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The largest percentage of China’s total coal consumption is used for coal-fired power generation, which has resulted in the power
sector becoming China’s largest carbon emissions emitter. Most of the previous studies concerning the driving factors of carbon
emissions changes lacked considerations of different socioeconomic factors. This study examines the impacts of eight factors from
different aspects on carbon emissions within power sector from 1981 to 2013 by using the extended Stochastic Impacts by Regression
on Population, Affluence and Technology (STIRPAT) model; in addition, the regression coefficients are effectively determined by
a partial least squares regression (PLS) method. The empirical results show that (1) the degree of influence of various factors from
strong to weak is urbanization level (UL) > technology level (𝑇1) > population (P) > GDP per capita (A) > line loss (𝑇2) > power
generation structure (𝑇3) > energy intensity (𝑇4) > industry structure (IS); (2) economic activity is no longer the most important
contributing factor; the strong correlation between electricity consumption and economic growth is weakening; and (3) the coal
consumption rate of power generation had the most obvious inhibitory effect, indicating that technological progress is still a vital
means of achieving emissions reductions.

1. Introduction

Since the 1960s, climate change has become a scientific issue
that has been widely concerned. The world has reached a
consensus on limiting the rise in temperature to 2 degrees
as a long-term goal to address climate change. According
to the United Nations Commission on Climate Change
(UNCCC), greenhouse gases (GHGs) concentrations in the
atmosphere must be controlled at 450 ppm or less, and the
target of keeping global warming to no more than about
2 degrees Celsius is expected to be achievable. The fifth
assessment report released by Intergovernmental Panel on
Climate Change (IPCC) claimed that themassive use of fossil
fuel based on human activity is the main cause of increasing
GHGs in recent years, especiallyCO2 emissions. From 1990 to
2012, a substantial increase in global coal production resulted
in the power sector-generated CO2 emissions doubling, with

this sector becoming the world’s largest carbon emissions
sector, accounting for 42% [1].

Over the past 30 years, China’s economic growth has
been close to 10% on average; energy consumption and
CO2 emissions have increased dramatically, and China has
become the largest carbon emitter worldwide, accounting for
25% of the global carbon emissions [2]. The large amount of
CO2 emissions prompted China to recognize its international
responsibilities; in 2009, the Chinese government claimed
that it would strive to cut its carbon intensity by 40–45%
before 2020, comparedwith that in 2005; in addition, a formal
commitment on reaching the peak of its GHGs emissions
by approximately 2030 while striving to peak earlier was
also made by the Chinese government in 2014 [3]. CO2
emissions are closely related to fossil energy consumption;
thus, the peak emission goal formed the reverse transmission
mechanism for coal consumption, indicating that the amount
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Figure 1: The carbon dioxide from China’s power sector (1990–
2013).

of coal consumption in China in 2020 and 2030 must be less
than 3.8 billion tons and less than 3.4 billion tons, respectively
[4].

Electricity generation is mainly dominated by coal in
China; coal consumption for the power sector accounted for
44.73% of the total. Based on our estimations, there was a
dramatic growth in the carbon emissions of power sector
between 1981 and 2013 (see Figure 1); to be more specific,
it had reached the peak at 3758 MT in 2013, accounting for
41.8% of China’s total carbon emissions, which also resulted
in this sector becoming China’s top carbon dioxide emitter.

The 13th Five-Year Plan states that the carbon emis-
sions from power and other key industries should be
controlled effectively and that development areas should
take the lead in achieving peak emissions targets [14].
Understanding the driving factors involved in economics,
society, and industry of emissions is essential towards
giving policies for the future development of the power
sector.

Over the past 30 years, the full-calibre installed power-
generating capacity in China has increased by a factor of
22.7 times, from 60 gigawatts (GW) in 1980 to 1360GW
in 2014, and power consumption has increased by a factor
of 18.7 times, from 295 TWh in 1980 to 5523 TWh in 2014
[15]. However, this country is entering a slower economic
growth, moving from an economy driven by investment and
exports to one mainly relying on consumption and services;
the growth of electricity demand has also been slowing; the
growth of electricity consumption has also been undergo-
ing a transition from depending on energy intensiveness
to emerging industries, service industries, and residential
electricity demands. Considering the social and economic
factors influencing carbon emissions from the power sector
under conditions of new urbanization and industrialization
processes, we must determine which policies will have better
effects.

