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Image classification aims to group images into corresponding semantic categories. Due to the difficulties of interclass similarity and
intraclass variability, it is a challenging issue in computer vision. In this paper, an unsupervised feature learning approach called
convolutional denoising sparse autoencoder (CDSAE) is proposed based on the theory of visual attention mechanism and deep
learningmethods. Firstly, saliency detectionmethod is utilized to get training samples for unsupervised feature learning.Next, these
samples are sent to the denoising sparse autoencoder (DSAE), followed by convolutional layer and local contrast normalization
layer. Generally, prior in a specific task is helpful for the task solution. Therefore, a new pooling strategy—spatial pyramid pooling
(SPP) fused with center-bias prior—is introduced into our approach. Experimental results on the common two image datasets
(STL-10 and CIFAR-10) demonstrate that our approach is effective in image classification.They also demonstrate that none of these
three components: local contrast normalization, SPP fused with center-prior, and 𝑙2 vector normalization can be excluded from our
proposed approach. They jointly improve image representation and classification performance.

1. Introduction

In recent years, image classification has been an active and
important research topic in the field of computer vision and
machine learning applications. The basic image classification
algorithm is generally introduced in [1–3] and involves three
main stages in sequence: (1) image sampling, (2) feature
extraction, and (3) classifier designing. In these stages, feature
extraction plays an important role [4], and the efficient
features extracted may increase the separation between
spectrally similar classes, resulting in improved classification
performance.

The feature extraction part is commonly accomplished
by a wide spectrum of different local or global descriptors,
for example, scale invariant feature transform (SIFT) [5],
histogram of oriented gradients (HOG) [6], and local binary
pattern (LBP) [7]. Although these hand-crafted features lead
to reasonable results in various applications, they are only
suitable for a particular data type or research domain and

would result in dismal performance on other unknown
usage [2]. Recently, there is a growing consensus that it is
an alternative approach to utilize deep learning methods
to obtain machine-learned features for image classification.
These deep learning methods aim to extract general purpose
features for any images rather than learning domain adaptive
feature descriptors particularly for certain tasks.

Up to this point, typical deep learning methods include
convolutional neural network (CNN) [8, 9], sparse coding
[10], deep belief network (DBN) [11] and stacked autoencoder
(AE) [12]. Among these models, CNN is one of the main
models in deep learningmethods,which is a hierarchalmodel
that outperforms many algorithms on visual recognition
tasks. One property is alternately using convolution [13] and
pooling [14] structures. The convolution operation shares
weights and keeps the relative location of features and thus
can preserve spatial information of the input data. Despite
its apparent success, there remains a major drawback: CNN
requires large quantities of labeled data, which are very
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expensive to obtain. Stacked AE is another notable learning
method, which exploits a particular type of neural network:
the AE, also called autoassociator [15]—as component or
monitoring device. It can be effectively used for unsupervised
feature learning on a dataset for which it is difficult to obtain
labeled samples [16]. Beyond simply learning features by AE,
there is a need for reinforcing the sparsity of weights and
increasing its robustness to noise. Ng [17] introduced sparse
autoencoder (SAE), which is a variant of AE. Sparsity is a
useful constraint when the number of hidden units is large.
SAE has very few neurons that are active. There is an another
variant of AE called denoising autoencoder (DAE) [18],
which minimizes the error in reconstructing the input from
a stochastically corrupted transformation of the input. The
stochastic corruption process consists in randomly setting
some of inputs (asmany as half of them) to zero. Comparative
experiments clearly show the surprising advantage ofDAE on
a pattern classification benchmark suite.

With the development of deep learning, AE and its
variants are widely used in the field of image recognition. Xu
et al. [19] presented a stacked SAE for nuclei patch classifi-
cation on breast cancer histopathology. They extracted two
classes of 34 × 34 patches from the histopathology images:
nuclei and nonnuclei patches. These two kinds of patches
were used to construct the training set and testing set. The
authors of [20] proposed a method called stacked DAE based
on paper [18], which is a straightforward variation on the
stacked ordinary AE. Besides, stacked DAE was tested on
MINIST dataset, which contains 28 × 28 gray-scale images.
Being similar to the method based on stacked SAE, the
training and testing dataset fed into models are relatively low
in resolution, such as small image patches and low resolution
images (e.g., hand-written digits). Both SAE and DAE are
common fully connected networks, which cannot scale well
to realistically sized high-dimensional inputs (e.g., 256 × 256
images) in terms of computational complexity [21].They both
ignore the 2D image structure.

In order to overcome these limitations, this paper intro-
duces an approach called CDSAE (convolutional denoising
sparse autoencoder) that scales well to high-dimensional
inputs.This approach can effectively integrate the advantages
in SAE, DAE, and CNN. This hybrid structure forces our
model to learn more abstract and noise-resistant features,
which will help to improve the model’s representation learn-
ing performance. CDSAE can map images to feature repre-
sentation without any label information, while CNN requires
large quantities of labeled data. Besides, it differs from con-
ventional SAE and DAE as its weights are shared among all
locations in the input images and thus preserves spatial
locality.

Besides feature extraction mentioned above, the sampler
is another critical component which has a great influence on
the results. Ideally, it should focus attention on the image
regions that are the most informative for classification [22].
Recently, selective attention models have drawn a lot of
research attention [23, 24]. The idea in selective attention
is that not all parts of an image give us information. If we
can attend only to the relevant parts, we can recognize the
image more quickly and using less resources [23]. People

place an object on the foveal with fixations when the gaze is
concentrated on the object and getmost information through
fixations [25]. Compared to the traditional approaches using
a random sampling strategy, we introduce a sampling strategy
to sample fixations from the image, which is inspired by
human selective attention.Moreover, those studies on human
eye fixations demonstrate that there is a tendency in humans
to look towards the image center, which is called the center
bias [26]. It is worth mentioning that incorporating center-
bias prior into saliency estimation has been previously inves-
tigated by a number of researchers [27–29]. Turning to our
work, center-bias prior are absorbed for SPP in our image
classification model.

To summarize, the key contributions of this paper are
elaborated as follows:

(1) A sampling strategy about eye fixations based on
human visual system is proposed, which is inspired
by human eyes. The fixation points and nonfixation
points of images can be got by utilizing saliency
detection model.

