Research Article

Theta Function Solutions of the 3 + 1-Dimensional Jimbo-Miwa Equation

Ting Su¹ and Hui-Hui Dai²

¹College of Science, Henan Institute of Engineering, Zhengzhou, Henan 451191, China
²Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

Correspondence should be addressed to Ting Su; suting1976@163.com

Received 11 March 2017; Accepted 21 May 2017; Published 22 June 2017

Abstract

The 3 + 1-dimensional Jimbo-Miwa equation can be written into a Hirota bilinear form by the dependent variable transformation. We give its one-periodic wave solution and two-periodic wave solution by utilizing multidimensional elliptic Θ-function. With the help of the solution curves, the asymptotic properties of the periodic waves are analyzed in detail.

1. Introduction

Nonlinear phenomena arise in many physical problems in a variety of fields. Solutions of the governing nonlinear equations can shed light on these phenomena. There are various systematical methods for constructing solutions, for example, nonlinearization method of Lax pairs [1–3], extended F-expansion method [4–6] and homogeneous balance method [7–10], and dressing method and generalized dressing method [11–16]. It is well known that the Hirota method with the aid of Riemann-theta function is a good method to obtain periodic and quasiperiodic solutions. Nakamura [17, 18] used this method to study some famous equations such as KdV, KP, Bousinesq, and Toda. By extending the approach adopted by Nakamura, Dai et al. obtained the graphic quasiperiodic solutions for the KP equation for the first time [19] and later they also gave the quasiperiodic solutions for Toda lattice [20]. Recently, a lot of researchers have used this method to study various soliton equations [21–24].

In the present paper, we consider the 3 + 1-dimensional Jimbo-Miwa equation

\[u_{xxxxy} + 3u_{xxy}u_x + 3u_{xy}u_{xx} + 2u_{yy} - 3u_{zz} = 0, \]

which is the second member of a KP hierarchy [25]. It has important physics to describe 3 + 1-dimensional waves. In the last decade or so, many researchers have studied this equation. Multiple-soliton solutions of (1) and its extended version were given in Wazwaz [26]. Tang in [27] obtained its Pfaffian solution and extended Pfaffian solutions with the aid of the Hirota bilinear form. Su et al. [28] constructed its Wronskian and Grammian solutions. Multiple-front solutions for (1) were obtained by employing the Hirota bilinear method in [29]. Ozixs and Aslan in [30] derived exact solutions of (1) via Exp-function method. In [31], Ma and Lee have obtained rational solutions of (1) including travelling wave solutions, variable separated solutions, and polynomial solutions by using rational function transformation and Bäcklund transformation. Li et al. have utilized generalized three-wave method to derive explicit three-wave solutions, such as doubly periodic solitary wave solutions and breather type of two-solitary wave solutions for (1) in [32]. Zhang et al. have obtained generalized Wronskian solution in [33]. Dai et al. obtained new periodic kink-wave and kinky periodic wave solutions for (1) in [34]. Ma in [35] has derived exact solutions by using Lie point symmetry groups of (1). Tang and Liang in [36] have obtained two types of variable separation solutions and abundant nonlinear coherent structure by using multilinear variable separation approach. Ma et al. obtained new exact solutions for (1) by utilizing improved mapping approach [37]. Liu and Jiang by applying the extended homogeneous balance method have obtained new solutions of (1) in [38].
2. One-Periodic Wave Solution of the 3 + 1-Dimensional Jimbo-Miwa Equation and Its Asymptotic Form

We consider the 3 + 1-dimensional Jimbo-Miwa equation

\[u_{xxx} + 3u_{xy}u_x + 3u_{yx}u_x + 2u_{yy} - 3u_{zz} = 0. \]

(2)

Substituting the transformation

\[u = u_0 + 2 \log(f), \]

(3)

into (2) and integrating once again, we derive the following bilinear form:

\[\frac{D_x^2 D_y f \cdot f}{f^2} + 2 \frac{D_y D_x f \cdot f}{f^2} - 3 \frac{D_z^2 D_x f \cdot f}{f^2} + c = 0; \]

(4)

namely,

\[G(D_x, D_y, D_z) f \cdot f = (D_x^3 D_y + 2D_y D_x - 3D_z D_x + c) f \cdot f = 0, \]

(5)

where \(c \) is an integration constant.

