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Conditional nonlinear optimal perturbation (CNOP) has beenwidely applied to study the predictability of weather and climate.The
classical method of solving CNOP is adjointmethod, in which the gradient is obtained using the adjointmodel. But some numerical
models have no adjoint models implemented, and it is not realistic to develop from scratch because of the huge amount of work.
The gradient can be obtained by the definition in mathematics; however, with the sharp growth of dimensions, its calculation
efficiency will decrease dramatically. Therefore, the gradient is rarely obtained by the definition when solving CNOP. In this paper,
an efficient approach based on the gradient definition is proposed to solve CNOP around the whole solution space and parallelized.
Our approach is applied to solve CNOP in Zebiak-Cane (ZC)model, and, compared with adjoint method, which is the benchmark,
our approach can obtain similar results in CNOP value and pattern aspects and higher efficiency in time consumption aspect, only
12.83 s, while adjoint method spends 15.04 s and consumes less time if more CPU cores are provided. All the experimental results
show that it is feasible to solve CNOP with our approach based on the gradient definition around the whole solution space.

1. Introduction

In the study of weather and climate predictability, it is crucial
to determine the fastest growing perturbation. To solve the
fastest growing perturbation in a nonlinear system, Mu and
Duan [1] proposed the concept of conditional nonlinear opti-
mal perturbation (CNOP), which can represent the nonlinear
initial perturbations that satisfy certain constraint conditions
and result in the largest nonlinear evolution at the prediction
time. Later,Mu et al. [2] extended the CNOPmethod to study
the optimal parameter perturbation. The CNOP method
has been widely applied to study the predictability of many
phenomena and many research fields related to initial errors
andmodel parameter errors, such as EINiño-SouthernOscil-
lation (ENSO) event [3–5], Kuroshio large meander, [6] and
grassland ecosystem [7]; spring predictability barrier [8–11];
targeted observation of the atmosphere and ocean [12–15];
ensemble forecast [16–18]. It is obvious that the CNOP
plays an important role in the study of weather and climate
predictability.

Solving CNOP is essentially an optimization problem
of nonlinear objective function. In the current study, the
approaches to solve CNOP can be classified into two types
depending on whether the gradient is used. The gradient-
based approaches solve CNOP by searching the optimum
value along the direction of gradient descent, such as the
spectral projected gradient (spg2) [19], the limited mem-
ory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) [20], and
the sequential quadratic programming (SQP). While the
gradient-free approaches get the optimum value by searching
randomly around the whole or partial solution space to solve
CNOP, such as intelligent algorithm (IA).The random search
method initially was applied to ideal numerical models with
3 to 20 dimensions [21, 22]. To apply this method to solve effi-
ciently CNOP for practicalmodels, some researchers reduced
the high-dimensional solution space to a relative low one
firstly and then employed IAs to solve CNOP in the reduced
low-dimensional solution space [23–32]. They got good
results when taking ZCmodel with 1080 dimensions as a case.
But there inevitably exists the information loss because of
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dimension reduction.Therefore, the gradient descentmethod
is widely used to calculate CNOP.

Generally, the gradient is obtained using the adjoint
model corresponding to the numerical model, which is
referred to as the adjoint method. However, there are no
corresponding adjointmodels implemented for some numer-
ical models [33–35], and it is not realistic to develop the
corresponding adjoint model from scratch due to the huge
amount of work. Wang and Tan [36, 37] attempted to obtain
approximate gradient information based on ensemble tech-
nique, inwhich they employed the samples ensemble of initial
perturbations and corresponding prediction increments to
denote the approximate tangent linear matrix in the gradient
formula of objective function. And a localization tech-
nique was introduced to ameliorate the spurious correlation
between the two ensembles, in which the localization radius
was achieved from artificial experience. This method calcu-
lated the gradient information only once during the whole
optimization; therefore, it can obtain an approximate CNOP
easier and more efficiently than adjoint-based method, but
it depends on artificial experience. In fact, the gradient
information can also be obtained using gradient definition,
but the calculation efficiency will decrease dramatically with
the sharp growth of the dimension. And in general, the
dimensions of the numerical models for climate and weather
are relatively high, which results in the fact that gradient
definition method has rarely been applied in solving CNOP.
At present, only Chen et al. [38] calculated the gradient
in one way that is similar to the gradient definition, but
this gradient is calculated in the feather space generated by
dimension reduction. Firstly, they reduced the dimensions to
the feather space using singular value decomposition (SVD)
and represented the initial perturbations using the linear
combination of base vectors. Consequently, the objective
function was transformed into the function of the linear
combination coefficients. The gradient was approximated
by the differences, the linear combination coefficients, and
prediction increments of the initial perturbations. In other
words, the gradient calculated was formally the same as the
definition of the gradient, but the small amount in the gradi-
ent definition equation is the increment of the coefficient, not
the increment of the initial perturbations. This method can
obtain an approximate CNOP, and time efficiency depends
on the number of base vectors chosen.

