Research Article

Forward Displacement Analysis of a General 6-3 Stewart Platform Using Conformal Geometric Algebra

Feng Wei,1,2 Shimin Wei,1 Ying Zhang,1 and Qizheng Liao1

1School of Automation, Beijing University of Posts and Telecommunication, Beijing 100086, China
2School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454000, China

Correspondence should be addressed to Shimin Wei; wsmly@bupt.edu.cn

Received 30 March 2016; Revised 7 August 2016; Accepted 31 August 2016; Published 13 February 2017

Academic Editor: Eckhard Hitzer

Copyright © 2017 Feng Wei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, a new algorithm for the forward displacement analysis of a general 6-3 Stewart platform (6-3SPS) based on conformal geometric algebra (CGA) is presented. First, a 6-3SPS structure is changed into an equivalent 2RPS-2SPS structure. Then, two kinematic constraint equations are established based on the geometric characteristics, one of which is built according to the point characteristic four-ball intersection in CGA. A 16th-degree univariate polynomial equation is derived from the aforementioned two equations by the Sylvester resultant elimination. Finally, a numerical example is given to verify the algorithm.

1. Introduction

Stewart platforms [1] are six-degree-of-freedom parallel manipulators that generally consist of a base platform, a moving platform, and six legs connected to each other in parallel. They were first applied to animate flight simulator platforms. In these recent decades, Stewart mechanisms have attracted wide interest from researchers and engineers due to their advantages of simplicity, high stiffness, large load capacity, quick dynamic response, and excellent accuracy [2]. The 6-3 Stewart platform (6-3SPS) is a special form of Stewart platform. The basic geometric structure of the 6-3SPS consists of a moving platform connected to the adjacent links at three distinct points \(B_i, i = 1, 2, 3 \), by spherical kinematic pairs, which is shown in Figure 1. 6-3SPSs can be divided into either platform mechanisms or general mechanisms according to whether the six spherical points on the base platform are restricted to lie in plane or not.

It is well known that the forward displacement analysis (FDA) of parallel mechanisms, which is used to find the position and orientation of the moving platform given the actuator displacements, is much more challenging than the inverse displacement problem. Generally, the FDA problem involves highly nonlinear algebraic equations. There are two ways to solve these equations: numerical and closed-form solutions. Although numerical iterative approaches can obtain the forward kinematics solutions, they are not suitable for the general Stewart mechanism because they are computationally burdensome and require good initial values. A closed-form solution provides more information about the geometry and kinematic behavior over a numerical solution and the input-output closed-form univariate polynomial equation has significant theoretical values as it is fundamental to many other kinematic problems. Hence obtaining a closed-form solution to the FDA problem is more desirable in most cases.

Numerous studies have been conducted regarding closed-form solutions for the FDA of the 6-3SPS. Griffis and Duffy [3] obtained a closed-form solution to the platform mechanisms of the 6-3SPS in 1989, but their method is not suitable for the solution of the general mechanisms. In 1990, Innocenti and Parenti-Castelli [4] changed the 6-3SPS structure into the 3-3RPS structure based on the 6-3SPS model. The FDA problem can be reduced to the solution of a system of three second-order nonlinear equations. In 1991, Liang and Rong [5] derived the FDA solution to a Stewart triangle platform, 6-SPS parallel manipulator. In fact, the principle of Liang's method is the same as that in [4]. Both Nanua et al. [6] in 1990 and Akça and Mutlu [7] in 2006 obtained the 16th-order input-output equation. However, the two methods are complex. Song and Kwon [8] obtained a
2. Conformal Geometric Algebra

CGA [10–12] is a mathematical language that integrates various mathematical theories, such as projective geometry and quaternion, and Lie Algebra. Therefore, CGA has been spotlighted as a new method in robotics [13, 14].