The Hirota bilinear differential operator is defined by [44]

\[D_x^m D_y^n D_z^m D_x^l f \cdot g = \partial_{x_1} \cdots \partial_{x_l} \partial_{y_1} \cdots \partial_{y_m} \partial_{z_1} \cdots \partial_{z_n} f \cdot g \]

(6)

The \(D \)-operator possesses the good property when acting on exponential functions:

\[D_x^m D_y^n D_z^m D_x^l f \cdot e^{\xi_3} \]

\[= (\rho_1 p_2)^m (\rho_1 - \rho_2)^n (l_1 - l_2)^m (\mu_1 - \mu_2)^n e^{\xi_3 + \xi_2}, \]

(7)

where \(\xi_j = p_j x + l_j y + \mu_j z + \rho_j t + \xi_0, j = 1, 2 \). More generally, we have

\[G(D_x, D_y, D_z) e^{\xi_1} \cdot e^{\xi_2} \]

\[= G(p_1 - p_2, l_1 - l_2, \rho_1 - \rho_2, \mu_1 - \mu_2) e^{\xi_1 + \xi_2}. \]

(8)

2.1. One-Periodic Wave Solution. In what follows, we consider Riemann-theta function solution of (5):

\[f = \sum_{n \in \mathbb{Z}^N} e^{\pi i (n_m + 2n(\xi_n))}, \]

(9)

where \(n = (n_1, n_2, \ldots, n_N)^T, \xi = (\xi_1, \xi_2, \ldots, \xi_N)^T, \tau \) is a symmetric matrix, and \(\operatorname{Im} \tau > 0, \xi_j = p_j x + l_j y + \mu_j z + \rho_j t + \xi_0, j = 1, 2, \ldots, N. \)

First, we consider one-periodic solution of (5) when \(N = 1 \); then (9) is

\[f = \sum_{n=-\infty}^{\infty} e^{\pi i n \xi + \pi i n \tau}. \]

(10)

Substituting (10) into (5) yields that

\[G(D_x, D_y, D_z, D_t) f \cdot f = G(D_x, D_y, D_z, D_t) \]

\[= \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} G(D_x, D_y, D_z, D_t) e^{2\pi i \eta + \pi i \tau}, \]

\[= \sum_{m'=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} G(\tau m' + \pi (n + m') \xi, \tau m' + \pi (n + m') \mu) \]

\[= \sum_{m'=-\infty}^{\infty} \mathcal{G}(m') e^{2\pi i m' \xi} = 0, \]

(11)

where \(\mathcal{G}(m') = \sum_{n=-\infty}^{\infty} G(2\pi i (2n - m'), \pi (2n - m')) e^{\pi i (n + m') \xi} \), \(\mathcal{G}(m') = \sum_{n=-\infty}^{\infty} G(2\pi i (2n - m'), \pi (2n - m')) e^{\pi i (n + m') \xi} \), \(\mathcal{G}(m') = \sum_{n=-\infty}^{\infty} G(2\pi i (2n - m'), \pi (2n - m')) e^{\pi i (n + m') \xi} \).

\[\mathcal{G}(m') = \sum_{n=-\infty}^{\infty} G(2\pi i (2n - m'), \pi (2n - m')) e^{\pi i (n + m') \xi} = \sum_{n=-\infty}^{\infty} G(2\pi i (2n - m'), \pi (2n - m')) e^{\pi i (n + m') \xi} \]
\[\begin{align*}
\text{Mathematical Problems in Engineering} & \\
\ \mu, 2\pi i \left[2n' - (m' - 2) \right] \rho e^{\alpha^2 (n' - (m' - 2)) \pi i} & \\
\text{Solving this system, we get} & \\
\mu (b_{22} \Delta_1 - b_{12} \Delta_2) & = b_{11} \Delta_2 - b_{51} \Delta_1 , \\
\mu (b_{12} b_{21} - b_{22} b_{11}) & = b_{11} \Delta_2 - b_{51} \Delta_1 .
\end{align*} \]

then (13) can be written as

\[\begin{align*}
\sum_{n=-\infty}^{\infty} \left[256\pi^4 n^4 p^3 - 32\pi^2 n^2 \rho \right] \delta_1 (n) , \\
\Delta_1 & = \sum_{n=-\infty}^{\infty} \delta_1 (n) , \\
\Delta_2 & = \sum_{n=-\infty}^{\infty} \delta_2 (n) , \\
b_{12} & = \sum_{n=-\infty}^{\infty} 48\pi^2 n^2 p \delta_1 (n) ,
\end{align*} \]

