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We introduce a preconditioning technique for the first-order primal-dual splitting method. The primal-dual splitting method
offers a very general framework for solving a large class of optimization problems arising in image processing. The key idea of the
preconditioning technique is that the constant iterative parameters are updated self-adaptively in the iteration process. We also give
a simple and easy way to choose the diagonal preconditioners while the convergence of the iterative algorithm is maintained. The
efficiency of the proposed method is demonstrated on an image denoising problem. Numerical results show that the preconditioned

iterative algorithm performs better than the original one.

1. Introduction

Many real-world application problems arising in signal and
image processing [1-3], machine learning [4-6], and medical
image reconstruction [7, 8] can be modeled as solving
some convex optimization problems (maybe nonsmooth). In
recent years, the optimization of the sum of two convex func-
tions has received much attention, which takes the form of

min £ (x) +h (Bx), 1)

where f € [L(R"), h € [[((R"),and B : R" - R"isa
linear transformation matrix. Here I},(R") denotes the set of
proper, lower semicontinuous convex functions from R" to
(00, +00]. The functions f and g in (1) usually denote the
data error term and the regularization term, respectively.
Chambolle and Pock [9] proposed a general primal-dual
method to solve problem (1). Under the assumption that the
functions f and h have a closed-form solution of proximity
operator, they proved the convergence of the proposed iter-
ative algorithms. He and Yuan [10] have shown that the
primal-dual method of Chambolle and Pock [9] is equivalent
to the proximity point algorithm (PPA). Thus, the original

convergence analysis can be easily obtained by the well-
known PPA method. In order to accelerate the primal-dual
method [9], Pock and Chambolle introduced in [11] a precon-
ditioning technique for the primal-dual iterative algorithm
for which the constant iterative parameters were replaced by
some precondition iteration matrices. Then, the convergence
of the preconditioned iterative algorithm followed directly
from the PPA method. They also gave a practical way to
choose the precondition iteration matrix. As an application,
Sidky et al. [12] applied the primal-dual method of Chambolle
and Pock [9] to solve a variety of application problems arising
in medical image reconstruction. The primal-dual method
and the corresponding precondition method presented the
performance very well. Some related works can also be found
in [13, 14].

If the objective function in (1) has a differentiable term
with Lipschitz continuous gradient, such as the least squares
loss function, the primal-dual method introduced by Cham-
bolle and Pock [9] did not use the gradient operator of the
function. In order to solve such a more general problem,
Combettes and Pesquet [15], Condat [1], and Vi [16] intro-
duced a primal-dual method. For instance, Condat [1] con-
sidered an optimization problem involving the sum of three
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convex functions, with a smooth function with Lipschitz
continuous gradient, a nonsmooth proximable function, and
linear composite functions. The problem is presented below:

J () +g(x)+h(Bx), )

where f € [((R"), g € [L,(R"), h € Ty(R™), f : R — Ris
differentiable, and its gradient Vf is Lipschitz continuous
with Lipschitz constant § > 0; B : R" — R" is a linear
transformation matrix. To solve problem (2), he proposed
a primal-dual splitting method and proved the convergence
of the new iterative algorithm in an infinite-dimensional
Hilbert space based on the fixed point theory of nonexpansive
mappings.

The purpose of this paper is to introduce a preconditioned
primal-dual splitting method to solve problem (2). The
advantage of the preconditioning technique is that the itera-
tive parameters will be updated self-adaptively. Furthermore,
we give a family of preconditioners which are restricted to
diagonal matrices and guarantee the convergence of the algo-
rithm. To illustrate the efficiency of the proposed method,
we compare it with the original method on image denoising
problem. In addition, Combettes et al. [17] recently proposed
a variable metric primal-dual method; they also referred to
the preconditioning technique. But our algorithm is different
from the method proposed by Combettes et al. In our
algorithm, we use two different metrics: one for the primal
variable; one for the dual variable(s). The other difference is
in [17], which is a smooth term in the dual problem. When it
is zero, the convergence conditions are stronger than the ones
presented here. What is more, we explain how to choose the
variable metric.