(2) A CDSAE model with local contrast normalization
operation is proposed. In this overall model, single-
layer DSAE is used for unsupervised feature learning,
which can effectively extract features without using
any label data. Compared to conventional deep mod-
els, single-layer DSAE has a strength with a smaller
computational learning cost and fewer hyperparame-
ters to tune.

(3) An SPP incorporating center-bias prior is proposed.
This not only maintains spatial information by pool-
ing in local spatial bins but also fully utilizes prior
knowledge of image dataset. To the best of our
knowledge, this is the first work that absorbs prior
knowledge for pooling in image classification.

The remainder of this paper is organized as follows. In
Section 2, we review related works in the literature. Section 3
introduces a sampling strategy based on human vision
attention system. Section 4 describes CDSAE and Section 5
provides the overall classification framework. The details of
our experiments and the results are presented in Section 6,
followed by a discussion and future work.

2. Related Work

Other researchers have also made some headway on con-
structing the convolutional autoencoder (CAE), an unsuper-
vised feature extractor that can scalewell to high-dimensional
input images. Masci et al. [21] propose a kind of CAE,
which directly takes the high-dimensional image data as the
input through training the AE convolutionally. Though this
convolution structure can preserve local relevance of the
inputs, training the AE convolutionally is not easy. For this
problem, Coates et al. [30] first extract patches from the input
images and use patch-wise training to optimize the weights
of a basic SAE in place of convolutional training. Besides,
they further propose that, even with a single-layer network
in unsupervised feature learning, it is possible to achieve
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state-of-the-art performance. In our method, we absorb this
idea and construct a single-layer network for unsupervised
feature learning. Due to its simplicity and efficiency, single-
layer SAEhas awide range of applications. Luo et al. [3] utilize
single-layer SAE for natural scene classification; this idea is
analogous to Coates et al.’s work [30]. Similar method is used
for remote sensing image classification reported in [31].These
locally connected SAE through convolution [3, 30, 31] present
many similarities with each layer of CNN, such as the use of
convolution and pooling.

There are several differences between these works and
ours. Firstly, we adopt the theory of DAE, which can learn
more noise-resistant features. Hence, our model is more sig-
nificant unlike previous works which only use sparsity. Sec-
ondly, local contrast normalization layer is embedded before
pooling layer in our model. In [32], He et al. introduce a spa-
tial pyramid pooling (SPP), which shows great strength in
object detection. In contrast to [3, 30, 31] which only use
single-level pooling, we instead propose an SPP fused with
center-bias prior. Bias is mainly proposed for image saliency
detection in computer vision. It is often closely related to the
application task and could be deliberately utilized as a prior
in specific task to improve the performance of the task [33].

Another branch of related works are human selective
attentionmodels.Many attentionmodels have been proposed
in both natural language processing and computer vision. In
[34], Wang et al. have proven that human read sentences by
making a sequence of fixations and saccades. They explore
attention models over single sentences with guidance of
human attention. In computer vision area, the core concept of
attention models is to focus on the important parts of the
input image, instead of giving all pixels the same weight
[34]. Inspired by the theory of visual attention mechanism,
we propose a sampling strategy about eye fixations based
on human visual system. Our work is also closely related to
the work of Judd et al. [35] who train a model of saliency
directly from human fixations data. Saliency map computed
by saliency detection models is significantly correlated with
human fixation patterns [36].

3. Sampling Strategy Based on
Human Vision Attention System

Methods of saliency detection proposed are selective atten-
tion models which simulate visual attention system. They
can be used to measure the conspicuity of a location, or the
likelihood of a location to attract the attention of human
observers [35]. The saliency map represents the saliency of
each pixel. And it can be thresholded such that a given
percent of the image pixels are classified as fixated and the
rest are classified as not fixated [35]. In this paper, we adopt a
saliency detection model—context-aware saliency—to guide
our sampling task [37]. It is a new type of saliency detection
algorithm which manages to detect the pixels on the salient
objects and only them. This method has proposed that a
pixel 𝑖 is considered salient if the appearance of the patch𝑝𝑖 centered at pixel 𝑖 is distinctive with respect to all other
image patches.𝑑color(𝑝𝑖, 𝑝𝑗) is the Euclidean distance between
the patches 𝑝𝑖 and 𝑝𝑗 in the CIE 𝐿 ∗ 𝑎 ∗ 𝑏 color space,

normalized to the range [0, 1]. If 𝑑color(𝑝𝑖, 𝑝𝑗) is high ∀𝑗, then
pixel 𝑖 is considered salient. And 𝑑position(𝑝𝑖, 𝑝𝑗) denotes the
Euclidean distance between the positions of patches 𝑝𝑖 and𝑝𝑗, normalized by the larger image dimension. A dissimilarity
measure is defined between a pair of patches as

𝑑 (𝑝𝑖, 𝑝𝑗) = 𝑑color (𝑝𝑖, 𝑝𝑗)
1 + 𝑐 ⋅ 𝑑position (𝑝𝑖, 𝑝𝑗) , (1)

where 𝑐 = 3 in our paper. This dissimilarity measure is pro-
portional to the distance in color space and inversely propor-
tional to the positional distance. For every patch𝑝𝑖, we search
for the 𝐿most similar patches {𝑞𝑗}𝐿𝑗=1 in the image (if themost
similar patches are highly different from 𝑝𝑖, then clearly all
image patches are highly different from 𝑝𝑖). As stated before,
a pixel 𝑖 is salient when 𝑑(𝑝𝑖, 𝑝𝑗) is high ∀𝑗 ∈ [1, 𝐿].Therefore,
the single-scale saliency value of pixel 𝑖 at scale 𝑟 can be
defined as

𝑆𝑟𝑖 = 1 − exp{−1𝐿
𝐿∑
𝑙=1

𝑑 (𝑝𝑟𝑖 , 𝑞𝑟𝑙 )} . (2)

Furthermore, we also use four scales (100%, 80%, 50%,
and 30%) of the original image to measure the saliency in a
multiscale image. The saliency at pixel 𝑖 is taken as the mean
of its saliency at different scales (more details can be found in
[37]).