In this paper, an efficient approach based on the gradient
definition around the whole solution space is proposed to
solve CNOP, in which some parallel strategies are adopted
to improve the calculation efficiency of gradient. In our
approach, the gradient calculated is the gradient of objective
function with respect to initial perturbation, and we solve the
CNOParound thewhole solution space, so theCNOP ismore
accurate. In addition, certain parallel strategies make our
approach more efficient than adjoint method. Taking the ZC
model as an example, which is a medium-complexity model
to forecast ENSO event, our approach is applied to solve
CNOPof ENSOevent, and the experimental results show that
our approach is feasible from CNOP value, CNOP pattern
and time efficiency aspects.

The remainder of this paper is organized as follows.
The detailed introduction of ZC model and the concept of
the CNOP are in Section 2. Our efficient approach based
on the gradient definition around the whole solution space
accompanied by parallel strategies is described in Section 3.
In Section 4, we employ ZC model as a case study and apply
our approach to study the optimal precursor of an ENSO
event; here we also show the results and compare the CNOP
value, CNOP pattern, and time consumptionwith those from
adjoint method. Finally, we summarize our conclusions and
future works in Section 5.

2. Zebiak-Cane Model and CNOP

2.1. Zebiak-Cane (ZC) Model. ZC model is adopted as the
case to verify the feasibility of our approach in solving CNOP.
ZC model was developed to simulate and study EI Niño-
Southern Oscillation (ENSO) phenomenon; it is a medium-
complexity model. The model can calculate perturbations
about a climatological mean state that is specified from
observation [39]. It can also reproduce the warm events that
possess a 3-4 years’ period of oscillation without anomalous
external forcing, which is consistent with the real ENSO
cycle. ZCmodel is a coupled atmosphere-oceanmodel, which
has three components: the atmosphere, the ocean, and the
coupling component.

2.1.1. Atmosphere Component. The dynamics of atmosphere
component follow the Gill model, which is described by the
linear shallow-water equations on an equatorial beta plane.
The circulation in atmosphere component is forced by a
heating anomaly that depends on the sea surface temperature
(SST) anomalies andmoisture convergence.The atmospheric
grid used in the atmosphere component lies in the region
101.25∘E–73.125∘W, 29∘S–29∘N.

2.1.2. Ocean Component. The dynamics of the ocean com-
ponent begin with the linear reduced-gravity model, which
can successfully simulate the changes of thermocline depth
anomalies and sea surface pressure during EI Niño events.
In the ocean component, the surface intensification of wind-
driven currents in the real ocean is simulated by the shallow
frictional layer. The component can simulate the mean
features of SST anomaly (SSTA) forced by ENSO composite
wind anomalies. The oceanic gird used in the ocean compo-
nent lies in the region 124∘E–80∘W, 28.75∘S–28.75∘N.

2.1.3. Coupling Component. In the coupling component, the
atmosphere component retains steady state and was run with
certain monthly mean SSTA to simulate wind anomalies
in advance. The ocean component is driven by the surface
wind stress anomalies, which are produced by combining
the background mean winds and surface wind anomalies
generated by the atmosphere component. After coupling the
ocean and atmosphere component, the region of the coupled
model is shown in Figure 1. The rectangle with black solid
line represents the region of atmosphere component. The
rectangle with black dash line represents the region of ocean
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Figure 1: The region of ZC model.

component. The rectangle with red dash line represents the
integration region of SSTA in the coupled model.