The rest of the paper is organized as follows. In Section 2,
we briefly review the primal-dual splitting method proposed
by Condat [1]. In Section 3, we present the preconditioning
technique and provide a practical way to choose the iterative
parameters matrices. In Section 4, we make several experi-
ments in image denoising problems. Finally, we make a brief
conclusion on this paper.

2. A Primal-Dual Splitting
Method of Condat [1]

min
X€ER"

In this section, we briefly review the primal-dual splitting
method introduced by Condat [1]. First, we introduce some
definitions and notations. Let H be a real Hilbert space, with
its inner product (-, -) and norm | - III/Z. We denote by I},(H)
the set of proper, lower semicontinuous, convex functions
from H to (-0, +00]. Let f € I,,(H); its Fenchel conjugate
f* e Iy(H) is defined by f*(u) = sup,(x,u) — f(x) and
its proximity operator by prox,;(u) = argmin {(1/2)llx -
ul®> + Af(x)}; A > 0 is a positive constant. We define the
subdifferential of f as the set-valued operator df (u) = {v €
H : f(u') > f(u) + (v, u' —u), vu' € H}. If f is differential
at u, then df (u) = {Vf(u)}. Let H, and H, be two real Hilbert
spaces and B : H; — H, be a bounded linear operator with
adjoint B* and induced norm

Bl = sup {|Bx|, x € H;} < +oo0. 3)

lxl<1
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Condat [1] considered solving the following optimization
problem:

Find X € arg mxin f(x)+g(x)+h(Bx), (4)

where f : H, — R is convex, differentiable on H,, and its
gradient Vf is 3-Lipschitz continuous, for some 3 > 0; that
is, [Vf(x) = VFWIl < Bllx — yll, Vx, y € H;. g € T,(H;) and
h € T,)(H,), and their proximity operator have a closed-form
solution. B : H;, — H, is a bounded linear operator with
adjoint B*. The dual formulation of the primal problem (4) is

Find y € argm};n (f+9) (-B*y)+h*(y). (5)

The corresponding saddle point of primal problem (4) and
dual problem (5) is as follows:

Find (%, 7) € argmin max {f () +gx)+(Bx,y) =h" (»)}. (6)

The pair (X,¥) can be found via the following monotone
variational inclusion:

0 99 (X) + B*y + Vf (%)
€ _ ; )
(")

where 0g and oh" are the subdifferential of g and h*,
respectively.

Condat [1] proposed the following iterative algorithm to
solve problem (4).

Algorithm 1 (primal-dual splitting method (PDS) for solving
problem (4)). Choose the proximal parameters 7 > 0, ¢ >
0 and the relaxation parameters {p,}. Give an initial value
(x0> ¥o) € Hy x H,. Forn = 0, 1,2,..., the iterative {x,} and
{y,} are updated by

(1) X1 = proxe,(x, — T(Vf(x,) +eg,) —TB"y,) + ey,

(2) ¥,.01 = ProXg« (v, + 0B(2X,. . — X)) + €y,

(3) (xn+1’yn+1) = Pn(%n+1’5}n+l) + (1 - pn)(xn’ yn)’
where the error terms es,, € Hy, e , € Hy,ande,, € H,
model the inexact computation of the operators Vf, prox,,,
and prox,;,, respectively.

If some stopping criteria have been reached, then the
algorithm stops.

The convergence of Algorithm 1 was ensured by the fol-
lowing theorem.

Theorem 2 (see [1]). Let T > 0, 0 > 0, and the sequences {p,},
{e f,n}, {eg)n}, and {ey,,} be the parameters of Algorithm 1. Let
B be the Lipschitz constant of Vf. Suppose that 3 > 0 and the
following conditions hold:

(i) 1/7 - ollBI* > B/2;
(i1) {p,} < (0,8), where & = 2 - (B/2)(1/z - ol BI>);
(i) Y p,(6 — p,) = +00;

(iv) anllef,nll < +00, anlleg,nll < +00, and . p,lley, |l <
+00. Then the sequences {x,} and {y,} generated by
Algorithm 1 converge weakly to X of (4) and y of (5),
respectively.
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FIGURE 1: Original images. (a) “Barbara”; (b) “Boat”; (c) “Lena.”