2.1. Fundamental Theory. The fundamental algebraic operators [10] in geometric algebra are the inner product \((a \cdot b) \), the outer product \((a \wedge b) \), and the geometric product \((a, b) = a \wedge b + a \cdot b \). CGA, which is denoted by the base space \(\mathbb{R}^{3,1,1} \), has a set of orthogonal bases given by \(e_1, e_2, e_3, e_4 \), and \(e_5 \) with the properties:

\[
\begin{align*}
e_1^2 &= 1, & i &= 1, 2, 3, \\
e_4^2 &= 1, \\
e_5^2 &= -1, \\
e_i \cdot e_j &= e_i \cdot e_j = e_{i+j} \cdot e_{i-j} = 0.
\end{align*}
\] (1)

A set of null bases \(\{e_{\infty}, e_0\} \) orthogonal to \(e_i \) can be introduced by \(\{e_+, e_-\} \):

\[
\begin{align*}
e_0 &= \frac{1}{2} (e_- - e_+) , \\
e_{\infty} &= e_+ + e_- ,
\end{align*}
\] (2)

with the properties:

\[
\begin{align*}
e_0^2 &= e_{\infty}^2 = 0 , \\
e_0 \cdot e_0 &= -1 .
\end{align*}
\] (3)

2.2. Conformal Geometric Entities. Let \(x \in \mathbb{R}^3 \) be a point expressed in the Euclidean space \(\mathbb{R}^3 \). The representation of the same point in \(\mathbb{R}^{3,1,1} \) is given by:

\[
x_c = x + \frac{1}{2} x^2 e_\infty + e_0 ,
\] (4)

where \(x = x_1 e_1 + x_2 e_2 + x_3 e_3 \), \(x^2 = x_1^2 + x_2^2 + x_3^2 \).

In \(\mathbb{R}^{3,1,1} \), the equation of a sphere of radius \(r \) centered at \(p \in \mathbb{R}^3 \) can be written as:

\[
S_c = p + \frac{p^2 - r^2}{2} e_{\infty} + e_0 = p_c - \frac{1}{2} r^2 e_{\infty} .
\] (5)

2.3. Conformal Transformations. Rotation, which is called a rotor, can be written as a unit quaternion as follows:

\[
R = \cos \frac{\phi}{2} - n \sin \frac{\phi}{2} ,
\]

\[
R^* = \cos \frac{\phi}{2} - n \sin \frac{\phi}{2} ,
\] (6)

where \(n \) is a normalized bivector [10] representing the axis of rotation, \(\phi \) is the rotation angle, and the superscript * represents conjugation.

Translation in \(\mathbb{R}^{3,1,1} \) can be defined as:

\[
T = 1 - \frac{1}{2} a e_{\infty} ,
\]

\[
T^* = 1 + \frac{1}{2} a e_{\infty} ,
\] (7)

where \(a = 2dt \), in which \(d \) denotes the displacement distance and \(t \) denotes the direction of movement. Therefore, the motion transformation of a rigid body in \(\mathbb{R}^{3,1,1} \) can be denoted by:

\[
Q_c = TRQT^* .
\] (8)

![Figure 1: Structure of a 6-3SPS.](image)
2.4. Inner Product of CGA. In $\mathbb{R}^{3+1,1}$, the inner product of two conformal points is a direct representation of the Euclidean distance between the two points. For example, letting $p_\mathbf{c}$ and $s_\mathbf{c}$ be two points in $\mathbb{R}^{3+1,1}$, the inner product of two conformal points is represented by p and s in \mathbb{R} as follows:

$$p_\mathbf{c} \cdot s_\mathbf{c} = -\frac{1}{2} ||s - p||^2.$$ \hspace{1cm} (9)

If the point $x_\mathbf{c}$ is on the surface of the sphere $S_\mathbf{c}$, we can obtain

$$x_\mathbf{c} \cdot S_\mathbf{c} = 0.$$ \hspace{1cm} (10)

A more detailed description of CGA can be found in [15].

3. Constraint Equations

A 6-3SPS has its six SPS (S, spherical joint; P, prismatic joint) legs connected at the five points in the moving platform and the five points in the base platform, shown in Figure 2. The six leg lengths provided by the prismatic joint in every leg are the six inputs to control the location and orientation of the moving platform. The six fixed spherical joints $P, Q, U, V, A_3,$ and A_4 are not restricted to lie in a plane. The three moving joints $B_1, B_2,$ and B_3 are composite spherical joints.