2.2. CNOP. CNOP can represent the initial perturbation
subjected to a given physical constraint and result in the
largest nonlinear evolution at the prediction time in the
nonlinear weather and climate models. Suppose we have the
following model:

𝜕𝑋
𝜕𝑡 + 𝐹 (𝑋) = 0,

𝑋|𝑡=0 = 𝑋0,
(1)

where𝑋 is an 𝑛-dimensional state vector of the model, while𝑋0 is the 𝑛-dimensional initial state vectors at initial time (𝑡
= 0), and 𝐹 is a nonlinear partial differential operator. The
discrete form of (1) can be described as follows:

𝑋𝑡 = 𝑀𝑡0→𝑡 (𝑋0) , (2)

where 𝑀 is a nonlinear propagation operator, 𝑡0 and 𝑡 are
separately the initial optimization time and terminal time,𝑋𝑡
is the value of𝑋 at time 𝑡, and𝑋𝑡 represents the development
of𝑋0 from time 𝑡0 to 𝑡.

The CNOP, represented using 𝑥0𝛿, is the solution of the
following optimization problem:

𝐽 (𝑥0𝛿) = max
‖𝑥0‖≤𝛿

𝐽 (𝑥0)2 ,
𝐽 (𝑥0) = 𝑀𝑡0→𝑡 (𝑋0 + 𝑥0) − 𝑀𝑡0→𝑡 (𝑋0) ,

(3)

where 𝑥0 is the 𝑛-dimensional initial perturbation of 𝑋0 and𝛿 is the constraint radius of the initial perturbation. ‖𝐽(𝑥0)‖2
is the objective function.

Obviously, solving (3) is to solve an optimization prob-
lem. So CNOP can be obtained by a nonlinear optimiza-
tion algorithm. Generally, optimization algorithms, such as
LBFGS, SQP, and SPG2, are designed to find the minimum
value of the objective function. In this paper, the SPG2
algorithm is employed to solve CNOP. The SPG2 method is
often applied to solve the problem of the following form:

min 𝑓 (𝑥)
subject to 𝑥 ∈ Ω, (4)

whereΩ is a closed convex set in IR𝑛. To use SPG2 algorithm
to solve CNOP directly, we let 𝐽𝑜(𝑥0𝛿) = −𝐽(𝑥0𝛿); then the
optimization problem in (3) is equivalent to the following
optimization problem:

𝐽𝑜 (𝑥0𝛿) = min
‖𝑥0‖≤𝛿

− 𝐽 (𝑥0)2 . (5)

Now, the optimization problem has been converted into
solvingminimumvalue of the objective function, which is the
same form with problem in (4); therefore, we can use SPG2
method directly.

3. The Efficient Approach Based on
Gradient Definition

3.1. The Approach Based on Gradient Definition. The primary
idea of our approach is to calculate the gradient of objective
function with respect to the initial perturbation 𝑥0 using the
gradient definition in mathematics firstly and then to apply
spg2 method to solve CNOP based on the gradient informa-
tion. In our case, the optimization problem is described in (5);
obviously, it can be described as follows:

𝐹 (𝑥0) = −𝑓 (𝑥0)2 ,
𝑓 (𝑥0) = 𝐽 (𝑥0) .

(6)

In mathematics, the gradient is a generalization for the
usual concept of derivative of a function in one dimension to
a function in several dimensions. So the gradient of function
in (6) is as follows:

grad (𝐹) = −2𝑓 (𝑥0) × 𝑓 (𝑥0) , (7)

where 𝑓(𝑥0) denotes the first-order partial derivative of
function 𝑓(𝑥0), namely, the gradient of function 𝑓(𝑥0).
Due to 𝑥0 being an 𝑛-dimensional perturbation, let 𝑥0 =(𝑥01, 𝑥02, 𝑥03, . . . , 𝑥0𝑖, . . . , 𝑥0𝑛), according to the definition of
gradient inmathematics; then the gradient for function𝑓(𝑥0)
in a rectangular coordinate systemic is