60% of the ground truth human fixations are within the
top 5% salient areas of a saliencymap, and 90% are within the
top 20% salient locations [35]. Saliency map can be thresh-
olded such that a given percent of the image pixels are
classified as fixation and the rest are classified as nonfixations.
Figure 1 shows the saliency detection results for three images
of STL-10 dataset. To avoid missing the nonfixations corre-
sponding to the images, we also sample some nonfixations.
Figure 1(c) shows the fixations and the nonfixations in each
image.Thus, we first randomly select one image of𝑀 images
and then extract a given percent of the fixations and nonfixa-
tions. For each image, the total number of the fixations and
nonfixations is𝑁.This can be represented as a vector inR𝐶 of
the pixel intensity values, with𝐶 = 𝑁×3 (the input image has
three channels—R, G, and B).Therefore, a dataset𝑋 ∈ R𝐶×𝑀
can thus be constructed, where each columndenotes the pixel
intensity values of the fixations and nonfixations sampled
from each image.

4. Convolutional Denoising
Sparse Autoencoder

CDSAE can be divided into three stages: feature learning,
feature extraction, and classification. These stages are in
correspondence with (1) training the single-layer DSAE;(2) convolution, local contrast normalization, and SPP
fused with center-bias prior; (3) support vector machine
(SVM) classification. The power of DSAE lies in the form of
reconstruction-oriented training, where the hidden units can
conserve the efficient feature to represent the input data. In
order to get better representation, the convolution operation
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(a) (b) (c)

Figure 1: (a) Sample images from STL-10 dataset. (b) Saliency maps for original images. (c) Several human fixations and nonfixations of
images. (The green points of circle denote fixations and the red points of diamond denote nonfixations.)

is introduced to encode the input images with the features
extracted by DSAE. A local contrast normalization layer is
embedded after convolution operation. This can improve
feature invariance and increases sparsity (Large-Scale Visual
Recognition with Deep Learning http://cvgl.stanford.edu/
teaching/cs231a winter1314/lectures/lecture guest ranzato.pdf).
Following the local contrast normalization, pooling is
conducted to select significant features and decreases the
spatial resolution. Several types of poolingmethod have been
proposed to subsample the features, for example, average
pooling [46], max pooling [47], stochastic pooling [44], and
spatial pyramid pooling [32]. We propose a new form of SPP
which seamlessly incorporate center-bias prior.

Figure 2 shows how the CDSAE works.

4.1. Feature Learning. Recently, increasing attention has been
drawn to the study of single-layer network for unsupervised
feature learning [3, 31]. Paper [30] has proved that simple but
fast algorithms can be highly competitive, while more com-
plex algorithms may have greater complexity and expense. In
order to extract appropriate and sufficient features with low
computational cost, a single-layer DSAE model is proposed
in this work. The DSAE is a simple but effective extension of
the classical SAE. The main idea of this approach is to train
a sparse AE which could reconstruct the input data from a
corrupted version by manual addition with random noise.

4.1.1. Sparse Autoencoder. AE is a symmetrical neural net-
work structurally defined by three layers: input layer, hidden

http://cvgl.stanford.edu/teaching/cs231a_winter1314/lectures/lecture_guest_ranzato.pdf
http://cvgl.stanford.edu/teaching/cs231a_winter1314/lectures/lecture_guest_ranzato.pdf
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Figure 2: The flowchart of the CDSAE.

layer, and output layer. It can be used to learn the features of
a dataset in an unsupervised manner. The aim of the AE is to
learn a latent or compressed representation of the input data,
by minimizing the reconstruction error between the input
at the encoding layer and its reconstruction at the decoding
layer.

During the encoding step, an input vector 𝑥𝑖 ∈ R𝐶 is
processed by applying a linear deterministic mapping and a
nonlinear activation function 𝑙 as follows:

𝛼𝑖 = 𝑓 (𝑥𝑖) = 𝑙 (𝑊1𝑥𝑖 + 𝑏1) , (3)

where 𝑊1 ∈ R𝐾×𝐶 is a weight matrix with 𝐾 features and
b1 ∈ RK is the encoding bias. In this study, we consider a leaky
rectified linear unit (LReLU) activation function for 𝑙(𝑥).
Because LReLU has better performance than ReLU, it is
widely used in the field of deep learning [48–50]. It can be
represented as

𝑦 = {{{
𝑥 if 𝑥 ≥ 0
𝜛𝑥 if 𝑥 ≤ 0, (4)

and the slope 𝜛 of the LReLU is set to 0.01 [48]. Then we
decode a vector using a separate linear decoding matrix

𝑧𝑖 = 𝑊2𝛼𝑖 + 𝑏2, (5)

where𝑊2 ∈ R𝐶×𝐾 and 𝑏2 ∈ R𝐶 are a decoding weight matrix
and a bias vector, respectively. Feature extractors are learned
byminimizing the reconstruction error of the cost function in
(6). The first term in the cost function is the error term. The
second term is a regularization term (a.k.a. a weight decay
term).

𝐿 (𝑋, 𝑍) = 12
𝑀∑
𝑖=1

𝑥𝑖 − 𝑧𝑖2 + 𝜆2 ‖𝑊‖2 , (6)

where𝑋 and𝑍 represent the training and reconstructed data,
respectively.

In order for the sparseness of hidden units, the method
of [51] is introduced to constrain the expected activation of
hidden nodes.We add a regularization term that penalizes the

values of hidden units, such that only a few of them are bigger
than the sparsity parameter 𝜌 andmost values of hidden units
aremuch smaller than 𝜌. KL(𝜌 ‖ 𝜌) is the sparse penalty term,
which can be denoted as the following formula:

KL (𝜌 ‖ 𝜌) = 𝜌 log 𝜌𝜌 + (1 − 𝜌) log 1 − 𝜌1 − 𝜌 , (7)

where KL(⋅) is the Kullback–Leibler divergence [52]. We
recall that 𝛼 denotes the activation of hidden units in autoen-
coder; let 𝜌 = (1/𝑀)∑𝑀1 [𝛼(𝑖)] be the average activation of 𝛼
averaged over the training set 𝑋𝐶×𝑀. Then our objective
function in the sparse autoencoder learning can be written
as follows:

𝐿 (𝑋, 𝑍) + 𝛽 𝐾∑
𝑗=1

KL (𝜌 ‖ 𝜌) . (8)

With the introduction of the KL divergence weighted
by a sparsity penalty parameter 𝛽 in the objective function,
we penalize a large average activation of 𝛼 over the training
samples by setting 𝜌 small. This penalization drives many
of the hidden units’ activation to be close or equal to zero,
resulting in sparse connections between layers.