Theorem 1. Under the condition \((1)\pi \to \infty\), the solution \((10)\) of \((5)\) tends to the following exact solution of \((2)\) via \((3)\):

\[\begin{align*}
\mathcal{G}(0) & = \mathcal{G}(1) e^{2\pi i (m' - 1) \tau} = \ldots \\
= \begin{cases}
\mathcal{G}(0) e^{\pi i m' (m' - 1) \tau}, & m' \text{ is even}, \\
\mathcal{G}(1) e^{\pi i m' (m' - 1) \tau}, & m' \text{ is odd},
\end{cases}
\end{align*} \]

where \(n' = n - 1\), which implies that if \(\mathcal{G}(0) = \mathcal{G}(1) = 0\), then \(\mathcal{G}(m') = 0, m' \in N\).

First, we consider

\[\begin{align*}
\delta_1 (n) & = e^{2\pi i n \pi i \tau} , \\
\delta_2 (n) & = e^{\pi i n^3 (n - 1) \pi i \tau} ,
\end{align*} \]

\[\begin{align*}
b_{11} & = \sum_{n=-\infty}^{\infty} \left[256\pi^4 n^4 p^3 - 32\pi^2 n^2 \rho \right] \delta_1 (n) , \\
b_{12} & = \sum_{n=-\infty}^{\infty} 48\pi^2 n^2 p \delta_1 (n) ,
\end{align*} \]

\[\begin{align*}
\Delta_1 & = \sum_{n=-\infty}^{\infty} \delta_1 (n) , \\
\Delta_2 & = \sum_{n=-\infty}^{\infty} \delta_2 (n) , \\
b_{21} & = \sum_{n=-\infty}^{\infty} 12\pi^2 (2n - 1)^3 p \delta_2 (n) ,
\end{align*} \]

with \(\xi = px + ly + \mu z + t + \xi_0\).

If we make an arbitrary phase constant slightly as \(\xi_0 = \xi_0 - (1/2)\pi\) and have small amplitude limit of \(\alpha = e^{\pi i \xi} \to 0\), then we derive proper limit

\[f \to 1 + e^{2\pi i (px + ly + \mu z + t + \xi_0)} . \]

It is easy to obtain the (18). In fact, we have

\[\begin{align*}
b_{11} & = \sum_{n=-\infty}^{\infty} \left[256\pi^4 n^4 p^3 - 32\pi^2 n^2 \rho \right] e^{2\pi i n \pi i \tau} \\
& = \left(512\pi^4 p^3 - 64\pi^2 \rho \right) \alpha^2 + o (\alpha^2) , \\
\Delta_1 & = \sum_{n=-\infty}^{\infty} e^{2\pi i n \pi i \tau} = 1 + 2\alpha^2 + o (\alpha^2) , \\
b_{12} & = \sum_{n=-\infty}^{\infty} 48\pi^2 n^2 p e^{2\pi i n \pi i \tau} = 96\pi^2 p \alpha^2 + o (\alpha^2) , \\
\Delta_2 & = \sum_{n=-\infty}^{\infty} e^{\pi i (2n^3 - 2n + 1) \pi i \tau} = 2\alpha + 2\alpha^3 + o (\alpha^3) ,
\end{align*} \]
\[b_{22} = \sum_{n=-\infty}^{\infty} 12\pi^2 (2n-1)^2 \rho e^{\pi i (n^2 + (n-1)^2) \tau} = 24\pi^2 \rho \alpha + o(\alpha), \]

\[b_{21} = \sum_{n=-\infty}^{\infty} \left[16\pi^4 (2n-1)^4 \rho^3 - 8\pi^2 (2n-1)^2 \rho \right], \]

\[. e^{\pi i (2n^2 - 2m^2 + 1) \tau} = (32\pi^4 \rho^3 - 16\pi^2 \rho) \alpha + o(\alpha^2). \]