grad (𝑓) = 𝜕𝑓
𝜕𝑥01 𝑒1 +

𝜕𝑓
𝜕𝑥02 𝑒2 + ⋅ ⋅ ⋅ +

𝜕𝑓
𝜕𝑥0𝑖 𝑒𝑖 + ⋅ ⋅ ⋅

+ 𝜕𝑓
𝜕𝑥0𝑛 𝑒𝑛,

(8)

where grad(𝑓) represents 𝑓(𝑥0), 𝑛 is a positive nonzero
integer, 𝑖 = 1, 2, 3, . . . , 𝑛, and 𝑒𝑖 are the orthogonal unit
vectors pointing in the coordinate directions. Therefore, for
a certain point (𝑎1, . . . , 𝑎𝑖, . . . , 𝑎𝑛), the partial derivative of 𝑓
at direction 𝑥0𝑖 is as follows:
𝜕𝑓
𝜕𝑥0𝑖 (𝑎1, . . . , 𝑎𝑛)

= lim
∇→0

(𝑓 (𝑎1, . . . , 𝑎𝑖 + ∇, . . . , 𝑎𝑛) − 𝑓 (𝑎1, . . . , 𝑎𝑖, . . . , 𝑎𝑛)∇ ) ,
(9)

where ∇ is a real number which should approach 0 but never
equals 0. We will provide detailed description on the setting
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Initialization:
(1) Set the parameters ∇, 𝛿, 𝑛, 𝑥0

SPG2:
(2) Calculate the gradient of 𝑥0 with respect to the objective function using subroutine gradient(𝑥0)
(3) Calculate the value of objective function in 𝑥0 using subroutine values(𝑥0)
(4) While (the stopping criterion is not satisfied) do
(5) Calculate the new position 𝑥 using subroutine line search( )
(6) Calculate the gradient in 𝑥 using subroutine gradient(𝑥)
(7) End while

Output: CNOP (the 𝑥 when the value of values(𝑥) is the minimum for all 𝑥)
Algorithm 1: The pseudocode of our approach.
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Figure 2: Time distribution in computation. The colored bar represents the distribution of the wait time according to the utilization levels
(Idle, Poor, Ok, Ideal, and Over) defined by the VTune Amplifier XE. The longer the bar, the higher the value.

the value of ∇ in Section 4. Using (9), once ∇ is determined,
it becomes much easier to calculate the derivative of 𝑓 at a
certain direction for a certain point. In (8) and (9), if the
dimension of the variable in a model is 𝑛-dimensional, the
gradient vector is also 𝑛-dimensional.

Algorithm 1 shows the pseudocode of our approach.
There are two main parts in the approach. First, we initialize
the related parameters used in our approach; the meaning
of parameters ∇, 𝛿, 𝑛, 𝑥0 has been shown in the above-
mentioned equations (3) and (9); the value of∇ is determined
in Section 4.1; 𝛿 is set as (1) in this paper. Then we use
SPG2 algorithm to calculate CNOP, the maximum iteration
steps are set as 20 for stopping criterion, the gradient(),
values( ), and line search( ) represent related subroutines, the
gradient( ) subroutine calculates the gradient by implement-
ing formulas (8) and (9), the values( ) subroutine calculates
the value of objective function in current position, and
line search( ) subroutine searches the next position along the
direction of gradient decent. Eventually, the program will
output the CNOP as the result.

3.2. Parallel Strategies. As shown in Figure 1, the outer rectan-
gle with black solid line represents the region of atmospheric
component with latitudinal resolution 𝑑𝑥 = 5.625∘ and
longitudinal resolution 𝑑𝑦 = 2∘. The middle rectangle with

red dashed line denotes the region of the ocean component
with the resolutions 𝑑𝑥 = 2∘ and 𝑑𝑦 = 0.5∘, which forms a30 ∗ 34 grid. After removing the unused marginal area, the
inner rectangle with blue dashed line is the integration region
of the SSTA with resolutions 𝑑𝑥 = 5.625∘ and 𝑑𝑦 = 2∘, which
forms a 20 ∗ 27 grid. When studying ENSO phenomenon,
the two physical variables in ZC model involved in objective
function are SSTA and thermocline height anomalies (THA).
Thus, the dimension of ZC model is 1080 (20 ∗ 27 ∗ 2) after
combining the two variables into one vector.