The structure of this paper is mainly divided into five
sections, as follows: Section 1 is the introduction. Section 2
reviews the previous work on this study. Section 3 presents
the calculation of carbon emissions from the power sector,
the basic STIRPAT model and its extended form, and the
PLS method to manage multicollinearity. Section 4 describes

the main results and provides a discussion and Section 5 is
conclusions and potential policy implications.

2. Literature Review

2.1. Research on Driving Factors behind Power Sector. As the
main sector for energy processing and conversion, the power
sector plays a key role in achieving low-carbon economy.
The changes in carbon emissions from the power sector
are affected by multiple factors. Previous scholars have used
different methods and thus drawn different conclusions.
Malla [6] employed the LMDI model for studying the
effects of three factors influencing carbon emissions within
electricity industry from 7 countries; the results showed
that, during period 1990–2030, the effect of the electricity
production remains the major factor responsible for rise in
emissions. LMDI method was also used by Shrestha et al.
[5] to conclude that the dominant factor behind the perfor-
mances of CO2 emissions varies from one country to another.
Decomposition model was used by Steehhof and Weber
[7] to estimate the factors affecting the trends of Canadian
electricity industry’s carbon emissions, while the authors took
considerations of weather and government policies. A factors
decomposition model of CO2 emission changes from China’s
electricity production was built by Hou and Tan [8] based on
LMDImethod; the changes in carbon emissions by electricity
production were decomposed into five factors: income effect,
electricity production intensity, power production structure,
population effect, and coal consumption rate. Zhang et al. [9]
used LMDI method to find the rules of influence factors of
carbon emissions and finally pointed out that economic activ-
ities were the main contributing factors, but the efficiency of
electricity productionwas vital in reducing carbon emissions.
Different from Zhang et al. [9], Yang and Lin [11] extended
the sample range, indicating that EI (electricity intensity) and
EAs (economic activities) are the main factors driving CO2
emissions changes from the power industry, accounting for
42.33% and 57.05% of the total increase during 1985–2011;
they also confirmed that EE (energy efficiency) in the power
industry plays a key role in energy savings and emissions
reductions. Zhao et al. [10] applied autoregressive-distributed
lag (ARDL)model to estimate the CO2 emissions frompower
industry in China from 1980 to 2010; the results showed
that equipment utilization hours had the most significant
impact on CO2 emissions; in addition, the added value of
the industry had a positive influence in the short term,
and the pressures created by CO2 emission reduction are
an important motivator of technological progress within the
power industry.

Socioeconomic drivers related to CO2 emissions in Iran’s
power sector are fully considered by Noorpoor and Kudahi
[13]; the outputs of the STIRPAT model showed that they
both had played a positive role in increasing these emissions.
Karmellos et al. [12] used an LMDI model to investigate the
key drivers behind carbon emissionswithin the power sectors
in all of the European Union countries from 2000 to 2012;
in addition, the sample data were divided into two stages to
detect the effects of the economic crisis.
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Most of the previous studies have adopted the LMDI
model, as it has a strong theoretical basis and adaptability,
is easy to use, and offers better results interpretation. LMDI
has been widely used in different countries, sectors, and
environmental problems [16–18]; however, the factors that
can be investigated by the index decomposition method still
have some limitations.The decomposition factors are similar,
and many other factors cannot be included in the analysis.
In the past research, there have been few studies unraveling
the nature of the relationship between CO2 emissions and
socioeconomic factors, and the sample data lagged behind;
the explanatory variables were selected from one particular
point of view, which paid insufficient attention to social,
economic, and household consumption (see Table 1).

2.2. The Application of the STIRPAT Model to CO2 Emissions.
GHGs emissions from human activities are mainly affected
by drivers, such as population, affluence, and technological
progress; on this issue, the IPAT model and its derivative
STRIPAT model or deformation are among the mainstream
research methods with the characteristics of flexible design
parameters and targeted research problems. Li et al. [19]
combined the path analysis with STIRPAT model to discuss
the driving factors behind China’s growing carbon emissions
and got the contributing degree of the factors. Similar studies
were performed by Lin et al. [20]. This model has also been
applied by Fan et al. [21] to explore the effects of population,
affluence, and technology on the environmental impact of
countries with different income levels. In an empirical analy-
sis on the factors influencing CO2 emissions in Beijing,Wang
et al. [22] introducedR&Doutput to represent the technology
level and finally concluded the emphasis of carbon emissions
reduction.