By utilizing (16), it is easy to deduce that

\[l \rightarrow \frac{-3\rho \mu}{4\pi^2 \rho^3 - 2\rho}, \]

\[c \rightarrow 0. \] (22)

The one-periodic solution curves are presented in Figures 1 and 2 for \(u_0 = 0 \), respectively, in two-dimensional and three-dimensional space. It is obvious that the solution is periodic and cuspon from the above solution graphs. It is different to the Pfaffian solutions and extended Pfaffian solutions derived by Tang in [27]. The results are different to one-soliton solution and two-solitons solutions represented by researchers in [28, 30–33]. There are some difference between new types of exact periodic solitary wave and kinky periodic wave solutions in [34] by Dai et al. and the solutions in the paper.

3. Two-Periodic Wave Solution of the 3 + 1-Dimensional Jimbo-Miwa Equation and Its Asymptotic Behavior

We consider the two-periodic wave solution of the 3 + 1-dimensional Jimbo-Miwa equation (2). Substituting (9) (\(N = 2 \)) into (5), we obtain

\[
Gf \cdot f = \sum_{m,n \in \mathbb{Z}^2} G(D_x, D_y, D_z, D_\tau) e^{2\pi i \langle (x,y,z) \rangle} \\
. e^{2\pi i \langle \xi, n \rangle + \pi i \langle \tau, m \rangle} = \sum_{m,n \in \mathbb{Z}^2} G(2\pi i \langle n - m, \rho \rangle, 2\pi i \langle n - m, \mu \rangle, 2\pi i \langle n - m, \rho \rangle) \\
. e^{2\pi i \langle \xi + \rho, n \rangle + \pi i \langle \tau, m \rangle} = \sum_{m,n \in \mathbb{Z}^2} \sum_{n_1, n_2 = -\infty}^{\infty} G \\
. \left(2\pi i \langle 2n - m', \rho \rangle, 2\pi i \langle 2n - m', \mu \rangle, 2\pi i \langle 2n - m', \rho \rangle \right) \\
. \exp \left(\pi i \left(\langle \tau, n - m' \rangle, n - m' \rangle + \langle \tau, n \rangle \right) \right) \\
. \exp \left(2\pi i \langle \xi, n' \rangle \right) = \sum_{m' \in \mathbb{Z}^2} \overline{G} (m'_1, m'_2) \\
. \exp \left(2\pi i \langle \xi, n' \rangle \right) = 0. \] (23)

where \(m' = n + m \). It is easy to calculate that

\[
\overline{G} (m'_1, m'_2) = \sum_{n, m \in \mathbb{Z}^2} G(2\pi i \langle 2n - m', \rho \rangle, 2\pi i \langle 2n - m', \mu \rangle, 2\pi i \langle 2n - m', \rho \rangle) \\
. e^{2\pi i \langle \xi + \rho, n \rangle + \pi i \langle \tau, m \rangle} = \sum_{n_1, n_2 = -\infty}^{\infty} G \\
. \left(2\pi i \sum_{j=1}^{2} \left[2n'_j - (m'_j - 2\delta_{ij}) \right] \right) \\
. \mu_j, \]

\[
2\pi i \sum_{j=1}^{2} \left[2n'_j - (m'_j - 2\delta_{ij}) \right] \mu_j, \]

\[
2\pi i \sum_{j=1}^{2} \left[2n'_j - (m'_j - 2\delta_{ij}) \right] \mu_j. \]
\[2\pi i \sum_{j=1}^{2} [2n'_j - (m'_j - 2\delta_j)] \rho_j \]

\[\cdot \exp \left\{ \pi i \sum_{j,k=1}^{2} [(n'_j + \delta_j)\tau_{jk}(n'_k + \delta_k)] + [(m'_j - 2\delta_j - n'_j) + \delta_j] \cdot \tau_{jk} [(m'_k - 2\delta_k - n'_k) + \delta_k] \right\} \]

\[= \begin{cases} \mathcal{G}(m'_1 - 2, m'_2) e^{2\pi i (m'_1 - 1)\tau_{11} + 2\pi i m'_1 p_{11}}, & l = 1, \\ \mathcal{G}(m'_1, m'_2 - 2) e^{2\pi i (m'_1 - 1)\tau_{12} + 2\pi i m'_1 p_{12}}, & l = 2, \end{cases} \]

\[(24)\]

which implies that if \(\mathcal{G}(0, 0) = \mathcal{G}(0, 1) = \mathcal{G}(1, 0) = \mathcal{G}(1, 1) = 0\), then \(\mathcal{G}(m'_1', m'_2') = 0\) and \(f\) is an exact solution of (5).