3.1. The Structure Transformation. According to [4, 5], in Figure 2 the point B_1 can be only located on a circle with axis PQ. Therefore, we can replace the two SPS links B_1P and B_1Q by one RPS (R_1, revolute joint) link B_1A_1, where point A_1 denotes the foot point on PQ with respect to point B_1. The triangle PB_1Q is equivalent to a rotation of B_1 with respect to PQ, with θ_1 denoting the rotation angle with axis PQ. Analogously, the two SPS links B_2U and B_2V can be replaced by one RPS link B_2A_2, where point B_2 denotes the foot point on UV with respect to point B_2. The triangle UB_2V is equivalent to a rotation of B_2 with respect to UV, with θ_2 denoting the rotation angle with axis UV. Now clearly, the FDA of the 6-3SPS is equivalent to that of the special 4-3 parallel platform 2RPS-2SPS seen in Figure 3, where two revolute pairs are introduced in place of the pairs of legs converging at points B_1 and B_2.

3.2. Basic Closure Equations. We locate a reference frame $O-XYZ$ with its origin at random on the base platform $PQUVA_3A_4$, as shown in Figure 2. The coordinates of points $P, Q, U, V, A_3,$ and A_4 are known, respectively, in fixed frame; that is to say, the coordinates of vectors $P, Q, U, V, A_3,$ and A_4 are known. The distances of three points $B_1, B_2,$ and B_3, namely, $l_{B_1P}, l_{B_1Q}, l_{B_2U}, l_{B_2V}, l_{B_3}, l_{B_3A_4},$ and $l_{B_3A_4}$, are known.

For the triangle PB_1Q in Figure 2, the movement locus of the point B_1 is a circle with its center at A_1 and $l_{B_1A_1}$ as its radius after removing the coupling of the joint B_1 and the moving platform, as shown in Figure 3. Thus, the constraint of the spherical joints P and Q with respect to B_1 is equivalent to that of the revolute joint A_1 with respect to B_1. Translating the point A_1 to the origin of the frame $O-XYZ$, and rotating the triangle PB_1Q with $-\beta_1, -\alpha_1,$ and $-\theta_1$ about the axes $Y, X,$ and Z, the result is that the point B_1 locates the axis X and QP overlaps the axis Z, as shown in Figure 4.

Now, according to (8), the point B_1 and the vector QP in $\mathbb{R}^{3+1,1}$ can be written as follows:

$$B_1 = M_1B_1', M_1^*,$$ \hspace{1cm} (11)

$$QP_\mathbf{c} = QP + \frac{1}{2} QP^2 e_0 + e_\infty$$ \hspace{1cm} (12)