When multicollinearity exists between variables, a few
scholars have applied ridge regression to handle it [23–25].
However, due to subjectivity, the method cannot accurately
reflect the results. As the association between variables tends
to be complex and can be two-way, the traditional ordinary
least square (OLS) method sets too many restrictions. The
partial least squares (PLS) method can better solve these
problems; specifically, it includes more information about
independent variables in the algorithm; and these character-
istics have been gaining favour by scholars in recent years
[26, 27].

Compared with other models, the STIRPAT model is
more reliable and informative. People can choose different
indicators to reflect the development degree in a region;
therefore, this model could be better employed for analysis of
the driving factors at different levels of the environment in a
region. According to the above review, the research based on
STIRPATmodels has focused on the national level or the city
level, and there is a paucity of studies applying the STIRPAT
model to the power industry. This paper contributes to
closing this gap.

With the acceleration of urbanization, China’s energy
consumption has gradually turned from the production type
to the consumer type [28], whichnot only has led to economic
and social changes but also has affected lifestyles and energy

consumption changes. Few studies have fully considered the
macroeconomic and social background regarding analysis
of the drivers of emissions behind China’s power sector,
for example, the population, residents’ income, and the
urbanization level. China has experienced an adjustment of
industrial structure upgrades, economic growth is slowing,
and people’s living conditions have gradually improved; then
the impact of these factors cannot be ignored.

3. Methods and Data

3.1. Data Collection. The paper adopted the data interval
1981–2013, and the data for total population and urbaniza-
tion rate were collected from the China Statistic Yearbook
(1982–2013); we used 1981 as the base year, and the GDP per
capita was converted to constant prices.

The data for the proportion of second industries comes
from the China Energy Statistics Yearbook (1982–2014). The
data for the proportion of thermal power generation over
total power generation, the line loss rate, the coal con-
sumption rate of power plants over 6000 kW, and electricity
consumption per unit of GDP were drawn from the China
Electricity Council (CEC).

3.2. Calculation of Carbon Emissions from China’s Power Sec-
tor. The IPCC [29] provided specific principles and methods
for calculating GHGs emissions in 2006, which have been
widely used. The calculation of CO2 emissions from China’s
power sector is based on the IPCC method 1, combining
the related parameters from the guide for the compilation
of provincial GHG inventories, during 1981–2013. Assuming
that noCO2 emissionswere generated in the process of power
consumption, the CO2 emissions were calculated from the
perspective of power production.

CO2 = 8∑
𝑖=1

CO2,𝑖 = 8∑
𝑖=1

𝐸𝑖 ×NCV𝑖 × CEF𝑖 × COF𝑖 × 4412 . (1)

Because there is no separate category of the power
sector in China’s statistical yearbooks, the steam/hot water
production and supply sector were used as a substitute for
the power sector. In (1) 𝐸 represents energy consumption,
the data of which in power production process comes from
China energy statistical yearbook (1982–2014), and 𝑖 repre-
sents energy types, including coal, coke, crude oil, gasoline,
kerosene, diesel oil, fuel oil, or natural gas. NCV represents
the average low caloric value; CEF represents the coefficient of
carbon emissions per unit of heat; COF represents the carbon
oxidation factor, that is, the energy-burning carbon oxidation
rate; and 44 and 22 represent themolecular weights of carbon
dioxide and carbon, respectively. Referring to the actual
situation of China, among the above parameters, NCV was
adopted from the appendix of the “China Statistical Yearbook
2013”; CEF and COF were adopted from the “Provincial
Greenhouse Gas Inventory Preparation Guide.”

3.3. The STIRPATModel. The classic environmental pressure
evaluation model (IPAT model) was raised by the American
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Table 2: Description of the model variables.