\[\mathcal{G}(0, 0) = \sum_{n_1, n_2 = -\infty}^{\infty} [(2n_1 l_1 + 2n_2 l_2) \cdot (16\pi^4 (2n - m^0, p)^3 - 8\pi^2 (2n - m^0, p)) + 12\pi^2 (2n_1 \mu_1 + 2n_2 \mu_2) \langle 2n - m^0, p \rangle + c] \cdot \delta_0 (n),\]

\[\mathcal{G}(0, 1) = \sum_{n_1, n_2 = -\infty}^{\infty} [(2n_1 l_1 + (2n_2 - 1) l_2) \cdot (16\pi^4 (2n - m^1, p)^3 - 8\pi^2 (2n - m^1, p)) + 12\pi^2 (2n_1 \mu_1 + (2n_2 - 1) \mu_2) \langle 2n - m^1, p \rangle + c] \cdot \delta_1 (n),\]

\[\mathcal{G}(1, 0) = \sum_{n_1, n_2 = -\infty}^{\infty} [((2n_1 - 1) l_1 + 2n_2 l_2) \cdot (16\pi^4 (2n - m^2, p)^3 - 8\pi^2 (2n - m^2, p)) + 12\pi^2 ((2n_1 - 1) \mu_1 + 2n_2 \mu_2) \langle 2n - m^2, p \rangle + c] \cdot \delta_2 (n),\]

\[\mathcal{G}(1, 1) = \sum_{n_1, n_2 = -\infty}^{\infty} [((2n_1 - 1) l_1 + (2n_2 - 1) l_2) \cdot (16\pi^4 (2n - m^3, p)^3 - 8\pi^2 (2n - m^3, p)) + 12\pi^2 ((2n_1 - 1) \mu_1 + (2n_2 - 1) \mu_2) \langle 2n - m^3, p \rangle + c] \cdot \delta_3 (n).\]

\[(25)\]

Letting

\[\delta_j (n) = e^{\pi i (\tau_{m'n'_j} + \pi i n_{11} p_{11})},\]

\[m^0 = (0, 0)^T,\]

\[m^1 = (0, 1)^T,\]

\[m^2 = (1, 0)^T,\]

\[m^3 = (1, 1)^T,\]

we have

\[A \begin{pmatrix} l_1 \\ l_2 \\ \mu_1 \\ \mu_2 \end{pmatrix} = \bar{b}, \]

\[(27)\]

where

\[a_{j1} = \sum_{n_1, n_2 = -\infty}^{\infty} [(2n_1 - m^0_j) \cdot (16\pi^4 (2n - m^0_j, p)^3 - 8\pi^2 (2n - m^0_j, p))] \cdot \delta_j (n),\]

\[a_{j2} = \sum_{n_1, n_2 = -\infty}^{\infty} [(2n_2 - m^1_j) \cdot (16\pi^4 (2n - m^1_j, p)^3 - 8\pi^2 (2n - m^1_j, p))] \cdot \delta_j (n),\]

\[a_{j3} = \sum_{n_1, n_2 = -\infty}^{\infty} [(2n_1 - m^2_j) \cdot (12\pi^2) \langle 2n - m^2_j, p \rangle] \cdot \delta_j (n),\]

\[a_{j4} = \sum_{n_1, n_2 = -\infty}^{\infty} [(2n_2 - m^3_j) \cdot (12\pi^2) \langle 2n - m^3_j, p \rangle] \cdot \delta_j (n),\]

\[b_j = -c \sum_{n_1, n_2 = -\infty}^{\infty} \delta_j (n),\]

\[j = 0, 1, 2, 3.\]
From this, we have

\[l_1 = \frac{\Delta_1}{\Delta}, \]
\[l_2 = \frac{\Delta_2}{\Delta}, \]
\[\mu_1 = \frac{\Delta_3}{\Delta}, \]
\[\mu_2 = \frac{\Delta_4}{\Delta}, \]

(29)

where \(\Delta = A \) and \(\Delta_1, \Delta_2, \Delta_3, \) and \(\Delta_4 \) are from \(\Delta \) by replacing 1st, 2nd, 3rd, and 4th column with \(\tilde{b} \), respectively.