Taking the ZC model with 1080 dimensions as an exam-
ple, we implement serially our approach to solve CNOP
descried above on TH-1A supercomputer system at National
Supercomputer Center in Tianjin.The available resources for
us are as follows: 20 available nodes, each node with two
Intel Xeon X5670 processors at 2.93GHz and 24GBmemory,
total 240 CPU cores. We measure the time consumption
of our serial approach with Intel VTune Amplifier, which
is shown in Figure 2; it costs 1482.069 s for a complete
run., in which subroutine gradient( ) occupies 99.9% of the
entire time. We can conclude that the time consumption
of subroutine gradient( ) will dramatically increase with the
increasing dimensions. Therefore, improving time efficiency
of subroutine gradient( ) is crucial and necessary. In this
section, certain parallel strategies are designed.
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Considering the dependence between the current iter-
ation and next iteration, and the independency between
every dimension of a certain gradient vector, we can perform
parallel our approachwhen calculating one gradient vector in
one iteration. To ensure the transportability and usability of
the parallel strategy, we adopt MPI to realize parallelization
on the cluster.

To calculate in parallel, the gradient vector is divided
into groups which are executed in parallel. The following
is the way to decompose the gradient vector into groups:
suppose we employ 𝑚-processes to calculate one gradient
vector concurrently; then we should divide the gradient
vector into𝑚-groups, and the size of each group for process 𝑖𝑝
is

𝑔 = 1080𝑚 , 𝑖𝑝 ∈ {1, 2, 3, . . . , 𝑚} ; when 𝑟 = 0

𝐺2 =
{{{{{{{

1080
𝑚 + 1, 𝑖𝑝 ≤ 𝑟, 𝑖𝑝 ̸= 0
1080
𝑚 , 𝑖𝑝 > 𝑟 or 𝑖𝑝 = 0,

𝑖𝑝 ∈ {1, 2, 3, . . . , 𝑚} ; when 𝑟 ̸= 0,

(10)

where 𝑚 represents the total number of processes used
to compute the gradient, 𝑟 represents the remainder from
dividing 1080 by𝑚, 𝑔1 and 𝑔2 represent the size of one group
for different value of 𝑟, and 𝑖𝑝 represents the process number.
The process 𝑖𝑝 calculates one group of one gradient vector;
the dimensions for one gradient vector calculated by process𝑖𝑝 can be described as follows:

𝑔1 ∗ (𝑖𝑝 − 1) ∼ 𝑔1 ∗ (𝑖𝑝 − 1) + 1, 𝑖𝑝 ̸= 0
𝑔1 ∗ (𝑚 − 1) + 1 ∼ 1080, 𝑖𝑝 = 0;

when 𝑟 = 0
𝑔1 ∗ (𝑖𝑝 − 1) ∼ 𝑔1 ∗ (𝑖𝑝 − 1) + 1, 𝑖𝑝 ≤ 𝑟, 𝑖𝑝 ̸= 0
𝑔1 ∗ (𝑖𝑝 − 1) ∼ 𝑔1 ∗ (𝑖𝑝 − 1) + 1 + 𝑟,

𝑖𝑝 > 𝑟; when 𝑟 ̸= 0
𝑔1 ∗ (𝑚 − 1) + 1 ∼ 1080, 𝑖𝑝 = 0.

(11)

The different parts of one gradient vectors calculated by
different processes are collected as one whole gradient vector
via the communicationmechanism between processes which
is implemented with MPI, specifically MPICH and the Intel
compiler.The communicationmechanism adopted ismaster-
slave mode, process 0 as the master and others as the slaves.
Supposingwe use𝑚 processes, when calculating one gradient
vector, process 1 to 𝑚 − 1 sends their part of gradient vector
to process 0, respectively, and process 0 receives the messages
from slaves and then combines all messages together into a
complete gradient vector.