Variable Symbol Definition Unit
Carbon emissions 𝐼 Power sector related carbon emissions 104 ton
Population 𝑃 Total population 104 units
Economic level 𝐴 GDP per capital (1981 = 100 constant) yuan

Coal consumption rate 𝑇1 Standard coal consumption per unit power
generation g/kWh

Line lose rate 𝑇2 Proportion of the loss of electricity over the
total electricity power generation in power grid %

Power generation Structure 𝑇3 Proportion of thermal power generation over
total power generation %

Energy intensity 𝑇4 Power consumption per unit of GDP kWh per 104 yuan

Industrial structure IS Proportion of second industry∗ accounting for
total GDP %

Urbanization level UL Proportion of city population over the total
population %

∗“Second industry” here simply refers to “industry; construction” in China Statistical Yearbooks.

ecologist Ehrlich and Holdren [30] in the 1970s; the three
factors that directly affect the environment were the popula-
tion (𝑃), affluence (𝐴), and technology (𝑇). Establishing the
identical relative formula of four variables,

𝐼 = 𝑃 × 𝐴 × 𝑇. (2)

This formula provides a conceptual framework for the
relationships among the four variables with a simple theory
and form.There are deformations of this equation: 𝐼 = PBAT
[31] and 𝐼 = PACT [32]; however, both of these models can
only estimate the proportionate impact. Dietz and Rosa [33]
proposed the improved nonlinear STIRPAT model, which
abandoned the assumption of unit elasticity, so as to facilitate
the empirical analysis, and it can realize the assessment of
the environmental pressure by various types of driving factors
through the decomposition of technical items.

𝐼𝑡 = 𝛼𝑃𝑏𝑡 𝐴𝑐𝑡𝑇𝑑𝑡 𝑒𝑡. (3)

For quantitative analysis of sequence data, the model was
changed into the logarithmic form:

ln 𝐼𝑡 = 𝛼 + 𝑏 ln𝑃𝑡 + 𝑐 ln𝐴 𝑡 + 𝑑 ln𝑇𝑡 + 𝑒𝑡, (4)

where 𝛼 is the constant term, t indicates the period, e is the
error term, and b, c, and d stand for the elastic coefficients of
the independent variables, indicating the percentage change
in environmental impact caused by the percentage changes in𝑃,𝐴, and𝑇. Regardless ofwhether themodel is the traditional
IPAT model or the random STIRPAT model, 𝑃, 𝐴, and 𝑇
can be decomposed according to the specific circumstances.
Therefore, formula (4) is reformulated as formula (5):

ln 𝐼𝑡 = 𝛼 + 𝑏 ln𝑃𝑡 + 𝑐 ln𝐴 𝑡 + 𝑑 ln𝑇𝑖𝑡 + 𝑓 ln𝑇2𝑡
+ 𝑔 ln𝑇3𝑡 + ℎ ln𝑇4𝑡 + 𝑗 ln IS + 𝑘 lnUL + 𝑒𝑡. (5)

The variables in formula (5) are defined as follows: 𝐼
represents carbon emissions, and𝑃 represents the population

size, which is different from [10], who omitted the population
factor. 𝐴 represents economic level indicated by GDP per
capita, and 𝑇 stands for the technology level, which has been
decomposed into 𝑇1, 𝑇2, 𝑇3, and 𝑇4. UL and IS represent the
urbanization level and industrial structure (see Table 2).

3.4.Multicollinearity Testing. Multicollinearity refers to accu-
rate or approximately accurate linear relationships between
explanatory variables. There are two types of results: first,
if there is perfect collinearity between various explanatory
variables, the regression coefficients are uncertain, but this
situation is very rare in reality; second, if the collinearity
is high but not complete, the estimate of the regression
coefficients has a tendency to result in large standard errors.
The correlation coefficientmatrix of each of two variables (see
Table 3) showed that a few correlation coefficients between
the various explanatory variables can be high; for further
inspection, the variance inflation factor (VIF) method was
used to examine the multicollinearity between variables. The
VIF is the variance inflation factor calculated by multiple
determination coefficients determined by auxiliary regres-
sion ofmultiple explanatory variables.When theVIF is larger,
it explains that the multicollinearity among the variables
is stronger. When VIF ≥ 10, indicating that there exists
serious multicollinearity between explanatory variables, it
can unduly influence the results of least squares estimation.
In this study, the VIFs of the variables ln𝑃, ln𝐴, ln𝑇1, ln𝑇2,
and lnUL are far greater than 10, so there exists a serious
problem of multicollinearity (see Table 4). As shown in the
illustration, the variables ln𝐴, ln𝑇2, and ln𝑇3 cannot pass the𝑡-test, which means the results gained from the OLS method
are questionable.