Theorem 2. Under the condition \(\alpha_1 \to 0, \alpha_2 \to 0 \), the solution (9) \((N = 2) \) of (5) tends to the two-periodic solution of (2) via (3).

\[u = u_0 + 4\pi i \frac{p_1 e^{\bar{y}_1} + p_2 e^{\bar{y}_2} + (p_1 + p_2) e^{\bar{y}_1 + \bar{y}_2 + A}}{1 + e^{\bar{y}_1} + e^{\bar{y}_2} + e^{\bar{y}_1 + \bar{y}_2 + A}}, \]

(30)

where

\[e^{2nir_{12}} = e^A = \frac{(l_1 - l_2) \left[4\pi^4 (p_1 - p_2)^3 - 2\pi^2 (p_1 - p_2) \right] + 3\pi^2 (\mu_1 - \mu_2) (p_1 - p_2)}{(l_1 + l_2) \left[4\pi^4 (p_1 + p_2)^3 - 2\pi^2 (p_1 + p_2) \right] + 3\pi^2 (\mu_1 + \mu_2) (p_1 + p_2)}, \]

\[l_2 (4\pi^2 p_2^3 - 2p_2) + 3\mu_2 p_2 = 0, \]
\[l_1 (4\pi^2 p_1^3 - 2p_1) + 3\mu_1 p_1 = 0, \]

(31)

\[\bar{\xi}_1 = 2\pi i \left(p_1 x + l_1 y + \mu_1 z + p_1 t + \bar{\xi}_{01} \right), \]
\[\bar{\xi}_2 = 2\pi i \left(p_2 x + l_2 y + \mu_2 z + p_2 t + \bar{\xi}_{02} \right), \]

and \(\bar{\xi}_{01} \) and \(\bar{\xi}_{02} \) are arbitrary constants.

Proof. We write \(f \) as

\[f = 1 + \left(e^{2nix_1} + e^{-2nix_1} \right) e^{ni\tau_{11}} \]
\[+ \left(e^{2nix_2} + e^{-2nix_2} \right) e^{ni\tau_{12}} \]
\[+ \left(e^{2nix_{01}} + e^{-2nix_{01}} \right) e^{ni(\tau_{11} + 2\tau_{12} + \tau_{01})} + \ldots. \]

(32)

Set

\[\xi_1 = p_1 x + l_1 y + \mu_1 z + p_1 t + \xi_{01}, \]
\[\xi_2 = p_2 x + l_2 y + \mu_2 z + p_2 t + \xi_{02}, \]
\[\xi_{01} = \bar{\xi}_{01} - \frac{\tau_{11}}{2}, \]
\[\xi_{02} = \bar{\xi}_{02} - \frac{\tau_{02}}{2}, \]

(33)

\[\alpha_1 = e^{ni\tau_{11}}, \]
\[\alpha_2 = e^{ni\tau_{12}}, \]

Thus

\[f = 1 + e^{\bar{\xi}_1} + e^{\bar{\xi}_2} + e^{\bar{\xi}_1 + \bar{\xi}_2 + 2ni\tau_{12}} + o(A_1^N A_2^N). \]

(34)

As \(\alpha_1 \to 0, \alpha_2 \to 0 \), and \(s_1 + s_2 \geq 3 \), then \(f \to 1 + e^{\bar{\xi}_1} + e^{\bar{\xi}_2} + e^{\bar{\xi}_1 + \bar{\xi}_2 + 2ni\tau_{12}} \).

In view of transformation (3), we have derived the solution (30) of (2). In what follows, we will certify (31).
As $\alpha_1 \to 0$ and $\alpha_2 \to 0$, then $\mathcal{G}(0,0) \to 0$, with $s_1 + s_2 > 3$. Thus, we derive $c \to 0$.