$$= R_\gamma (\beta_1) R_\chi (\alpha_1) QP^\mathbf{c} R_\gamma^* (\alpha_1) R_\chi^* (\beta_1),$$
where
\[
B'_i = l_i e_1 + \frac{1}{2} l_i^2 e_{oo} + e_0, \\
M_i = T(A_i) R_y(\beta_i) R_x(\alpha_i) R_z(\theta_i), \\
R_x(\theta_i) = \cos \theta_i - e_3 \sin \theta_i, \\
R_y(\alpha_i) = \cos \alpha_i - e_1 \sin \alpha_i, \\
R_z(\beta_i) = \cos \beta_i - e_2 \sin \beta_i, \\
T(A_i) = 1 - (A_{1,1}e_1 + A_{1,2}e_2 + A_{1,3}e_3) e_{oo},
\]
and \(l_i\) denotes \(l_{B_iA_i}\).
According to (12), \(\alpha_i\) and \(\beta_i\) can be expressed as
\[
\alpha_i = \sin^{-1} \left(-\frac{Q_{Py}}{l_{QP}} \right), \\
\beta_i = 2 \tan^{-1} \left(\frac{Q_{Px}}{l_{QP} \cos \alpha_i + Q_{Pz}} \right).
\]
In Figure 2, let \(\gamma_1 = \angle B_1 PQ\). According to the law of cosines, \(\gamma_1\) can be expressed as
\[
\cos \gamma_1 = \frac{l_{B_1P}^2 + l_{PQ}^2 - l_{B_1Q}^2}{2 l_{B_1P} l_{PQ}}.
\]
Similar to the solution process of \(B_{1c}, B_{2c}\), can also be obtained by
\[
B_{2c} = M_2 B'_2 M_2^T, \\
B_{1c} = M_1 B'_1 M_1^T,
\]
where
\[
B'_2 = l_2 e_1 + \frac{1}{2} l_2^2 e_{oo} + e_0, \\
M_2 = T(A_2) R_y(\beta_2) R_x(\alpha_2) R_z(\theta_2),
\]
and \(l_2\) denotes \(l_{B_2A_2}\).
According to (4), in \(\mathbb{R}^{3+1}\), \(A_3\) and \(A_4\) can be written:
\[
A_{3c} = A_3 + \frac{1}{2} \lambda_3^2 e_{oo} + e_0, \\
A_{4c} = A_4 + \frac{1}{2} \lambda_4^2 e_{oo} + e_0.
\]
According to (9), the distance between \(B_1\) and \(B_2\) is written:
\[
B_{1c} \cdot B_{2c} = -\frac{1}{2} ||B_1 - B_2||^2 = -\frac{1}{2} l_{B_1B_2}^2 = -\frac{1}{2} l_3^2,
\]
where \(r_3\) denotes \(l_{B_3B_3}\). Substituting (11) and (17) into (21) and rewriting it, we have
\[
l_1 l_2 \left[c(\beta_1 - \beta_2) c\theta_1 c\theta_2 \\
+ s(\beta_1 - \beta_2) (s\alpha_1 s\theta_1 c\theta_2 - s\alpha_2 c\theta_1 s\theta_2) \\
+ (c(\beta_1 - \beta_2) s\alpha_1 s\alpha_2 + c\alpha_1 c\alpha_2) s\theta_1 s\theta_2 \right] + \frac{1}{2} r_3^2
- l_1^2 - l_2^2 = 0,
\]
where \(c(\beta_1 - \beta_2), s(\beta_1 - \beta_2), c\theta_1, s\alpha_1, s\theta_1,\) and \(c\theta_1\) denote \(c(\beta_1 - \beta_2), s(\beta_1 - \beta_2), c\theta_1, s\alpha_1, s\theta_1,\) and \(c\theta_1\) respectively.

Letting \(r_1 = l_{B_1B_1}\), \(r_2 = l_{B_2B_2}\), \(r_3 = l_{B_3B_3}\), and \(r_4 = l_{B_4B_4}\), from Figure 5 we can see that the joint \(B_3\) is on the intersection of four spheres, that is, the sphere \(S_{1c}\) with its center at \(B_1\) and \(r_1\) as its radius, the sphere \(S_{2c}\) with its center at \(B_2\) and \(r_2\) as its radius, the sphere \(S_{3c}\) with its center at \(B_3\) and \(r_3\) as its radius, and the sphere \(S_{4c}\) with its center at \(B_4\) and \(l_4\) as its radius. Therefore, \(B_3\) can be expressed as
\[
B_{3c} = S_{1c} \land S_{2c} \land S_{3c} \land S_{4c},
\]
where
\[
S_{1c} = B_{1c} - \frac{1}{2} r_1 e_{oo}, \\
S_{2c} = B_{2c} - \frac{1}{2} r_2 e_{oo}, \\
S_{3c} = A_{3c} - \frac{1}{2} r_3 e_{oo}, \\
S_{4c} = A_{4c} - \frac{1}{2} r_4 e_{oo}.
\]
Expanding (23) yields
\[
B_{3c} = W_1 e_1 + W_2 e_2 + W_3 e_3 + W_4 e_{oo} + W_5 e_0,
\]
where
\[
W_i = i a_3 s\theta_1 s\theta_2 + i a_3 s\theta_1 c\theta_2 + i a_3 c\theta_1 s\theta_2 + i a_4 c\theta_1 c\theta_2 \\
+ i a_5 s\theta_1 + i a_5 s\theta_1 + i a_5 c\theta_1 + i a_5 c\theta_2 + i a_5,
\]
\(i = 1, \ldots, 5\).
In the above polynomials, the coefficients \(i\alpha_i = 0 \) \((i = 1,3,5)\) and \(i\alpha_j \) \((i = 1,\ldots,5; j = 1,\ldots,9)\) are reported in Appendix.