3.5. Partial Least Squares Regression (PLS) Method. Wold et
al. [34, 35] proposed a new multivariate statistical analysis
method to overcome multicollinearity, namely, partial least
squares regression (PLS). It can be performed under the
conditions of the existence of serious multiple correlations
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Table 3: Correlation matrix between variables.

ln I ln P lnA ln T1 ln T2 ln T3 ln T4 ln IS lnUL
ln I 1.00
ln P 0.973∗∗ 1.00
lnA 0.961∗∗ 0.960∗∗ 1.00
ln T1 −0.978∗∗ −0.940∗∗ −0.956∗∗ 1.00
ln T2 −0.883∗∗ −0.797∗∗ −0.861∗∗ 0.917∗∗ 1.00
ln T3 0.593∗∗ 0.687∗∗ 0.548∗∗ −0.515∗∗ −0.357∗ 1.00
ln T4 −0.521∗∗ −0.678∗∗ −0.60∗∗ 0.494∗∗ 0.288 −0.552∗∗ 1.00
ln IS 0.544∗∗ 0.535∗∗ 0.446∗∗ −0.430∗ −0.282 0.469∗∗ −0.348∗∗ 1.00
lnUL 0.992∗∗ 0.964∗∗ 0.963∗∗ −0.980∗∗ −0.916∗∗ 0.561∗∗ −0.539∗∗ 0.494∗∗ 1.00
∗∗Significant at 1% level.
∗Significant at 5% level.

Table 4: Driving factors of carbon emissions by OLS.

Unstandardized coefficients Std. error Standardized coefficients 𝑡-statistic Sig. VIF
𝐶 −41.953 7.343 −5.713 .000
ln𝑃 3.977 .732 .465 5.434 .000 108.463
ln𝐴 .005 .035 .006 .148 .884 23.876
ln𝑇1 −1.320 .365 −.174 −3.619 .001 34.142
ln𝑇2 .503 .361 .060 1.393 .177 27.473
ln𝑇3 −.605 .518 −.018 −1.169 .254 3.558
ln𝑇4 1.235 .139 .133 8.897 .000 3.295
ln IS 1.077 .243 .053 4.436 .000 2.087
lnUL 1.296 .265 .479 4.891 .000 141.894
Dependent variables: ln 𝐼.

in the variables, and it contains all of the original variables
in the final model. The main discrepancy between PLS
method and ordinary multiple regression analysis is that PLS
extracted a number of new synthetic variables (also called
components) with the best explanatory ability for the system,
rather than directly adopting the original variables set. The
results obtained by PLS method, therefore, are more reliable
and holistic.

The main principle of the PLS method is that the compo-
nents 𝑡1 and 𝑢1 are extracted from the data tables of𝑋 and 𝑌,
respectively.The components are totally independent of each
other and should contain as much information as possible
about the original variables. In addition, the correlation
between the two should achieve a maximum.

After all the data were standardized, PLS implements the
regression of 𝑋 to 𝑡1 and 𝑌 to 𝑢1; if the satisfactory accuracy
of the model has been achieved, the algorithm terminates;
otherwise, the second regression analysis is implemented,
and so forth, until satisfactory accuracy can be reached. PLS
is an iterative algorithm built in; it is almost impossible to
calculate by hand, and this study uses software SIMAC-P for
this research.

The index Variable Importance for Projection (VIP) is
used to judge the importance of every independent variable.
It is generally believed that when VIP is larger than 1,
the corresponding independent variables are important and

when VIP is less than 0.5, the independent variables are not
important.