4.1.2. Denoising Sparse Autoencoder. In order to force the
hidden layer to learn more robust features and prevent it
from simply discovering the sparsity, we train a DSAE to
reconstruct the input from a corrupted version of it, which is
an extension of SAE. Its objective function is the same as that
of SAE. The only difference is that we have to feed the cor-
rupted input into the input layer. The structure of the DSAE
is demonstrated in Figure 3.Three basic types of noise can be
utilized to corrupt the input of the DSAE. The zero-masking
noise [18] is employed in our model. The key idea of DSAE
is to learn a sparse but robust bank of local features, which
also can be called “convolution kernels.” They can be used
to convolve the whole image in the next convolution layer.
The training procedure of the DSAE is summarized in
Algorithm 1.

In this paper, we view DSAE as a “feature extractor” that
takes training data 𝑋 and outputs a function 𝑓 : R𝐶 → R𝐾
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(1) Input:
(2) Training set𝑋
(3) Weight decay parameter 𝜆, weight of sparse penalty term 𝛽, sparse parameter 𝜌
(4) Procedure:
(5) Initialize parameters (𝑊1, 𝑏1), (𝑊2, 𝑏2)
(6) Get 𝑥𝑖 by stochastic corrupting the input vector 𝑥𝑖.
(7) FOR 𝑗 = 1 to 𝑇 do
(8) Loss = 𝐿(𝑋,𝑍) + 𝛽∑𝐾𝑗=1 KL(𝜌 ‖ 𝜌)
(9) Use L-BFGS algorithm [58] to update (𝑊1, 𝑏1), (𝑊2, 𝑏2)
(10) ENDFOR
(11)Output: (𝑊1, 𝑏1) which is utilized for convolution kernels

Algorithm 1: The training procedure of DSAE.

Input data Corrupted data

Feature

Output data

qD

x1

x2

x3

x4

xn

x1

x2

x3

x4

xn

W1 W2

y1

y2

y3

yk

z1

z2

z3

z4

zn

+1

+1

...
...

...

...

Figure 3: Illustration of a single-layer DSAE. Neurons with cross
denote the corrupted input neural units.

that canmap an input vector 𝑥𝑖 to a new feature vector via the𝐾 features, where𝐾 is the number of hidden units of DSAE.

4.2. Feature Extraction. The above DSAE algorithm yields a
function 𝑓 that transforms an input vector 𝑥𝑖 ∈ R𝐶 to a new
feature representation 𝛼𝑖 = 𝑓(𝑥𝑖) ∈ R𝐾. In this section, we
can apply this feature extractor to our (labeled) training and
testing images for classification.

4.2.1. Image Convolution. In order to extract appropriate
and sufficient features from training and testing images,
convolution is utilized to construct a locally connected DSAE
networks. Each hidden unit connects only a small contigu-
ous region of pixels in the input images. Sounds, natural
images, and, more generally, signals that display translation
invariance in any dimension can be better represented using

convolutional dictionaries [53]. The convolution operator
enables the system to model local structures that appear
anywhere in the signal [53]. It is firstly used in natural images
field by LeCun et al. [54]. Figure 4 illustrates the significance
of the convolution operation. Figure 4(a) is a source image
of STL-10 dataset. (b)–(d) are the convolution kernels (a.k.a.
bases) trained by DSAE. (e)–(g) are the features extracted
from the source image through convolution operation.

Given an image of u-by-u pixels (with𝐹 channels), we can
define a (𝑢−𝑤+1)-by-(𝑢−𝑤+1) image representation (with𝐾
channels), by using our𝑤-by-𝑤 convolution kernel across the
image with some step-size (or “stride”) s equal to or greater
than 1. This is illustrated in Figure 5.

4.2.2. Local Contrast Normalization. The local contrast nor-
malization layer is inspired by computational neuroscience
models [55]. It performs local subtractive and divisive nor-
malizations, enforcing a kind of local competition between
adjacent features in a feature map and between features at
the same spatial location in different feature maps [56]. The
subtractive normalization operation removes the weighted
average of neighboring neurons from the current neuron. For
a given site (i, j) of the kth feature map, it can compute

V𝑘𝑖𝑗 = 𝑥𝑘𝑖𝑗 − ∑
𝑘𝑝𝑔

𝑤𝑝𝑞 ⋅ 𝑥𝑘,𝑖+𝑝,𝑗+𝑞, (9)

where 𝑤𝑝𝑞 is a Gaussian weighting window (of size 9 ×
9 in this work) normalized so that ∑𝑘𝑞𝑝 𝑤𝑝𝑞 = 1. Based
on the result of subtractive normalization, the divisive
normalization computes 𝑦𝑘𝑖𝑗 = V𝑘𝑖𝑗/max(𝜏, 𝜎𝑖𝑗), where
𝜎𝑖𝑗 = (∑𝑘𝑝𝑔 𝑤𝑝𝑞 ⋅ V2𝑘,𝑖+𝑝,𝑗+𝑞)1/2. In our experiments, the con-
stant 𝜏 is set to mean(𝜎𝑖𝑗).

As mentioned above, we can obtain (𝑢 − 𝑤 + 1) × (𝑢 −𝑤 + 1) × 𝐾 feature maps through convolution operation for
a given image. Local subtractive and divisive normalizations
are performed over these 𝐾 feature maps by local contrast
normalization layer.

