0, 1;𝐻1) errors and convergence orders with 𝑘 = 2.
ℎ Δ𝑡 ‖𝑈 − 𝑈ℎ‖𝐿2(0,1;𝐻1) Order ‖𝑆 − 𝑆ℎ‖𝐿2(0,1;𝐻1) Order1/2 1/16 7.2990e − 00 5.0641e − 011/4 1/128 2.0015e − 00 1.866 (2) 1.3001e − 01 1.962 (2)1/8 1/1024 4.5136e − 01 2.148 (2) 3.8540e − 02 1.754 (2)1/16 1/8192 1.0421e − 01 2.115 (2) 8.4163e − 03 2.195 (2)

Table 6: Errors and convergence orders with 𝑡 = 1 and 𝑘 = 1.
(a)

ℎ Δ𝑡 󵄩󵄩󵄩󵄩𝐻 − 𝐻ℎ
󵄩󵄩󵄩󵄩 Order 󵄩󵄩󵄩󵄩𝑈 − 𝑈ℎ

󵄩󵄩󵄩󵄩 Order1/2 1/8 1.283e + 01 3.9782e − 001/4 1/32 3.3491e − 00 1.938 (1) 1.1136e − 00 1.837 (1)1/8 1/128 1.0218e − 00 1.712 (1) 1.5430e − 01 2.852 (1)1/16 1/512 3.2672e − 01 1.645 (1) 2.9011e − 02 2.411 (1)
(b)

ℎ Δ𝑡 󵄩󵄩󵄩󵄩𝑆 − 𝑆ℎ󵄩󵄩󵄩󵄩 Order 󵄩󵄩󵄩󵄩𝑍𝑏 − 𝑍𝑏ℎ
󵄩󵄩󵄩󵄩 Order1/2 1/8 2.9590e − 01 2.5971e − 011/4 1/32 1.1303e − 01 1.388 (1) 9.7248e − 02 1.417 (1)1/8 1/128 2.7077e − 02 2.062 (1) 2.3966e − 02 2.021 (1)1/16 1/512 5.9637e − 03 2.183 (1) 5.8229e − 03 2.041 (1)
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