VIP𝑗 = √ 𝑝𝑅𝑑 (𝑌; 𝑡1, . . . , 𝑡𝑚)
𝑚∑
ℎ=1

𝑅𝑑 (𝑌; 𝑡ℎ) ∗ 𝑤2ℎ𝑗. (6)

In the above formula, VIPj represents the VIP of 𝑥𝑗 (𝑗 =1, 2, . . . , 𝑝); 𝑅𝑑(𝑌; 𝑡1, . . . , 𝑡𝑚) = ∑𝑚ℎ=1 𝑅𝑑(𝑌; 𝑡ℎ) means the
accumulative capacity; 𝑡1, . . . , 𝑡𝑚 are principal components
extracted from the variable𝑋,𝑤ℎ𝑗 is the 𝑗th component of the
axis 𝑤ℎ, and it is used to measure the marginal contributions
of 𝑥𝑗 for the constitution of component 𝑡ℎ, and for any ℎ =1, 2, . . . , 𝑚,

𝑝∑
𝑗

𝑤2ℎ𝑗 = 𝑤ℎ𝑤ℎ = 1. (7)

4. Results and Discussion

4.1. Model Results. Firstly, the goodness of fit of the model
can be illustrated by two important tables or plots: the 𝑡1/𝑡2
scatter plot (also called the𝑇2 oval plot) and 𝑡1/𝑢1 scatter plot.𝑇2 oval plot is used to observe the distribution of sample
points and similarity structure in the plane; 𝑡1 and 𝑡2 carry
the most information about the 𝑋 variable and can offer the
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greatest degree of interpretation of the 𝑌 variables. If all the
sample data are included in the 𝑇2 oval plot, it indicates that
there are no aberrance points, and the sample data can be
accepted perfectly [36]. Obviously, all the sample points in
this study are included in the oval (see Figure 2), and there is
no need to make changes in the model.

In the 𝑡1/𝑢1 scatter plot, if 𝑡1/𝑢1 relationship is presented
as near linear, the establishment of the model is reasonable
[36]. It is clear from the illustration (Figure 3) that 𝑡1 has
a significant linear relationship with 𝑢1; thus, 𝑡1 and 𝑢1 can
well represent the variables 𝑋 and 𝑌, respectively, and it is
reasonable to establish the model by PLS.

In the scatter plots of predicted value and observed value
of carbon emissions by PLS model (see Figure 4), if all of
the data points are distributed in the vicinity of the diagonal,
indicating that the difference between the predicted values
and the original observations is very small, the fitting results
are satisfactory [36]. It can be seen from Figure 4 that the
original observations and the predicted values show good
linear relationship, indicating that fitting of themodel is ideal.

Table 5: The regression coefficients results of the PLS method.

Components extracted 𝑡1 𝑡1 and 𝑡2 𝑡1, 𝑡2, and 𝑡3
Constant 14.315 14.315 14.315
ln𝑃 0.171 0.175 0.201
ln𝐴 0.169 0.178 0.169
ln𝑇1 −0.172 −0.208 −0.216
ln𝑇2 −0.155 −0.199 −0.158
ln𝑇3 0.104 0.042 0.05
ln𝑇4 −0.092 0.019 0.06
ln IS 0.096 0.093 0.134
lnUL 0.175 0.203 0.214𝑅2𝑌(cum) 0.969 0.988 0.990𝑄2(cum) 0.967 0.983 0.984
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Figure 5: The VIP value of each variable in PLS method.

The index VIP is used to judge the importance of every
independent variable; when VIP values are greater than 1,
the fact that corresponding variable plays a more important
role in explaining the 𝑌 variable can be considered. If the
independent variable has a relatively small VIP index (less
than 0.5), the fact that explanatory capability of the variable is
not strong in the model is considered; the VIP values of UL,𝑇1, P,A, and𝑇2 are greater than 1 (see Figure 5). Among them,
UL is the most important contributing factor.𝑅2𝑌(cum) represents the cumulative explanatory capac-
ity of the principal components extracted from the original𝑌
variable to the original 𝑌 variables. 𝑄2(cum) represents the
cumulative cross validation. Generally speaking, when the
two indicators are all greater than 0.8, the results generated by
the model are effective. The coefficient of ln𝑃 was 0.171 after
the principal component 𝑡1 was extracted (Table 5). When 𝑡1
and 𝑡2 were extracted, the coefficient becomes 0.175; when𝑡1, 𝑡2, and 𝑡3 were all extracted, the coefficient became 0.20,
which indicated that a 1% change in the population would
cause a 0.171%–0.201% change in the CO2 emissions. That
is, 𝑃 had an elasticity of 0.171–0.201. When two principal
components 𝑡1 and 𝑡2 were considered, 𝑃, 𝐴, 𝑇1, 𝑇2, and
UL had an elasticity of 0.175, 0.178, −0.208, −0.199, and
0.203, respectively. The regression coefficients and the VIP
value of each variable have good consistency. Therefore, 𝑃,𝐴, 𝑇1, 𝑇2, and UL could be the major drivers of the carbon
emissions. The coefficients of 𝑇3, 𝑇4, and IS were very small
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(<0.1); thus they might have little impact on the carbon
emissions.