From (4), the expression of \(B_{sc} \) is written as
\[
B_{sc} = B_{sc}e_1 + B_{sc}e_2 + B_{sc}e_3 + \frac{1}{2} \left(B_{sc}^2 + B_{sc}^2 + B_{sc}^2 \right) e_0^0 + e_0.
\]

(27)

According to (25), \(B_{sc} \) can be obtained by
\[
B_{sc} = \frac{W_1}{W_2}e_1 + \frac{W_2}{W_2}e_2 + \frac{W_3}{W_3}e_3 + \frac{W_4}{W_5}e_0 + e_0.
\]

(28)

According to (9), we have
\[
B_{sc} \cdot B_{sc} = W_1^2 + W_2^2 + W_3^2 - 2W_4W_5 = 0.
\]

(29)

Substituting for the sine and cosine the well-known expressions
\[
\cos \theta_j = \frac{1 - t_j^2}{1 + t_j^2},
\]
\[
\sin \theta_j = \frac{2t_j}{1 + t_j^2},
\]

(30)

where \(t_j = \tan(\theta_j/2) \), \(i = 1,2 \), (22) and (29) can be rewritten as follows:
\[
n_0 = n_1 = n_2 = n_3 = n_4 = n_5 = n_6 = 0,
\]
\[
\sum_{i=0}^{4} a_i t_1^i t_2^j = 0,
\]

(31)

where
\[
n_0 = n_1 = r_3 - t_1^2 - t_2^2 + 2l_1^2c (\beta_1 - \beta_2),
\]
\[
n_2 = -n_0 = 4l_1^2sa_1s (\beta_1 - \beta_2),
\]
\[
n_3 = -n_2 = -4l_1^2sa_1s (\beta_1 - \beta_2),
\]
\[
n_4 = 8l_1^2a_1 (c\alpha c_2 + s (\beta_1 - \beta_2) s\alpha c_2),
\]
\[
n_5 = 6n_6 = r_3^2 - t_1^2 - t_2^2 + 2l_1^2c (\beta_1 - \beta_2).
\]

(32)

and \(a_i \) are real constants that depend only on \(i\alpha_i \) \((i = 1,\ldots,5; j = 1,\ldots,9)\).

Equations (31) are the kinematics constraint equations in the FDA of the 6-3SPS.

4. Solution Procedure

Equations (31) represent a system of two equations in two unknown variables, \(t_1 \) and \(t_2 \), \(t_2 \) can be eliminated between them obtaining one equation in the only unknown, \(t_1 \).

Equations (31) can be rearranged as follows:
\[
M_1 t_1^2 + M_2 t_1 + M_3 = 0,
\]
\[
G_1 t_1^4 + G_2 t_1^2 + G_3 t_1^2 + G_4 t_1 + G_5 = 0,
\]

(33)

where
\[
M_1 = n_1 t_1^2 + n_3 t_1 + n_6,
\]
\[
M_2 = n_2 t_1 + n_4 t_1 + n_8,
\]
\[
M_3 = n_1 t_1 + n_7 t_1 + n_9,
\]
\[
G_1 = \sum_{i=0}^{4} a_i t_1^i,
\]
\[
G_2 = \sum_{i=0}^{4} a_i t_1^i,
\]
\[
G_3 = \sum_{i=0}^{4} a_i t_1^i,
\]
\[
G_4 = \sum_{i=0}^{4} a_i t_1^i,
\]
\[
G_5 = \sum_{i=0}^{4} a_i t_1^i.
\]

(34)