From $\mathcal{G}(0,1) \to 0$, we have

$$l_2 \left(4\pi^2 p_3^2 - 2p_2\right) + 3\mu_2 p_2 = 0. \tag{37}$$

Similarly, we have

$$\mathcal{G}(1,0) = \sum_{n_1, n_2 = -\infty}^{\infty} \left[(2n_2 l_2 + (2n_1 - 1) l_1) \cdot \left(16\pi^4 \left(2n - m^2, p\right) - 8\pi^2 \left(2n - m^1, p\right)\right) + 12\pi^2 (2n_2 \mu_2 + (2n_1 - 1) \mu_1) \left(2n - m^0, p\right) + c\right] \cdot e^{n_1 \tau_{11}} + \left[2 \left(l_2 \left(16\pi^4 p_3^2 - 8\pi^2 p_2\right) - 12\pi^2 (2p_2 - p_1)\right) \cdot e^{n_1 \tau_{12}} \cdot e^{n_2 \tau_{11}} + \left(l_2 - l_1\right) \left(16\pi^4 \left(2p_2 - p_1\right) \cdot e^{n_2 \tau_{11}} \cdot e^{n_2 \tau_{12}} + 8\pi^2 (2p_2 - p_1) + 12\pi^2 (2\mu_2 - \mu_1) (2p_2 - p_1)\right) - 8\pi^2 (2\mu_2 - \mu_1) + o\left(\alpha_2^s \alpha_2^s\right) \right) (s_1 + s_2 \geq 3). \tag{38}$$

From $\mathcal{G}(1,0) \to 0$, we have

$$l_1 \left(4\pi^2 p_3^2 - 2p_1\right) + 3\mu_1 p_1 = 0. \tag{39}$$

Then

$$\mathcal{G}(1,1) = \sum_{n_1, n_2 = -\infty}^{\infty} \left[(2n_2 - 1) l_1 + (2n_1 - 1) l_1\right) \cdot \left(16\pi^4 \left(2n - m^0, p\right) - 8\pi^2 \left(2n - m^1, p\right)\right) + 12\pi^2 (2n_2 (\mu_1 + (2n_1 - 1) \mu_2) (2n_1 - 1) \mu_1 (p_1 + p_2) + c\right] \delta_3 (n) = 2 \left(l_1 + l_2\right) \left(16\pi^4 (p_1 + p_2) + 8\pi^2 (p_1 + p_2) + 12\pi^2 (\mu_1 + \mu_2) (p_1 + p_2) + c\right) \cdot e^{n_1 \tau_{11}} + \left(3l_2 - l_1\right) \left(16\pi^4 (3p_2 - p_1) + 8\pi^2 (3p_2 - p_1) \cdot e^{n_1 \tau_{11}} + o\left(\alpha_2^s \alpha_2^s\right) \right) (s_1 + s_2 \geq 3). \tag{40}$$

Using $\mathcal{G}(1,1) \to 0$, we obtain

$$e^{2n_1 \tau_{12}} = e^{A} = \frac{(l_1 - l_2) \left(4\pi^4 (p_1 - p_2) - 2\pi^2 (p_1 - p_2)\right) + 3\pi^2 (\mu_1 - \mu_2) (p_1 - p_2)}{(l_1 + l_2) \left(4\pi^4 (p_1 + p_2) - 2\pi^2 (p_1 + p_2)\right) + 3\pi^2 (\mu_1 + \mu_2) (p_1 + p_2)}. \tag{41}$$

In order to show the solution character, we drop the solution curves of real u and imaginary u. Figures 3 and 4 plot the real and imaginary of u, respectively, in three-dimensional space. From the solution graphs, we can see that the solutions are periodic and cuspon. The derived two-periodic solutions in the paper are different to the
Mathematical Problems in Engineering

two-solitary solutions in [32] and rational solutions presented by Ma and Lee in [31].

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

The authors acknowledge the support by National Natural Science Foundation of China (Project no. 11301149), Young Backbone Teachers in Henan Province (no. 2014GGJ121), and Henan Natural Science Foundation For Basic Research under Grant no. 162300410072.

References

[16] Y. Kuang and J. Zhu, “The higher-order soliton solutions for the coupled Sasa-SATsuma system via the 5-dressing method,”