4. Experiments and Results Analysis

To demonstrate the effectiveness, validity, and time efficiency
of our approach in solving CNOP, we employ ZC model as
a case to study the optimal precursor of an ENSO event.
Firstly, we calculate the gradient of objective function using
our approach and then use the spg2 method to solve CNOP.
The final solution of CNOP is the pattern of initial SSTA and
THA that will cause the largest evolution at prediction time in
the tropical Pacific, named as SSTA-CNOP and THA-CNOP,
which are so-called optimal precursor. We optimize the ZC
model for 9-month optimization period for different initial
months (from January toDecember). For every initialmonth,
there are corresponding SSTA-CNOP and THA-CNOP. We
compare the results with those obtained from adjointmethod
which is referred to as the benchmark. Compared with
adjoint method, our approach calculates the gradient using
the gradient definition.

When calculating gradient, the value of ∇ is critical.
Therefore, in Section 4.1, we conduct many experiments to
decide the value of ∇. In the following Sections 4.2 and
4.3, compared with the adjoint method, we show the CNOP
calculated by our approach from CNOP value and CNOP
pattern aspects to verify its effectiveness and validity and then
demonstrate the time consumption and speedup up to 240
CPU cores to verify the time efficiency.

4.1. Determination of ∇. In Section 3, we show the mathe-
matical formula (see (9)) to calculate the gradient of objective
function. In the equation, ∇ is a real constant which should
approach 0 but never equals 0. For our case, the value of∇ cannot be too small, because too small ∇ will lead no
evolution for numerical model; that is, the limit value in (9)
always equals or approaches 0; thus we cannot obtain the
correct gradient direction. Therefore, what value ∇ should
be in our case? We design the following two schemes to
determine the value of ∇: (1) ∇ is constant value for every𝑎𝑖 in (9); (2) ∇ is changing with the value of 𝑎𝑖 in (9). For the
CNOP calculated by different methods, the value of objective
function (𝐽(𝑥0)) is larger; then the CNOP is much better. So,
in this paper, we will take the norm ‖𝐽(𝑥0)‖ to measure the
magnitude of CNOP, and we take the value of ‖𝐽(𝑥0)‖ as the
evaluating standard for CNOP value.

For scheme (1), we conduct lots of experiments to solve
CNOP, but it is found that the different initial month is
corresponding to a different appropriate ∇ for CNOP. And it
requires lots of experiments to determine the most appropri-
ate ∇ for each initial month. Therefore, the conclusion is that
the scheme (1) is not feasible in our case.

For scheme (2), we let ∇ = 𝑎𝑖 ∗ 10−𝑛 (𝑛 = 1, 2, 3). When𝑛 ≥ 3, ∇ is too small, and CNOP value obtained is very small.
When 𝑛 < 0, ∇ is too large to calculate the limit value. When𝑛 = 1 and 𝑛 = 2, we compare themaximum value of objective
function obtained by our approach with the results of adjoint
method (shown in Figure 3). In Figure 3, the blue solid line
represents the CNOP values calculated by adjoint method for
different initial month, which is the baseline, while the red
one (∇ = 𝑎𝑖 ∗ 10−1) and green one (∇ = 𝑎𝑖 ∗ 10−2) are the
CNOP values using our approach.
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Table 1: The difference value between CNOP values calculated by adjoint method and our approach.

Initial month 1 2 3 4 5 6 7 8 9 10 11 12
𝑎𝑖 ∗ 10−1 3.0 2.8 3.1 3.9 1.8 1.7 2.1 1.6 1.9 5.3 1.8 2.1
𝑎𝑖 ∗ 10−2 3.1 3.1 2.5 3.6 3.1 1.3 1.3 1.1 3.3 2.6 2.9 2.7
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Figure 3: CNOP values calculated by our approach and adjoint
method for different initial month. The blue line represents the
values by adjoint method; the red one (∇ = 𝑎𝑖 ∗ 10−1) and green
one (∇ = 𝑎𝑖 ∗ 10−2) are the values by our approach.
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Figure 4: CNOP values calculated from our approach and adjoint
method for different initial month. The blue line represents the
values from adjoint method; the red one is the values from our
approach. The green one is the difference between them.