4.2. Variable Importance Discussion. According to the model
coefficients and the VIP values of the variables (see Figure 5),𝑃, 𝐴, 𝑇1, 𝑇2, and UL might be the major drivers of carbon
emissions (𝑌). The impact of 𝑇3, 𝑇4, and IS on carbon
emissions (𝑌) could not be determined or was not important.
The specific analysis is as follows.

(1) Urbanization level has the strongest positive influence
on the performances of carbon emissions within power sec-
tor, mainly because there exists a highly positive correlation
between urbanization and the growth of power demand.
Generally speaking, the energy consumption of one urban
resident is three times more than that of one rural resident
in China.The urbanization level in China increased by nearly
30% to reach 53.73% from 1981 to 2013, and the annual average
increased by 1.05%, but it was still 30%–70% of the rapid
development in urbanization urbanization rate. In the pro-
cess of urbanization rate from 50% to 70%, a 1% increase in
urbanization rate, the total electricity consumption increased
by an average of 4.6% [37]. The electricity consumption and
urbanization rates in developing countries are mainly related
to exponential growth, but in developed countries the two
rates present a logistic growth curve model, and there are
signs of the saturation of power demand.

(2) The technical indicators 𝑇1 “standard coal consump-
tion per power generation” and 𝑇2 “line loss rate” both
have strong explanatory power for carbon emissions. The
former has themost obvious inhibitory effects, indicating that
technological progress is still the vital means for achieving
emissions reductions in China’s power sector. This finding
is the same as the studies of some previous scholars [9, 11].
The coal consumption rate continued to show a downward
trend, falling from 442 g/kWh in 1981 to 302 g/kWh in 2013,
and it is related to the national policy and development
tactic. The line loss rate is the second major driving factor
in inhibiting carbon emissions from the power industry,
decreasing from 9% in 1981 to 6.7% in 2013. Because the
electricity production and consumption are large, losses in
transmission and distribution cannot be ignored. The power
losses in transmission and distribution in China amounted
to 289.616 TWh in 2012 or more than two years of electricity
consumption in Shanghai in the current year. Although
China has increased its investment in the construction and
development of power grids, some cities still have outdated
and aging power equipment.

(3) Growth in population is also an important contributor
to carbon emissions. First, population growth will boost
demand for electricity generation; second, electrification has
improved the use of household appliances, most of which
are domestically produced; thus, manufacturing will drive
the demand for electricity generation. China has always been
a country with a large population, and although the one-
child policy led to a lower growth rate of the population, the
total population still shows a growing trend. The population
rate in China has been growing at close to 1% per annum
during 1981–2013. Chinese thermal power generation has
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Figure 6: Electricity growth rate and electricity elasticity in China,
1990–2014 (the China Statistic Yearbook).

risen by an average of 9.32% annually on the same time; its
growth rate was significantly higher than the former. China’s
annual CO2 emissions per person have reached 6 tonnes,
and some of the developed eastern regions have reached
10 tonnes, showing a sustained growth trend [38, 39]. This
growth has approached the peak CO2 emissions of Europe,
Japan, and other developed countries, and it can be predicted
that the carbon emissions from power sector will maintain
their growth trend with the increase in the total population
in China.

(4) Different from the conclusions that have been reached
in some papers [9], economic activities are not the most
important contributor in promoting carbon emissions from
power sector in China. Understanding the relationship
between economic growth and electricity demand is essential
for power system planning. Qiu and Dong [40] thought that
there is a strong connection between power consumption and
economic development; however, “decoupling” phenomenon
of these occurs at a specific time.The growth rate of electricity
production in China has been substantially synchronized
with the electricity elasticity coefficient (see Figure 6) from
1990 to 2014, and a small decline could be seen in the
electricity elasticity coefficient from 2013.The average annual
electricity growth speed was 5.7% in China during the
“Twelfth Five-Year Plan” (from 2011 to 2015) period, with an
overall slowdown of nearly 50%, compared with an average
of 11% during “Eleventh Five-Year Plan” (from 2006 to
2010) period, suggesting that as China’s economy has entered
a phase of low growth in the past two years, electricity
consumption has slowed down a lot.