Constructing the Sylvester resultant, the eliminant of (33) is the following:
\[
\begin{vmatrix}
0 & G_1 & G_2 & G_3 & G_4 & G_5 \\
G_1 & G_2 & G_3 & G_4 & G_5 & 0 \\
0 & 0 & 0 & M_1 & M_2 & M_3 \\
0 & 0 & M_1 & M_2 & M_3 & 0 \\
0 & M_1 & M_2 & M_3 & 0 & 0 \\
M_1 & M_2 & M_3 & 0 & 0 & 0
\end{vmatrix} = 0.
\]

(35)

Expanding (35), a 16th-order polynomial equation with the variable \(t_1 \) can be obtained as follows:
\[
\sum_{i=0}^{16} b_i t_1^i = 0,
\]

(36)

where \(b_i \) are real constants that depend only on input data. Therefore 16 real and complex solutions for \(t_1 \) are possible.

For \(t = t_1 \), (33) are indeed algebraic equations in the only unknown \(t_2 \), and these have a common root, \(t_2 \), whose value can be found by equating to zero the first-degree greatest common divisor (GCD) of the polynomials on the left-hand sides of (33).

Hence, a unique location \((t_1, t_2) \) of (31) is derived for every solution \(t_1 \) of (36) and, consequently, through (11), (17), and (28) a unique location of \(B_1 \), \(B_2 \), and \(B_3 \) is obtained. Therefore, the FDA of the 6-3SPS provides 16 solutions in the field of complex numbers.

5. Numerical Verification

In order to validate the new algorithm, the input data of a numerical example are given in Table 1. The data are equivalent to the data of the example discussed in [4]. All 16 sets of output data obtained by the proposed method agree with those given in [4]; the outputs of four real solutions are listed in Table 2.
Table 1: Input data.

<table>
<thead>
<tr>
<th>W_a</th>
<th>P</th>
<th>Q</th>
<th>U</th>
<th>V</th>
<th>A_2</th>
<th>A_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>50</td>
<td>-25</td>
<td>80</td>
<td>-50</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>Y</td>
<td>0</td>
<td>-2</td>
<td>20</td>
<td>-20</td>
<td>15</td>
<td>31</td>
</tr>
<tr>
<td>Z</td>
<td>100</td>
<td>40</td>
<td>50</td>
<td>70</td>
<td>68</td>
<td>-93</td>
</tr>
</tbody>
</table>

Distance between three points of B_i (i = 1, 2, 3)

Length of six legs

Table 2: Four real solutions from 16 sets of output solutions.

<table>
<thead>
<tr>
<th>i</th>
<th>t_1</th>
<th>t_2</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.6258</td>
<td>-1.0743</td>
<td>79.5353</td>
<td>-26.0942</td>
<td>-70.9222</td>
</tr>
<tr>
<td>2</td>
<td>-0.3717</td>
<td>0.442</td>
<td>68.8676</td>
<td>-47.0215</td>
<td>21.2493</td>
</tr>
<tr>
<td>3</td>
<td>0.9609</td>
<td>0.240</td>
<td>82.5389</td>
<td>-48.8261</td>
<td>14.0067</td>
</tr>
<tr>
<td>4</td>
<td>0.7363</td>
<td>0.5102</td>
<td>90.9016</td>
<td>-40.7763</td>
<td>-6.7822</td>
</tr>
</tbody>
</table>

6. Conclusions

This paper presents a closed-form solution for the FDA of the 6-3SPS using the CGA. The 16th-order input-output equation is derived from two equations with two variables by using the Sylvester resultant method. The two equations are derived by using a computer algebra symbolic calculation. The number of solutions agrees with that of [4]. The procedure is unique in that the final resultant matrix is in the symbolic form of geometric parameters. This symbolic formulation not only can provide insights into the nature of the problem, but also greatly simplifies the implementation of computer programming. To compute solutions for a new set of structural parameter and limb actuation data, one only needs to substitute numerical values of these parameters into the symbolic resultant matrix without requiring any algebraic manipulation. Compared with the previously reported method, the novelty of the proposed method lies in that the problem is modeled based on the geometric characteristics and is solved based on single elimination; as a result, the solution procedure is simpler, more efficient, and more readily programmed. The computation time using the new solution presented in this paper is about 0.15 s in Maple 16 running on a PC with Intel Pentium Dual-Core ES800 3.2 GHz and 2 GB Ram. However, employing the same computer system and software, the computation time using the method developed in [4] is 0.3 s.