4.2.3. SPP Fused with Center-Bias Prior. Bias is often highly
related to the application task and sometimes can be delib-
erately used as a prior in a specific task to improve the
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Figure 4: Examples of convolutional feature extraction. (a) is the
source image. (b)–(d) are the convolution kernels learned by the
single-layer DSAE. (e)–(g) are the features extracted from the source
image.

u
s

DSAE

w

Convolution kernel

Locally connected DSAE network through convolution
F channels K channels
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Input image Convolved
feature map

(u − w)/s + 1

Figure 5: Illustration showing feature extraction using a 𝑤-by-𝑤
convolution kernel and a stride of s.

performance of the task [33]. When humans take pictures,
they naturally tend to frame an object of interest near the
center of the image. For this reason, we incorporate the
center-bias prior in our work which indicates the distance
to the center of each pixel. In particular, this specific prior is
generated by a 2D Gaussian heatmap as showed in Figure 6.

SPP (a.k.a. spatial pyramid matching) is an extension
of the Bag-of-Words (BoW) model, which is one of the
most key methods in computer vision. SPP has long been
an important component in the competition-winning and

leading models for image classification [32]. After obtaining
features using local contrast normalization as described
earlier, SPP partitions the feature map into divisions from
finer to coarser levels. The coarsest pyramid level has a single
bin that covers the entire feature map. Figure 7(a) illustrates
an example configuration of 3-level pyramid pooling (3 × 3,
2 × 2, and 1 × 1) about our method. In each spatial bin of
every pyramid level, we pool the responses of each feature
map (throughout this paper we use mean pooling). The bin
sizes can be precomputed for spatial pyramid pooling. After
local contrast normalization, the feature maps have a size of𝑎 × 𝑎. With a pyramid level of ℎ × ℎ bins, we implement
this pooling level as a sliding window pooling, where the
window size win = ⌈𝑎/ℎ⌉ and stride str = ⌊𝑎/ℎ⌋ (⌈⋅⌉ and ⌊⋅⌋
denote ceiling and floor operations). With a 3-level pyramid,
we implement 3 such layers. Output of each pyramid pooling
level is KM-dimensional vector with the number of bins
denoted as M (K is the number of feature maps in the local
contrast normalization layer). In our work, we use a 3-level
pyramid (3 × 3, 2 × 2, and 1 × 1). So level3×3, level2×2, and
level1×1 will generate 9𝐾, 4𝐾, and 𝐾 dimensional vector,
respectively.

According to the size of the three vector dimensions
mentioned above, we generate the corresponding center-bias
prior feature map, respectively. Then we reshape the three
scales feature maps to generate column vectors, which are
used for element-wise product operation with the three-
dimensional column vectors after SPP. This calculation pro-
cess can be showed in Figure 7 (⊙ denotes element-wise
product between vectors in Figure 7). 𝑙2 vector normalization
is usually used to further improve FV performance [57]. The
final image representation is then obtained by concatenating
the results of all local column vectors from level3×3 to level1×1
(followed by 𝑙2 vector normalization). The process of SPP
fused with center-bias prior is summarized in Algorithm 2.

5. Overall Architecture of Image Classification

This section describes the overall architecture of the proposed
method for image classification. Our method consists of four
main parts, as showed in Figure 8: (1) obtaining samples for
unsupervised feature learning; (2) feature learning; (3) feature
extraction; and (4) classification.

(1) First, we adopt context-aware saliency detection
model to compute saliency maps of image dataset, which are
thresholded to get fixated and unfixated points of images. We
first randomly select one image of𝑀 images and then extract
a given percent of the fixations and the nonfixations. For each
image, the total number of the fixations and the nonfixations
extracted is𝑁.This can be represented as a vector inRC of the
pixel intensity values, with 𝐶 = 𝑁 × 3 (the inputs are natural
color images). Therefore, a dataset 𝑋 ∈ R𝐶×𝑀 can thus be
constructed.

(2) Then, the dataset 𝑋 is fed into a 𝐾-hidden-unit
network, which is used for unsupervised feature learning of𝐾 feature extractors, according to the DSAE model.

(3) After the unsupervised feature learning, convolution
is utilized to construct a locally connected DSAE networks.
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(a) (b)

Figure 6: (a) A sample of STL-10 dataset. (b) Center-bias prior feature map.
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Figure 7: Illustration of spatial pyramid pooling fused with center-bias prior. (a) Spatial pyramid pooling layer. (b) Multiscales feature maps
based on center-bias prior.

We can extract appropriate features from the training and
testing images using the learned feature extractors. By using
local contrast normalization method, we can increase feature
sparsity and improve optimization of model. SPP fused with
center-bias prior is utilized to obtain final image representa-
tion.

(4) Finally, our proposed method is combined with a
linear support vector machine (SVM) to predict the label.
In the case of multiclass predictions, we use the LIBLINEAR
implementation for the SVM classification. It is a family of
linear SVM classifiers for large-scale linear classification and
an open source library which supports logistic regression and
linear SVM. In our experiment, we apply L2-loss linear SVM
for classification task. In addition, the regularization param-
eters𝐶 of the linear SVM classifier are determined by fivefold

cross-validation with the arrangement of [2−4, 2−3, . . . , 26]. A
detailed description can be found in [59].

6. Experimental Setup and Results

All experimentswere conducted using the computer platform
of Intel� Core� i5-4430 CPU@3.00GHz, 32.0GHz mem-
ory, Win 7, MATLAB R2015 (b). In order to improve the
experimental operation speed, we used a parallel computing
toolbox of MATLAB.

In this section, we first describe the datasets used for
the experiments and display the detailed parameter settings
of the proposed method. STL-10 [30] and CIFAR-10 [60]
are standard datasets for unsupervised feature learning and
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(1) Input:
(2) An input image 𝐼
(3) 𝐾 feature maps after local contrast normalization layer
(4) Procedure:
(5) Generate center-bias prior feature maps based on 𝐼
(6) FOR ℎ fl 1 to 3 DO
(7) For current pyramid level of ℎ × ℎ bins, compute win = ⌈𝑎/ℎ⌉ and str = ⌊𝑎/ℎ⌋
(8) Implement this pooling level and output 𝐾 × ℎ × ℎ-dimensional vectors 𝜉ℎ×ℎ
(9) Reshape center-bias prior feature map to generate column vector𝐻ℎ×ℎ
(10) 𝑓ℎ×ℎ ← 𝜉ℎ×ℎ⨀𝐻ℎ×ℎ
(11) 𝑓ℎ×ℎ ← 𝑓ℎ×ℎ‖𝑓ℎ×ℎ‖2
(12) ENDFOR
(13) Concatenate 𝑓ℎ×ℎ (1 ≤ ℎ ≤ 3) to form the final spatial pyramid representation f

(14) 𝑓 ← 𝑓‖𝑓‖2
(15)Output 𝑓

Algorithm 2: The pipeline of SPP fused with center-bias prior.

deep learning networks. Figure 9 shows ten examples from
each image set. In this part, classification results of different
models on these two datasets are showed with rigorous
analysis. Then in the next part, the main techniques used in
our model are evaluated with these two datasets.