In Figure 3, the CNOP value obtained by our approach
has similar tendency with the results of adjoint method
and the CNOP value for every initial month is less than
adjointmethod, but the largest difference between them is 5.3
(Table 1), which is acceptable, so we can draw the conclusion
that ∇ = 𝑎𝑖 ∗ 10−𝑛 (𝑛 = 1, 2) is appropriate for our approach.
4.2. Effectiveness and Validity. There are a corresponding
CNOP value andCNOPpattern for every initial optimization
month, so there are 12 CNOP values and 12 CNOP patterns
for all 12 different initial months. In this section, we compare
our approach with the adjoint method fromCNOP value and
CNOP pattern aspects to verify the effectiveness and validity.

4.2.1. CNOP Value. In this section, we set ∇ = 𝑎𝑖 ∗10−1 when
initial month is 1, 2, 5, 9, 11, and others; we set ∇ = 𝑎𝑖 ∗ 10−2
to get higher CNOP values. Figure 4 depicts CNOP values

from our approach and adjoint method for different initial
month; 𝑥-axis represents the initial optimization time (from
January to December) and the 𝑦-axis represents the CNOP
values. We can see that the variation trend of CNOP values
for the two methods is almost the same. In detail, red and
blue lines show upward trends from January to March; from
March to September, they go down; and from September to
December, they go up again.

4.2.2. CNOP Pattern. In this section, the spatial pattern
of the optimal precursor (SSTA-CNOP and THA-CNOP)
of ENSO phenomenon and corresponding SSTA evolution
are compared to assess the validity of our approach. It is
unnecessary to show all 12 CNOP patterns. We choose the
patterns of the two initial optimization months which has
the biggest (March) and smallest (September) CNOP value,
respectively.

Figure 5 shows the patterns of SSTA-CNOP, THA-CNOP,
and corresponding SSTA evolutions after 9 months obtained
from our approach and the adjoint method while the initial
month is March, while Figure 6 shows the patterns of
September. (a, b) is the pattern of SSTA-CNOP, (c, d) is the
pattern of THA-CNOP, and (e, f) is the pattern of the SSTA
evolution; (a, c, e) is the pattern from our approach and (b, d,
f) is the pattern from the adjoint method. These two optimal
precursors obtained by the twomethods both can evolve into
an EI Niño event.

Figures 5(a), 5(b), 6(a), and 6(b), the patterns of SSTA-
CNOPs show almost the same spatial structure. The SST
of western Pacific is abnormally high around the equatorial
Pacific, while eastern Pacific is opposite. It is just the pre-
cursor of the EI Niño event. The difference is red and blue
area of (b) is larger and darker. From Figures 5(c), 5(d), 6(c),
and 6(d), the patterns of THA-CNOPs also show almost the
same feature. The color deepened along the entire equatorial
Pacific. The difference is that red area of (d) is larger. From
Figures 5(e), 5(f), 6(e), and 6(f), evolutions of SSTA still
show quite similar spatial feature. (f) of SSTA evolution is
positive while (e) is negative.The difference is red area of (f) is
larger.

In a word, the CNOP pattern from our approach is
quite similar to those from the adjoint method but is a
little weaker. The result is in accordance with the results
in Section 4.2.1, which shows that the CNOP values from
our approach are a bit smaller than those from the adjoint
method. In conclusion, our approach can obtain the valid
optimal precursor for ENSO phenomenon.

4.3. Time Efficiency. In this section, we demonstrate the time
consumption and speedup up to 240 CPU cores to verify the
efficiency of our approach. In this work, the average value of
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Figure 5: Patterns of SSTA-CNOP (a, b), THA-CNOP (c, d), and corresponding SSTA evolutions (e, f) obtained from our approach (a, c, e)
and adjoint method (b, d, f) while the initial month is March.

running the same program ten times is set as the final time
consumption and speedup is the radio of serial execution
time over the parallel execution time. We employ 12 CPU
cores as a unit because each node in the cluster has 12 CPU
cores. There are 20 nodes, 240 CPU cores totally.

