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Subpixel mapping (SPM) algorithms effectively estimate the spatial distribution of different land cover classes within mixed pixels.
This paper proposed a new subpixel mapping method based on image structural self-similarity learning. Image structure self-
similarity refers to similar structures within the same scale or different scales in image itself or its downsampled image, which
widely exists in remote sensing images. Based on the similarity of image block structure, the proposed method estimates higher
spatial distribution of coarse-resolution fraction images and realizes subpixel mapping. The experimental results show that the
proposed method is more accurate than existing fast subpixel mapping algorithms.

1. Introduction

Mixed pixels widely exist in remote sensing imageries. Sub-
pixel unmixing, a sort of soft classification technique, solves
the problem of mixed pixels.This method obtains the relative
abundance (i.e., the proportion or the component) of each
land cover class within each pixel and gets fraction images
of each class of hyperspectral remote sensing image. While
it is the defect of subpixel unmixing that this technique
can only obtain the proportion of each land cover class,
it is hard to specify spatial distribution of different land
cover classes within pixel, which means that many specific
spatial details are still missing. To address this issue, subpixel
mapping (SPM) proposed firstly by Atkinson et al. [1]
estimates the specific spatial distribution of different land
cover classes within mixed pixels. Subpixel mapping converts
soft classification into hard classification [2] on higher spatial
scale.This technique segments mixed pixels into subpixels by
appropriate scale in order to predict the class of each subpixel
and obtain specific land cover information on higher spatial
resolution.

At present, most existing SPM algorithms take spatial
correlation hypothesis as theoretical basis, which declares

that the closer the subpixels are, the more possibilities they
belong to the same class. This theory stands in most cases,
by which subpixel mapping can be carried out [3]. Similar to
pixel swapping, Hopfield neural network (HNN), linear opti-
mization, genetic algorithm, subpixel spatial attraction (SPA),
and interpolation-based [4], almost all the existing SRMalgo-
rithms adopt spatial correlation hypothesis. But some of them
consume too much time because large numbers of iterations
are required to meet the satisfactory results, such as genetic
algorithms, Hopfield neural network, and Markov random
field, while the others need prior spatial information which
is hard to be obtained (e.g., traditional BPNN and indicator
cokriging).

A series of interpolation-based fast algorithms [4] emerge
and show their advantages for they do not need prior spatial
structure information on classes and consume far less time
without too many parameters and iterations. However, most
of them fail to perfectly reflect the characteristics of complex
landscapes only relying on spatial correlation hypothesis,
mainly because not enough prior spatial structure informa-
tion is taken into consideration. Such fast SPMmethods trend
to reproduce the details defectively when dealing with divi-
sion, tiny point features, and narrow linear, strip features such
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Figure 1: Subpixel spatial distribution. (a) Fraction image. (b) Bad subpixel spatial distribution. (c) Better subpixel spatial distribution.

as rivers and highways. In view of this phenomenon, existing
fast SPM results differ significantly from the actual situation,
which limits the accuracy and performance of SPM and
imposes restrictions on the further development of fast SPM
algorithms.

Image super-resolution reconstruction (SR) is widely
applied to image processing field.This technique reconstructs
coarse-resolution image to fine-resolution image through
a series of signal processing methods. Not only coarse-
resolution images but also additional information should be
involved in the super-resolution reconstruction process in
order to make up the lack of detailed information. A super-
resolution reconstruction algorithm based on multiscale
similarity learning proposed by Pan et al. [5] improves the
accuracy of SR. Multiscale structure self-similarity refers to
similar structures which exist in the same image of same
or different scales. Structure self-similarity exists widely in
remote sensing images. For super-resolution reconstruction,
this algorithm takes advantage of the similarity of image
blocks of same scale as well as different scales within
the image itself as additional information to learn from.
Zhang et al. [6] introduced multiscale self-similarity into
subpixel mapping field. This algorithm takes multiscale self-
similarity redundancy as a new regularization term and
improves the accuracy. However, with too complex iter-
ations, this method consumes much time. Another new
algorithm, self-similarity pixel swapping (SSPS) proposed
by Su [7], combines self-similarity with spatial continuity
and does well in terms of accuracy. Inheriting from pixel
swapping, this time-consuming algorithm also needsmassive
iterations.

Inspired by those reasons above, this paper proposes
a novel algorithm, which directly applies self-similarity to
fraction images. Learning from the corresponding rela-
tionship between fraction image blocks with similar struc-
ture of different scales by BPNN, this algorithm converts
coarse-resolution fraction images into fine-resolution frac-
tion images without too much time-consuming iterative pro-
cess and estimates the specific spatial distribution on higher
resolution scale. Structural self-similarity of fraction image
block provides additional spatial information which is easy
to obtain, because the prior spatial information comes from
coarse-resolution fraction image itself and its downsampled
image.