Appendix

\[
\begin{align*}
1a_1 &= -\frac{1}{2}l_1 l_2 \left(K_3 - K_4 - l_3^2 + l_4^2 \right) (c_3 c \beta_5 s \alpha_1 \\
&\quad - c_0 c_5 c \beta_5 s \alpha_2), \\
1a_2 &= -\frac{1}{2}l_1 l_2 \left(K_3 - K_4 - l_3^2 + l_4^2 \right) c \alpha_1 s \beta_2, \\
1a_3 &= \frac{1}{2}l_1 l_2 \left(K_3 - K_4 - l_3^2 + l_4^2 \right) c \alpha_2 s \beta_1, \\
1a_5 &= \frac{1}{2}l_1 \left[\left(K_4 - l_4^2 - l_3^2 + r_3^2 \right) A_{3z} \\
&\quad + \left(l_4^2 + l_3^2 - K_3 - r_3^2 \right) A_{4x} \right] c \alpha_1 + \frac{1}{2} \\
&\quad \cdot l_1 \left[\left(l_4^2 + l_3^2 - K_3 - r_3^2 \right) A_{3y} \\
&\quad + \left(K_3 - l_3^2 - l_4^2 + r_4^2 \right) A_{4x} \right] c \beta_1 s \alpha_1, \\
1a_6 &= \frac{1}{2}l_1 \left[\left(K_4 - l_4^2 - l_3^2 + r_3^2 \right) A_{3y} \\
&\quad + \left(l_4^2 + l_3^2 - K_3 - r_3^2 \right) A_{4y} \right] s \beta_1, \\
1a_7 &= \frac{1}{2}l_2 \left[\left(l_4^2 - K_4 + l_1^2 - r_1^2 \right) A_{3x} \\
&\quad + \left(l_4^2 + l_3^2 - K_3 - r_3^2 \right) A_{4z} \right] s \beta_1.
\end{align*}
\]
\[
\mathbf{a}_8 = -\frac{1}{2} l_1 \left[(K - 3 - l^2 + r^2) A_{3y} \right] c\beta_2 s\alpha_2,
\]
\[
\mathbf{a}_9 = \frac{1}{2} l_1 \left[(K - 3 - l^2 + r^2) A_{3x} \right] c\beta_2 s\alpha_2 + \frac{1}{2} l_2 \left[(K - 3 - l^2 + r^2) A_{3x} \right] c\beta_2 s\alpha_2 + \frac{1}{2} l_3 \left[(K - 3 - l^2 + r^2) A_{3x} \right] c\beta_2 s\alpha_2 + \frac{1}{2} l_4 \left[(K - 3 - l^2 + r^2) A_{3x} \right] c\beta_2 s\alpha_2.
\]
\[
\mathbf{a}_a = \frac{1}{2} (A_{3x} A_{4x} - A^{-1}_{3y} A_{4y}) \left(l^2 - l^2 + r^2 + r^2 \right),
\]
\[
\mathbf{a}_b = -\frac{1}{2} l_1 \left(K - 3 - l^2 + r^2 \right) c\alpha_1 s\beta_1 - c\alpha_1 s\beta_1,
\]
\[
\mathbf{a}_c = \frac{1}{2} l_1 \left(K - 3 - l^2 + r^2 \right) c\alpha_1 s\beta_1 + \frac{1}{2} l_2 \left(K - 3 - l^2 + r^2 \right) c\alpha_1 s\beta_1 + \frac{1}{2} l_3 \left(K - 3 - l^2 + r^2 \right) c\alpha_1 s\beta_1 + \frac{1}{2} l_4 \left(K - 3 - l^2 + r^2 \right) c\alpha_1 s\beta_1.
\]
\[
\begin{align*}
- K_3 A_{4x} + l_1^2 A_{4y}, & \quad c \beta_2 + l_1 l_2 c \alpha_1 (K_4 A_{3x} - l_4 A_{3x} \\
- K_3 A_{4x} + l_1^2 A_{4y}, & \quad s \beta_2,
\end{align*}
\]