Remark 3. (1) Due to Moreau’s identity prox,,(u) = u —
oproxX ;,u((1/0)u), the proximity operator prox,,. can be
computed from prox; /q)p-

(2) The role of primal variable x and dual variable y in
Algorithm 1 can be exchanged. The convergence of the new
iterative algorithm can also be ensured, according to the same
Theorem 2. In practice, the performance of the two iterative
algorithms is nearly the same.

3. A Preconditioned Primal-Dual Splitting
Method for Solving (4)

In this section, we give a precondition version of Algorithm 1.
The main idea is motivated by the work of Pock and
Chambolle [11]. The iterative parameters in Algorithm 1 are
replaced by some symmetrical positive matrices. First, we
give the detailed iterative algorithm below. Then we will prove
its convergence.

Algorithm 4 (preconditioned primal-dual splitting method
(PPDS) for solving problem (4)). Choose the symmetrical
positive define matrices T, ¥ and the relaxation parameters
{p,}. Give an initial value (xy, y,) € H; x H,. Forn =
0,1,2,..., the iterative {x,} and {y,} are updated by

(1) X,y1 = proxgy(x, = T(Vf(x,) +eg,) = TB y,) + e,
(2) ¥,41 = proxyy (¥, + ZB(2X,,,, — X)) + €3
(3) (xn+1’ )’n+1) = pn(xn+1”)7n+1) +(1- pn)(xrv )’n)’

where the error terms e;, € Hy,e,, € Hy,ande,, € H,
model the inexact computation of the operators Vf, proxr,,
and proxy;,, respectively.

If some stopping criteria have been reached, then the
algorithm stops.

Theorem 5. Let E be a symmetrical positive matrix and the
sequences {p,}, {es,} {ey,}, and fey,} be the parameters of
Algorithm 4. Let 8 be the Lipschitz constant of Vf. Suppose that
B > 0 and the following conditions hold:

@ 1T~ = IZ0BI* > 1E/2, IEN = B.

(i) {p.} < (0,8), where 8 = 2 — (IEI/2)UT™] -

IZIBI*) ™.
(iii) Y p, (6 — p,) = +00.

(iv) anllef’nll < 400, anlleg)nll < +00, and ). p,lley |l <
+00. Then the sequences {x,} and {y,} generated by
Algorithm 4 converge weakly to X of (4) and y of (5),
respectively.

Proof. The main idea of the proof is based on the method of
Theorem 2. First, we give some definitions and notations. Let
Z = H, x H, with inner product (,-);:

(2.2), = (=) + (), o
Vz=(xy), 2 = (x',y') €.

Then, Z is a real Hilbert space with the defined inner product.

Define z, = (x,,y,). It follows from the proof of
Theorem 2; we know that the iterative sequences (1)-(3) in
Algorithm 4 could be rewritten as follows:

Zp+1 = Pn ((I + P_l ° A)_l (zn - P_l ° B(zn) - eZ,n)
9)
+ el,n) + (1 - Pn) Zp>

where P = (T_; _213: ),A = (?%az* )>B = (Vof)’el,n =

enn)-and ey, = P (e o —2Beg ).

Notice that, from condition (i), it is easy to check that P is
bounded, self-adjoint, and strictly positive; that is, (z, Pz); >
0, for every z # 0. Hence, we can define another inner product

(opand |- lp = ¢, ');)/2 in Z as

(eg,n)

<z,z'>P = <z, Pz'>1, for every z,z' € Z. (10)
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FIGURE 2: (a) The relation between SNR and iteration number with the nonnegative constraint, where v = 0.97,, in (al), T = 0.57,,, in

(a2),and 7 = 0.17,
7=0.57_, in (b2),and 7 = 0.17,

max max

in (b3).