6.1. Experiment and Results Analysis of STL-10 Dataset. The
STL-10 dataset is a natural image set for developing deep
learning and unsupervised feature learning algorithms. Each
class has 500 training images and 800 testing images.The pri-
mary challenge is due to the smaller number of labeled train-
ing examples (100 per class for each training fold). Additional
10,0000 unlabeled images are provided for unsupervised
learning.This dataset contains ten classes: (1) airplane; (2) car;
(3) bird; (4) cat; (5) dog; (6) deer; (7) horse; (8) monkey; (9)
ship; and (10) truck with a resolution of 96 × 96. Figure 9(a)
shows some examples of STL-10 dataset. This dataset can be
obtained at http://cs.stanford.edu/∼acoates/stl10. We follow
the standard setting in [30, 61]: (1) performing unsupervised
feature learning on the unlabeled data; (2) performing super-
vised learning on the labeled data using predefined tenfold
of 100 examples from the training data; and (3) reporting
average accuracy on the full test set.

First of all, we used context-aware saliency detection
method to calculate saliency maps about 100,000 unlabeled
images of STL-10. Saliency maps were thresholded such that
a given percent of the image pixels were classified as fixations
and the rest were classified as nonfixations. For sampling of
the fixated points and nonfixated points, we referred to the
method of Judd et al. [35]. We chose samples from the top 5%
and bottom 30% in order to have samples that were strongly
positive and strongly negative; we avoided samples on the
boundary between the two. We did not choose any samples
within 5 pixels of the boundary of the unlabeled images.
Here, we experimentally set the total number of sample points
in each image equal to 64. And, in each image, the ratio
of negative to positive samples was set to 1 : 4. Because the

images of STL-10 dataset are RGB images, the pixel intensity
value of all the collected samples in each image was expressed
as the column vector R64∗3. The pixel intensity value was
stored in row-major order, one channel at a time. That is, the
first 64 ∗ 64 values were the red channel, the next 64 ∗ 64
were green, and the last were blue. Therefore, a dataset 𝑋 ∈
R192×100000 was constructed, which was subsequently fed to
train DSAE.

At present, there is no perfect theoretical basis for selec-
tion of the structure of a DSAE model; we determined
the optimal network structure through the experiments. To
measure the classification performance with the STL-10
dataset, we first compared the classification accuracies with
different number of features and sparsity parameter values.
In order to study the number of features and the sensitivity of
the sparsity parameter, we varied their values over a wide
range. Figure 10 shows the respective performance with
different number of features and sparsity parameter values. To
evaluate the classification performance under different fea-
ture numbers, we considered feature representations of 400,
600, 800, 1000, and 1200 learned features. Figure 10(a) clearly
shows the effect of increasing the number of learned features.
The experimental analysis indicated that a feature size of 1000
produced a nice accuracy with this dataset. Based on this
analysis, we set the feature size as equal to 1000 to determine
the sparseness value. Figure 10(b) shows that there was a
wide range of sparseness values, and the best classification
performance was obtained at a sparsity value equal to 0.02.
Detailed settings of other hyperparameters were set as fol-
lows: InputZeroMaskedFraction = 0.5, lambda= 0.003, beta =
5, and convolutional kernel size = 8× 8× 3. In our experiment,
we used two different 3-level pyramids: (3 × 3, 2 × 2, and 1 ×
1) and (4 × 4, 2 × 2, and 1 × 1); classification result shows
that the former can achieve better accuracies. In the SVM
training, we intentionally did not use any data augmentation
(multiview/flip). 𝑙2 vector normalization was applied to the
features for SVM training.

http://cs.stanford.edu/~acoates/stl10
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Figure 8: Overall architecture of the proposed method with all the bells and whistles.
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Figure 9: Samples of the two image datasets used in our experiments. (a) STL-10. (b) CIFAR-10.
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Figure 10: The effect of the feature number and sparsity parameter value on the classification accuracy with the STL-10 dataset. (a) Feature
number varied over a wide range of different sizes to generate sparsity parameter. (b) Sparsity parameter value varied over a wide range.

Table 1: Comparison of average test accuracies (%) on all folds of
STL-10.

Method Accuracy
ICA (complete) [38] 48.0 ± 1.47%
Random weight baseline [38] 50.2% ± 1.08%𝐾-means (triangle) [30] 51.5% ± 1.73%
3 layer features from CDBN + SVM [39] 51.10%
Our method 51.8% ± 0.01%

Then, the performance of our method is compared
with the previous studies on this dataset. The classification
accuracy is listed in Table 1. Here, the state-of-the-art results
listed for STL-10 can be improved by augmenting the training
set with flip and other methods; we have not done so
here and also report state of the art only for methods not
doing so. Known from Table 1, we compared our single-layer
model with 𝐾-means clustering algorithm—a classic single-
layer network—and achieved high performance on image
classification reported in [30]. Moreover, contrary to 3 layer
features from CDBN + SVM [39], our shallow model shows
strength in simplicity and effectiveness.

6.2. Experiment and Results Analysis of CIFAR-10 Dataset.
We applied the full pipeline for CIFAR-10 which is a down-
sampled version of the STL-10 images (32 × 32 pixels). The
CIFAR-10 dataset consists of 50,000 training images and
10,000 test images in ten classes (i.e., airplane, bird, automo-
bile, deer, cat, frog, dog, ship, horse, and truck).These classes
are completely mutually exclusive. Figure 9(b) demonstrates
some examples of this dataset. Compared to STL-10 images,
CIFAR-10 has a lower resolution. Hence, we achieved the
total number of sample points in each image equal to 36 and
convolutional kernel size was set as 6 × 6. Besides, we used all
the other parameters the same as for STL-10, including
inputZeroMaskedFraction, lambda, and beta. We also first
compared the classification performance for varied feature
numbers and sparsity parameter values in the same way
as before. Figure 11 shows the classification accuracies at

Table 2: Comparison of accuracy (%) of the methods on CIFAR-10
with no data augmentation.