\[^4 a_3 = l_1 l_2 \left(K_4 A_{3y} - l_4 A_{3y} - K_3 A_{4y} + l_1^2 A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right),
\]

\[^4 a_5 = -l_1 \left(l_1^2 - l_2^2 \right) \left(A_{3x} A_{4x} - A_{3y} A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right) + l_1 \left(l_1^2 - l_2^2 \right) \sin \left(\beta_1 - \beta_2 \right),
\]

\[^4 a_6 = l_1 \left(l_1^2 - l_2^2 \right) \left(A_{3x} A_{4x} - A_{3y} A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right),
\]

\[^4 a_7 = l_2 \left(l_1^2 - l_2^2 \right) \left(A_{3x} A_{4x} - A_{3y} A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right),
\]

\[^4 a_8 = -l_2 \left(l_1^2 - l_2^2 \right) \left(A_{3x} A_{4x} - A_{3y} A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right),
\]

\[^4 a_9 = 0,
\]

\[^5 a_1 = -\frac{1}{2} l_1 l_2 \left(c \alpha_2 \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) \right) + l_1 l_2 c \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) - A_{4y} \sin \left(\beta_1 - \beta_2 \right) \sin \left(\beta_1 - \beta_2 \right),
\]

\[^5 a_2 = \frac{1}{2} l_1 l_2 \left(A_{3y} - A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right) + l_1 l_2 c \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) + A_{4} \sin \left(\beta_1 - \beta_2 \right) s \beta_2,
\]

\[^5 a_3 = \frac{1}{2} l_1 l_2 \left(A_{3y} - A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right) + l_1 l_2 c \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) s \beta_2,
\]

\[^5 a_4 = \frac{1}{2} l_1 l_2 \left(A_{3y} - A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right) + l_1 l_2 c \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) s \beta_2,
\]

\[^5 a_5 = \frac{1}{2} l_1 l_2 \left(A_{3y} - A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right) + l_1 l_2 c \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) s \beta_2,
\]

\[^5 a_6 = \frac{1}{2} l_1 l_2 \left(A_{3y} - A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right) + l_1 l_2 c \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) s \beta_2,
\]

\[^5 a_7 = \frac{1}{2} l_1 l_2 \left(A_{3y} - A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right) + l_1 l_2 c \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) s \beta_2,
\]

\[^5 a_8 = \frac{1}{2} l_1 l_2 \left(A_{3y} - A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right) + l_1 l_2 c \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) s \beta_2,
\]

\[^5 a_9 = \frac{1}{2} l_1 l_2 \left(A_{3y} - A_{4y} \right) \sin \left(\beta_1 - \beta_2 \right) + l_1 l_2 c \alpha_1 (A_{3x} - A_{4x}) \sin \left(\beta_1 - \beta_2 \right) s \beta_2,
\]

\[(A.1)\]

where, \(K_3 = A_{3x}^2 + A_{3y}^2 + A_{3z}^2, K_4 = A_{4x}^2 + A_{4y}^2 + A_{4z}^2\).

Notations

- \(\mathbb{R}^3\): Euclidean space
- \(\mathbb{R}^{3+1,1}\): Conformal geometric space
- \(c\): The subscript \(c\) represents the vector in \(\mathbb{R}^{3+1,1}\)
- \(*\): The superscript \(*\) represents conjugation
- \(x\): A point expressed in \(\mathbb{R}^3\); that is, \(x = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3\).

Competing Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This research is sponsored by the National Natural Science Foundation of China (Grant no. 51375059), the Special Fund for Agro-Scientific Research in the Public Interest of China (Grant no. 201313009-06), and the National Key Technology R&D Program of the Ministry of Science and Technology of China (Grant no. 2013BAD17B06).
References