Define M, = P~ o Band k = (T - IZIIBI*)/IEl; we
will prove that kM, is 1-Lipschitz continuous. In fact, for any

!
z,z € Z,we have

M, (2)- M, ()| = (P o B(2) - P!
P

°B (z') ,B(z) - B (z'»I

= (= (1 - B'B)"

« in (a3). (b) The relation between SNR and iteration number with the bounded constraint, where 7 = 0.97,,,, in (bl),

(Vf () = Vf (x)), Vf (x) Vf (x’)> <=7
(s ey 5 -5 ()
< ﬁz "2—1“ ("T_IZ_IH _ "Bllz)—l "x B XI”Z

IEI
<UE

(11)
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FIGURE 3: (a) The relation between SNR and iteration number with the nonnegative constraint for different choice of s. (b) The relation
between SNR and iteration number with the bounded constraint for different choice of s.

Let us define a linear operator Q : (x, y) — ((T"" = Z|B|*)x,
0). Then, P — Q is positive definite. So,

BNk |- < (2= 20 (- ),

(12)
< <z -Z,p (z - z')> = “z - z'”i .
Substituting (12) into (11), we have
kM, @) -0, ()], < [l - 2] - (13)

The rest of the convergence proof follows the same argument
of Theorem 2. So we omitted it here. This completes the proof.
O

As a matter of fact, T and X in Theorem 5 could be any
symmetric, positive definite maps. In order to ensure that the
proximity operator of G and F* has a closed-form solution, it
is sufficient to choose diagonal matrices for both of them. In
the following, we give a practical way to choose the symmetric
positive matrices and ensure the convergence of Theorem 5.
To facilitate our proof, we need the following lemmas, which
were obtained by [11].

Lemma 6 (see [11]). Let K be a well-defined matrix and
T and X be symmetric positive definite maps satisfying
1= V2KT V2% < 1. Define the matrix M as

T -KT
M = .
-K Z

Then the matrix M is symmetric and positive definite.

(14)

Therefore, we are in the position to give our way to choose
the matrices T and X accordingly.

Lemma 7. Assume that E is a diagonal matrix with E =
diag(B, B, ..., B), where B is the Lipschitz constant of Vf. Fix

s € [0,2]; let diagonal matrices T = diag(ty,...,7,) and
> = diag(oy,...,0,,) with
T ! 1,2
]': 2-s> ]: IR 2Ry (3
B2+ 3L, |Bi,j|
(15)
[of —1 i=1,2
= i= L,m
i n S0 > 4> > ]
%o [yl
and then it holds that
S|
T _§E>O’ > >0, (16)
_ E
7] - vznnie > 2. 17)

Proof. Conclusion (16) follows from the definition of diago-
nal matrices T'and 2. In fact,

1 1 % 2-s .
T_j_iﬁ:,;'Bi’j' >0, Vji=12,...,n

(18)
1
6=———— >0, Yi=12,...,m.

i [By
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(c1) (c2) (c3)

FIGURE 4: (al)-(a3) are the noisy image of “Barbara” with noise levels 0.01, 0.05, and 0.1, respectively; (bl)-(b3) are the denoised image by
Algorithm 1; (c1)-(c3) are the denoised image by our proposed Algorithm 4.

We will prove (17). It is easy to see that the proof of (17) is ~ which ensure that the matrix M is positive definite. For any
equivalent to the positive definite map of the following matrix j=1,2,...,n let us define T, = 221 |Bi’j [>~5. We have
M:

2

1 -1/2
T - -E -BT 172 ( -1 )
M = 2 ) (19) B\ T 2E x
-z
172 1 -172
e . =(2 B(T_ - —E)
From Lemma 6, it is sufficient to prove < 2

1/2 o1\ 1/2 o1\ :
by B(T —EE> <1, (20) %2 B<T —EE> x>=ZG,- Y'B,;
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FIGURE 5: (al)-(a3) are the noisy image of “Boat” with noise levels 0.01, 0.05, and 0.1, respectively; (bl)-(b3) are the denoised image by
Algorithm 1; (c1)-(c3) are the denoised image by our proposed Algorithm 4.

2

(from the definition of ‘F])

(due to the Cauchy-Schwartz inequality) = |Ix|l.
(21)
m n 2-s 1 2 e .
< Z Z |Bl ]| Z |Bi)j‘ T x; By the definition of the operator norm, we obtain
= - 1 -2
32 (T‘1 - EE) <1 (22)

(notice the condition of g;)
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(c1)

(c3)

FIGURE 6: (al)-(a3) are the noisy image of “Lena” with noise levels 0.01, 0.05, and 0.1, respectively; (bl)-(b3) are the denoised image by
Algorithm 1; (c1)-(c3) are the denoised image by our proposed Algorithm 4.