Methods Accuracy
L2 sparse filtering [40] 63.89%
3-way factored RBM (3 layers) [41] 65.30%
Mc RBM (3 layers) [42] 71.00%
Tiled CNN [43] 73.10%
Stochastic pooling ConvNet [44] 84.87%
Deep networks with stochastic depth [45] 95.09%
Our method 74.18%

different feature numbers and sparsity parameter values.
The results indicated that a feature size of 1200 produced
the best accuracy with this dataset. Based on this analysis,
for all experiments, we set the feature number equal to
1200 to generate sparsity parameter values. To evaluate the
classification performance with different sparsity parameter
values, we measured the overall classification accuracy for
values ranging from 0.01 to 0.2. The experimental analysis
showed that a sparsity parameter value of 0.02 produced
an excellent accuracy with CIFAR-10. Analogous to STL-10,
small values of the sparsity parameter and large feature sizes
resulted in a high accuracy. This is mainly because CIFAR-10
is a downsampled version of the STL-10 images. These two
dataset have similar complexity of the images.

We now compare our final test results to some of the best
published results on CIFAR-10. The comparison is provided
in Table 2. Our method has some accuracy degradation in
comparison to state-of-the-art supervised publication [45],
which has increased the considerable depth of residual
networks even beyond 1200 layers. The layers of 1200 are
an astronomical figure. Although the performance of our
fully unsupervised and extremely simple CDSAE shown here
faces challenge, there is much room to exploit the dimension
of network depth. Meanwhile, we still believe that our model
has merits of its own. In particular, it does not require
modern computers with state-of-the-art GPU or very large
clusters [62] to be trained due to its simple architecture.
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Figure 11:The effect of the feature number and sparsity parameter value on the classification accuracy with the CIFAR-10 dataset. (a) Feature
number varied over a wide range of different sizes to generate sparsity parameter. (b) Sparsity parameter value varied over a wide range.

Our simple network has the advantage that information can
flow efficiently forward and backward and therefore can be
trained effectively and within a reasonable amount of time.
Besides, it has a few hyperparameters to tune compared to
increasingly complex deep models, while deeper and deeper
CNN architectures have much harmful model complexity
and are very difficult to train in practice. Finally, our method
is a fully unsupervised feature learning method, which,
though currently underperforming, still remains an appeal-
ing paradigm. It canmake use of raw unlabeled images which
are readily available in virtually infinite amounts. Last but not
least, our model fully incorporates the theory about saliency
detection and center-prior in computer vision, which are not
included in the papers listed in Table 2. The performance is
much larger than that on the comparable STL-10 on account
of the small labeled datasets: 51.8% (±0.1%). This indicates
that the model proposed here is strong when we have large
labeled training sets as with CIFAR-10.

6.3. Analysis of Computational Complexity. To prove that
our method is of low computational cost than some
state-of-the-art methods, we focus on two representative
baselines——Stochastic pooling ConvNet [44] and Deep
networks with stochastic depth [45]. These two models
compared are the current state-of-the-art CNNs, which out-
perform our method on classification accuracy. We compare
the computational complexity between ours and them. The
computational complexity mainly includes two parts: (1)
complexity of optimizer and (2) complexity of convolutions.

Le et al. [63] introduce three off-the-shelf optimization
algorithms—Stochastic Gradient Descent (SGD), Limited
memory BFGS (L-BFGS), andConjugateGradient (CG).Our
proposed methods are implemented with L-BFGS, whereas,
for [44, 45], SGD is used for training. In [64], the authors
demonstrate that the computational cost of SGD is 𝑂(𝑛)
per iteration (where 𝑛 denotes the number of variables in
the system, and 𝑛 below has the same definition). They also
conclude that L-BFGS reduce the cost of BFGS to 𝑂(𝑚𝑛) per
iteration (where 𝑚 is the number of updates allowed in L-
BFGS). m is specified by the user [65]. In practice, we would
rarely wish to use 𝑚 greater than 15. The empirical value of

𝑚 is always taken as 5, 7, and 9 [58]. Compared to a very
large number of variables about 𝑛, 𝑚 is much smaller. The
computational cost of L-BFGS reduces to linear complexity𝑂(𝑛).

We now turn to an analysis of complexity of convolutions.
Most recently, He and Sun [66] propose the theoretical
complexity of all convolutional layers. It can be represented
as

𝑂( 𝐺∑
𝑔=1

𝑡𝑔−1 ⋅ ℎ2𝑔 ⋅ 𝑡𝑔 ⋅ 𝜅2𝑔) , (10)

where 𝑔 is the index of a convolutional layer and 𝐺 is the
number of convolutional layers. 𝑡𝑔 is the number of filters in
the 𝑔th layer, and 𝑡𝑔−1 is the number of input channels of the𝑔th layer. ℎ𝑔 is the spatial length of the filter. 𝜅𝑔 is the spatial
size of the output feature map. The fully connected layers
and pooling layers often take 5–10% computational time. As
a consequence, the cost of these layers is not involved in the
above formulation. In our comparison, we have referred to
this benchmark.

In Table 3, we have listed briefly the overall complexity of
the comparison algorithms (here we consider the complexity
of one iteration).

In the following, we will analyze the complexity of these
models in detail.

(1) Stochastic pooling ConvNet [44] has 3 convolutional
layers with 5 × 5 filters and 64 filter banks per layer. All of the
pooling layers summarize a 3 × 3 neighborhood and use a
stride of 2.The authors use a single fully connected layer with
soft-max outputs to produce the network’s class predictions.
We have proved that the computational cost of SGD is𝑂(𝑛) per iteration above. The number of variables 𝑛 is
evaluated as 1.3M params (this number includes the params
of convolutional layers and fully connected layer). Based on
description of themodel in [44], we have derived the formula𝑂(∑𝐺𝑔=1 𝑡𝑔−1 ⋅ ℎ2𝑔 ⋅ 𝑡𝑔 ⋅ 𝜅2𝑔) = 2.1119𝑒 + 09 (𝐺 = 3).