(5) The weakest relationship exists between industrial
structure and carbon emissions from power sector. As the
adjustment of second industries has not been obvious from
1981 to 2013. The proportion of second industries in total
industry decreased from 45.81% in 1981 to 43.67% in 2013,
presenting a small change in the float.

5. Conclusions and Policy Implications

With the significant increase of carbon emissions from the
power sector, it should be given the priority by policymakers.
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This paper examines the impacts of seven factors from dif-
ferent aspects on carbon emissions within power sector from
1981 to 2013 using the STIRPAT model. The empirical results
determined by PLS method indicated that the main drivers
from strong to weak were as follows: urbanization level (UL)> technology level (𝑇1) > population (𝑃) > GDP per capita
(𝐴) > line loss (𝑇2) > power generation structure (𝑇3) >
energy intensity (𝑇4)> industry structure (IS). Different from
the previous conclusions, economic activities were no longer
the most significant contribution factor, implying that as
the economy loses its power, the strong correlation between
electricity demand and economic growth weakened. Indus-
trial structure has the minimum impact on carbon emissions
from the power sector, because the adjustment of second
industries has not been obvious over the past three decades.
Urbanization level was the most significant, positive driving
factor, and the technical indicators “coal consumption rate”
and “line loss rate” both had strong explanatory power for
carbon emissions from the power sector; the former had the
most obvious inhibitory effect, indicating that technological
progress is still the vitalmeans to achieve emissions reduction
in China.

According to the above analysis, policy implications are
proposed for the future development of the power sector.

(1) Improving the Low-Carbon Development Model of Urban-
ization. Both population size and urbanization level have
important impacts on the CO2 emissions from the power
industry; in particular, the urbanization level has the greatest
impact. The government should continue to control the pop-
ulation size and further improve the low-carbon development
model of urbanization, specifically including the promotion
of low-carbon urbanization fiscal policies, the strengthening
of the application of market instruments, and the guiding
of low-carbon lifestyles for residents. There exists a highly
positive correlation of the urbanization rate with electricity
demand growth, and the growth laws are different in the
early, middle, and late stages. Therefore, special attention
should be paid scientifically to the electricity load changes
caused by rural populations transferring to cities, as well as
the medium/long-term forecasts.

(2) Accelerating the Development of Low-Carbon Power Tech-
nology. Clean coal technology is one of the dominant tech-
nologies to solve environmental problems worldwide, such
as the ultrasupercritical (USC) units, the integrated coal
gasification combined cycle power generation (IGCC), and
the circulating fluidized bed (CFB), which should be com-
prehensively promoted in the construction of thermal power
units. Carbon capture and storage (CCS) technology will be
the single largest share of emissions reduction technology
in the future, while CCS technology is still in preliminary
stages in China currently; thus policy makers should focus
their efforts on development and application. At least 60
types of key technical support were needed to achieve low-
carbon economy, 42 of which China has not yet mastered;
that is, 70% of the core technology needs to be imported.
Technical options, to a certain degree, determine the future
of emission levels in China, so the government should

actively strengthen international cooperation in low-carbon
technologies with developed countries, providing a positive
development environment for China’s power industry.

(3) Improving Power Transmission Efficiency and Strengthen-
ing Smart Grid Construction. To further optimize the power
structure, according to the National Energy Administration,
we should control the coal-fired power installed capacity
within 1100GW and vigorously develop new energy sources
such as hydropower and nuclear power. In addition, the
renewable energy acceptance and absorptive intensity should
also be strengthened from the power grid construction.
Smart grid can improve the cross level resource schedul-
ing and enhance the transmission capacity of power grid.
The optimization of the grid structure can fully replace
energy-saving equipment with high energy consumption and
high-loss products, minimizing power consumption in the
transportation process. In brief, smart grids are a win-win
choice because they provide a platform for both private
users and companies to interact with the grid. Strengthening
demand side management will effectively reduce the power
consumption intensity and carbon emissions from the power
sector while helping users achieve energy management to
establish a low-carbon and energy-efficient lifestyle.
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