Finally, the strict inequality of (20) can be obtained from
the above proof process with one of the above inequalities
becoming strictly smaller. |

4. Applications

In this section, we present an application of our proposed iter-
ative algorithm. We aim at solving the following constrained
total variation (TV) denoising problem:

. 1 2
min 3 llx —ull; + Allxlpy (23)

where u € R" is a noisy image which was contaminated by
Gaussian noise, A > 0 is the regularization parameter, and C1is
a closed convex set representing the prior information of the
denoised image. By using the indicator function, constrained
(TV) denoising problem (23) could be formulated by the
following unconstrained optimization problem as follows:

. 1
min k- ul} 4 Alxly oG, @)

where the indicator function 1o € TH(R") : x € R" —
{0, if x € C;+00, otherwise}, since the total variation term
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x|l can be represented by a combination of convex func-
tion ¢ and linear transformation matrix B; that is, ||x[lty =
@(Bx). See, for example, [18]. Then, optimization problem
(24) is actually a special case of the general optimization
problem (2) with f(x) = (1/2)]lx - ull%, g(x) = 1-(x), and
h(x) = Ap(x). Note that the gradient of the function f(x) is
Vf(x) = x — uand the Lipschitz constant § = 1.

If the constrained set C = R", then the constrained
TV denoising problem reduces to the unconstrained TV
denoising problem:

. 1
min =l = ully + Mixlry - (25)

The above TV denoising problem is often referred to as the
ROF denoising model which was first introduced in com-
puter vision by Rudin et al. [19].

4.1. Numerical Experiments. In the following, we present
some preliminary numerical results and show the efficiency
of our proposed methods. All the experiments are run on a
personal Lenovo computer with Pentium(R) Dual-Core CPU
@ 2.8 GHz and RAM 4 GB.
For all the tested iterative algorithms the stopping crite-
rion is
'l xk+1 _ xk“
<]

where € > 0 is a given small constant, or the maximum
iteration numbers 4000 are reached. The reconstructed image
is evaluated in terms of the signal to noise (SNR) defined by

2
"xori "

- X,

<e, (26)

SNR = 10log,, (27)

x I

rec ori

where x; is the original clear image and x,, is the recon-
structed image. The reconstructed time is denoted by “T" (s)”
and the iteration number “Iter” is recorded when the stopping
criteria satisfied. The tested images are the well-known
“Barbara,” “Boat,” and “Lena”. These images have the same
size of 512 x 512 and are displayed in Figure 1.

Experiment 1. We present how the iterative parameters are
chosen. First, we choose different combination of parameters
o and 7 and then apply Algorithm 1 to solve image denoising
problem (23). We choose “Barbara” as the test image and add
it by random Gaussian noise with zero mean and standard
deviation 0.05. For convenience, we define 7, = 2/, 0,0 =
(1/1BI*) (/T - B/2). Here, the Lipschitz constant 3 = 1 and
|B|* = 8. The numerical results are reported in Table 1.

Meanwhile, we plot the SNR versus the iteration numbers
in Figure 2. We can see from Figure 2 that when the iterative
parameter T = 0.97,, and T = 0.57,,, the greater o,
the faster the convergence speed. For the small 7, it has no
apparent difference by the choice of parameter 0. So we
select T = 0.17,,, and 0 = 0.lo,,, for Algorithm 1 for
the comparative experiments.

For our proposed Algorithm 4, the corresponding pre-
conditioned iterative matrices are chosen according to

9
TABLE 1: Numerical results obtained by Algorithm 1.
Constraint set ¢ Darameter Parameter e=10""
T= 0= T (s) Iter SNR
Omax 217 59 23.56
0.9% 05%0,, 129 37 2276
0.1%0,, 122 35 2093
Omax 046 13 23.61
trlx=0) 0.5T o 05%0,,. 060 17 23.59
0.1%0,, 102 29 23.13
Onax 0.88 25 23.57
017, 05%0,, 088 25 23.58
0.1%0,, 092 26 2359
Omax 2.17 59 23.56
097 1max 05%0,, 133 37 2276
0.1%0,, 121 34 2091
Onax 048 13 23.62
Wl0sx=<1} o5, 05%0, 062 17 23.60
0.1%0,, 107 29 2313
Omax 091 25 2357
017, 05%0,, 091 25 23.58

0l%0,, 094 26 23.59

TABLE 2: Numerical results obtained by Algorithm 4.