In Figure 7, we show the time consumption diagram
corresponding to the adjoint method, our serial approach,
and our parallel approach with 240 CPU cores. When the
CPU cores is 240, the time consumed is 12.83 s, which is
less than the time spent by adjoint method and the speedup
reaches 85.18.

To show the effectiveness of the parallel strategies
designed in Section 3.2, we show the time consumption
and speedup with the number of CPU cores increasing
from 12 to 12 ∗ 20 in Figure 8. The blue line stands for
the time consumption and red line stands for speedup.
With the number of CPU cores increasing from 12 to 12 ∗20, the time assumption is falling and the speedup grows
almost linearly. From the trend of decreasing for the time
assumption, we can expect less time consumption if more
CPU cores are provided. And the speedup also has the trend
of continually increasing if more CPU cores are provided.
Of course, there exist bottlenecks for both time consumption
and speedupwith the increasing of CPU cores; we cannot find
the bottleneck owing to the lack of computing resources.

5. Correctness and Physical Meaning of
the CNOP

To demonstrate the correctness of the CNOP calculated by
the proposed approach, we calculate the change rate of the
energy norm increment (𝐸𝑡−𝐸0)/𝐸𝑜 from the CNOP over the
integrating months according to [36], that is, the net growth
rate of the energy (Figure 9). The energy norm 𝐸 is defined
as |𝑇|, where 𝑇 is the sea surface temperature and |𝑇| is the
2-norm of 𝑇. Figure 9 shows that the energy from CNOP
is increasing nonlinearly over the integrating months, and
the energy increases around 35 times when integrating 12
months. Therefore, the CNOP calculated can show the fast
nonlinear growth, which illustrates the physical definition of
the CNOP. Furthermore, the CNOP patterns obtained from
the proposed approach (Figures 5(a), 5(c), 6(a), and 6(c)) are
similar to those from the adjoint method (Figures 5(b), 5(d),
6(b), and 6(d)), which also illustrates the correctness of the
CNOP.

In physics, theCNOP can represent the optimal precursor
that will induce the occurrence of certain physical events.
As we know, when the El Niño event occurs, the sea surface
temperature will present anomalously warm in the eastern
and central tropical Pacific Ocean area. And the spatial
patterns (Figures 5(e) and 6(e)) of the CNOP evolution we
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Figure 6: As in Figure 5, the patterns corresponding to the initial month September.
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Figure 7: The time consumption diagram for adjoint method
(15,4 s), our serial approach (1107.13 s), and our parallel approach
with 240 CPU cores (12.83 s).

calculated exactly show the same abnormity in the eastern
and central tropical Pacific Ocean region, which means that
the CNOP is just the optimal precursor of the El Niño event.
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6. Conclusions and Future Works

In this paper, we proposed an efficient approach based on the
gradient definition to solve CNOP around the whole solution
space and some parallel strategies were designed to improve
gradient calculation efficiency. It is the first time to solve
CNOP using gradient definition around the whole solution
space.
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Figure 9: The net growth rate of the energy from CNOP in 12
months.

To verify the effectiveness and validity of our approach,
we applied our approach to solve CNOP to study the optimal
precursor of an ENSO event in ZC model. The experiment
results indicate that our approach can obtain good results,
and the time consumed is less than the adjoint method,
and the time consumption still has the trend of continually
decreasing when providing more CPU cores.

The cruciality of the proposed approach is to calculate
the gradient of the objective function using the gradient
definition. Zebiak-Canemodel is ofmediumcomplexity (103-
dimensional) and the objective function is differentiable.
The proposed approach is applied to the complex models,
whether the objective function is differentiable and the time
efficiency must be taken into account. For nondifferentiable
models, the approximate gradients information for those
nondifferentiable points can be obtained by the proposed
approach. Inevitably, the solving efficiency will go down
dramatically along with the rapidly increasing dimensions.
However, kinds of methods can be adopted to improve
the time efficiency, such as the parallel of the numerical
models based on the CPU/GPU, reducing the dimension
of the original solution space using appropriate dimension
reduction methods. At present, we are concentrating on
applying the proposed approach to MM5 and WRF models,
which are more than 105-dimensional; related papers will
soon be published.
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