(2) Deep networks with stochastic depth [45] use the
architecture described byHe et al. [67] and increase the depth
of residual network to 1202 layers and still yield meaningful
improvements on CIFAR-10. The residual network with 1202
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Table 3: Optimizer utilized and the total complexity of the models.

Model Optimizer Complexity Remarks

ConvNet [44] SGD 𝑂(𝑛) + 𝑂( 𝐺∑
𝑔=1

𝑡𝑔−1 ⋅ ℎ2𝑔 ⋅ 𝑡𝑔 ⋅ 𝜅2𝑔) 𝐺 = 3; n is 1.3M

Stochastic depth [45] SGD 𝑂(𝑛) + 𝑂( 𝐺∑
𝑔=1

𝑡𝑔−1 ⋅ ℎ2𝑔 ⋅ 𝑡𝑔 ⋅ 𝜅2𝑔) 𝐺 = 1202; 𝑛 is 19.4M
Ours L-BFGS 𝑂(𝑛) + 𝑂(𝑡𝑔−1 ⋅ ℎ2𝑔 ⋅ 𝑡𝑔 ⋅ 𝜅2𝑔) 𝐺 = 1; 𝑛 is 0.013M

layers has 19.4M params [67]. However, because of lack of
relative and specific parameter settings, we have to evaluate
the complexity of all convolutional layers from the qualitative
perspective. The authors [45] further demonstrated that very
deep networks have much greater model complexity and are
very difficult to train in practice and require a lot of time.
Intuitively, we can infer that the complexity of this 1202-layer
network is much higher than our single-layer model.

(3) In our proposed method, the dimensions of the input
vector and feature are 108 and 1200, respectively. In addition,
we used 6 × 6 filters for convolution on CIFAR-10. L-BFGS
is used to train our network wherein 𝑚 ≪ 𝑛. The number
of variables 𝑛 here is calculated as 0.013M parameters. From
this it could be suggested that, with comparison of 𝑂(𝑛),
our complexity of optimizer is lower than [44, 45]. For con-
volutional complexity of our model, we have calculated the
corresponding computational cost as follows: 𝑂(∑𝐺𝑔=1 𝑡𝑔−1 ⋅ℎ2𝑔 ⋅ 𝑡𝑔 ⋅ 𝜅2𝑔) = 𝑂(𝑡𝑔−1 ⋅ ℎ2𝑔 ⋅ 𝑡𝑔 ⋅ 𝜅2𝑔) = 9.4478𝑒 + 07 (𝐺 = 1).

Based on the details analyzed above, it is indicated that
our method has low computational cost than the compared
state-of-the-art methods.

6.4. Analysis of CDAE’s Properties. In this section, we mainly
analyze the influence of techniques and structures designed
in the proposed algorithm.The key structures that contribute
to the success of our network are local contrast normaliza-
tion layer, SPP fused with center-bias prior, and 𝑙2 vector
normalization. We evaluate the impact of each of these three
improvements considered separately.

Impact of Local Contrast Normalization Layer. We start by
studying the influence of the local contrast normalization
layer, which is a single but important ingredient for good
accuracy on object recognition benchmarks [56]. We note
that local contrast normalization is key to obtaining good
results: without it, the accuracy is 50.78% (±0.6%) for STL-
10 and 72.22% for CIFAR-10. While adding it, the accuracy
can be improved around 1% and 2%, respectively.

Impact of Center-Bias Prior. People use a lot of prior knowl-
edge in interpretation of an image; prior knowledge can be
used for a specific task to improve its performance [68]. SPP
fusedwith center-bias prior is efficient in image classification:
it raises the accuracy of STL-10 from 49.18% to 51.8% and
CIFAR-10 from 74.01% to 74.18%. On the other hand, the
SPP fusedwith center-bias prior slightly raises the benchmark
for CIFAR-10: an intuitive interpretation is that images of

CIFAR-10 have lower resolution compared to STL-10. It is
advantageous in datasets with high resolution.

Impact of 𝑙2 Vector Normalization. We now evaluate the
influence of the 𝑙2 vector normalization of high-dimensional
vectors before using SVM training. 𝑙2 vector normalization
improves performance in these two datasets by 5% on STL-
10 (46.92% → 51.8%) and CIFAR-10 (68.31% → 74.18%).
We see that the 𝑙2 vector normalization is powerful, which
can improve classification results over no normalization
dramatically. Through experiments, we show that these three
complementary factors elevate the classification accuracy of
our CDSAE.They are all indispensable to our model as there
is usually a big drop in accuracy when removing these struc-
tures.

7. Conclusion and Future Work

In this paper, an arguably simple but effective image clas-
sification approach called CDSAE is proposed. It is an
improvement of the existing successful networks DAE, SAE,
and CNN. CDSAE efficiently integrates the following com-
ponents: combining DAE and SAE to construct DSAE,
embedding local contrast normalization layer following con-
volution operation, and, most importantly, building a spatial
pyramid pooling fusedwith center-bias prior in a natural way.
CDSAE has superiority in low computational cost and fewer
amounts of hyperparameters to tune, while only suffering
from reduced performance relative to some state-of-the-art
methods.

In experiment, we find that the following are particularly
imperative.

(1) Local Contrast Normalization. It shows greater effective-
ness in improving performance compared to not using it.

(2) Center-Bias Prior. It can effectively capture the center-
prior information of datasets, which is particularly appropri-
ate for object-centered images with high resolution.

(3) 𝑙2 Vector Normalization. 𝑙2 vector normalization is more
effective than nonnormalization.

In our future research, more investigations can be done
on the proposed framework. Firstly, we plan to extend this
approach to learn hierarchical features of images from low-
level to high-level feature representation. Secondly, center-
bias prior is more specifically suited to the classified object



14 Mathematical Problems in Engineering

which is in the center of an image. Other more general prior
knowledge about images can be further introduced into the
framework.
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