Constraint set C Parameter s = €=10"
T (s) Iter SNR
0.5 0.80 23 23.58
{x| x>0} 1 0.81 23 23.58
1.5 0.81 23 23.58
0.5 0.90 23 23.58
{x|0<x<1} 1 0.82 23 23.58
1.5 0.82 23 23.58

Lemma 7. There is only one parameter s that needs to be set,
and the experiments results are reported in Table 2. Figure 3
shows the SNR value versus the iteration number. We can see
from it that the performance of the three choices of s is nearly
the same. So we choose s = 1 for Algorithm 4 in the following
test.

Experiment 2. We show the performance comparison
between Algorithm 1 and our proposed Algorithm 4. The
constraint set C is set as nonnegative set; that is,
C = {x | x > 0}. To perform fair comparison, we add
each of these images with random Gaussian noise with 0
mean value and different level of standard variation o.
The regularization parameter A = 0.02 when the noise level
0 <0.05and A = 0.05 when o > 0.05.

From Table 3, we can see that our proposed Algorithm 4
converges faster than Algorithm 1 in terms of iteration
numbers and iteration time in CPU time. For the large noise
level, Algorithm 4 reaches higher SNR value than Algorithm 1
with less iteration numbers. Both of the algorithms get the
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TABLE 3: Performance comparison between Algorithms 1 and 4.
Image Noise level Methods =107 e=10"

T (s) Iter SNR T (s) Tter SNR

0.01 Algorithm 1 0.87 26 26.06 2.18 64 26.07

Algorithm 4 0.80 23 26.03 1.17 34 26.08

“Barbara” 0.05 Algorithm 1 0.88 26 23.59 1.86 55 23.60
Algorithm 4 0.80 23 23.58 1.12 32 23.60

01 Algorithm 1 1.37 32 19.67 3.20 94 19.71

Algorithm 4 0.81 23 19.70 1.26 36 19.71

0.01 Algorithm 1 0.88 26 28.63 2.06 62 28.62

Algorithm 4 0.81 23 28.56 1.18 34 28.63

“Boat” 0.05 Algorithm 1 1.02 26 25.70 1.82 54 25.72
Algorithm 4 0.89 23 25.70 1.12 32 25.72

01 Algorithm 1 1.03 31 22.39 3.05 92 22.45

Algorithm 4 0.79 23 22.44 1.23 36 22.45

0.01 Algorithm 1 0.93 26 30.55 2.19 65 30.48

Algorithm 4 0.79 23 30.39 1.21 35 30.48

“I ena” 0.05 Algorithm 1 0.87 26 26.47 1.92 57 26.51
Algorithm 4 0.79 23 26.48 1.09 32 26.50

01 Algorithm 1 1.05 31 23.21 3.23 96 23.34

Algorithm 4 0.80 23 23.33 1.26 37 23.34

cleared image, which have nearly the same SNR value finally.
To visualize the reconstructed images, we present the noised
image and the final denoising image in Figures 4, 5, and 6,
respectively.

5. Conclusion

In this paper, we have studied the general optimization
problem with the sum of three convex functions which is
composed of a differential function with Lipschitz continuous
gradient, a proximable function, and a linear composition
function. Many interesting problems arising in image restora-
tion and image reconstruction are special case of this prob-
lem. Inspired by the preconditioning technique proposed
by Pock and Chambolle, we have introduced a primal-dual
splitting algorithm with self-adaptive step-size to solve such
problem. We also proposed a practical way to choose these
step-sizes with a proof of convergence. Numerical results
on image denoising problem showed that the precondition
iterative algorithm performs better than the original one with
constant step-size.
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