2. BPNN SPM Algorithm Based on Structure
Self-Similarity Learning

2.1. Spatial Correlation Hypothesis. Most existing subpixel
mapping algorithm predicts the specific spatial distribution
of each land cover class in mixed pixels according to the
theory of spatial correlation hypothesis [8]. Figure 1 shows
a simple schematic diagram of the spatial distribution of
simulated pixels, which is assumed to contain two kinds
of land classes connoted by black and white, respectively.
The scale factor is set as 5, 𝑆 = 5. Figures 1(b) and 1(c)
represent two different space distribution conditions and
Figure 1(b) represents random subpixel spatial distribution,
while Figure 1(c) is the space distribution with higher
spatial correlation. Clear conclusion can be drawn through
observation that the distribution of Figure 1(c) is relatively
reasonable.

In a sense, spatial correlation hypothesis decreases the
uncertainty of SPM. When facing division, tiny point fea-
tures, and narrow linear, strip features, this method exposes
its drawback.

2.2. Self-Similarity Learning of Image. Glasner et al. [9] pro-
posed that similar areas (i.e., similar block) of same scale and
different scales generally exist within the sameneighborhood,
between different neighborhoods nomatter in same image or
different images, which is the specific performance of image
multiscale structure self-similarity. Structure self-similarity
occurs so often in remote sensing imageries. They usually
exist widespread in the form of roads, houses, and natural
landscape significantly or latently, which provides useful
additional information [10] for finer spatial resolution. As a
result, image structure self-similarity learning can be applied
to SPM as prior spatial information.

The principle of the SR on similar blocks with the
same scale is shown in Figure 2(a). In Figure 2(b), fine-
resolution image is represented by HR, while LR represents
the corresponding coarse-resolution image [11]. The size of
HR image is 𝑆2 times the size of the LR image. Ω1HR and
Ω2HR are similar blocks of different scales within HR, and the
size of Ω2HR is 𝑆2 times the size of Ω1HR. The corresponding
blocks are Ω1LR and Ω2LR, respectively, which are a pair of
similar blocks of different scale. Due to scale factor of HR
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Figure 2: Schematic diagram of the similarity principle of block diagram of the same and different scale.

and LR completely the same as that ofΩ2HR andΩ1HR,Ω2LR
provides precise additional information forΩ1LR reconstruc-
tion in LR. A clear conclusion can be drawn that small size
image blocks tend to contain spatial patterns information,
which recur themselves in higher resolution image through
the relationship between fine-resolution image and coarse-
resolution image [12].

Therefore, it is the key point of image self-similarity
learning algorithm to conduct block processing on image
itself as well as its degradation coarse-resolution image and
seek the association or corresponding relationship of block
and its downsampled block.

Self-similarity has already been applied to SPM by [6].
In this paper, self-similarity is used as regularization term to
improve accuracy with massive iterations, which consumes
too much time and limit SPM efficiency. Besides, [7] com-
bines self-similarity with pixel swapping. This article has
the same shortcomings as it contains iterative process and
consumes much time.

Here is the specific process of the learning methods to
seek this corresponding relationship: select training image
set, and then degenerate the training set to get coarse-
resolution image set and conduct block process. Obtain the
feature of the image block to be reconstructed as well as the
feature of its downsampled image block and express them
in the form of vector. A dictionary entry is composed of
two corresponding vectors. The feature of coarse-resolution
image block functions as search index and the feature of
fine-resolution block works as dictionary entry content to be
searched. Once the relationship is obtained, it can be used on
image to estimate itself on higher resolution.

2.3. SPM Based on BPNN. SPM based on BPNN should
take coarse-resolution fraction image blocks and their
downsampled fraction image blocks to set up training sam-
ple. Downsample the coarse-resolution fraction images and
“super-coarse-resolution fraction images” can be obtained,
on which a 𝐶×𝐶 local window is used to operate to describe
the super-coarse-resolution fraction block. The vector com-
posed of soft attribution values within a 𝐶 × 𝐶 block is taken

as input of training sample and neurons of input layer amount
to 𝐶2 correspondingly. Then the vector which consists of
the probability values of this kind of class within block
(containing 𝐶 × 𝑆 × 𝐶 × 𝑆 subpixels) is set as output, so the
output layer is composed of 𝐶2 ∙ 𝑆2 neurons.

Afterwards, the train sample is used to train the BPNN
to obtain the link weights between neurons of different net-
work layers. As a result, the nonlinear mapping relationship
between input and output is learned. During the progress of
network training, link weights will be gradually modified by
feedback, which lets the output of the network approaches the
expected output.

2.4. SPM Method Based on Block Structure Self-Similarity
Learning. Image self-similarity learning can be applied to
subpixel mapping, for this algorithm can solve the shortcom-
ings of existing SPMmethod, such as low efficiency on linear,
strip object as well as complex landscapes mapping.

The specific method of subpixel mapping based on self-
similar learning is as follows.

2.4.1. Downsampled Coarse Fraction Images. Suppose origi-
nal coarse-resolution fraction images 𝐿𝐹𝑘 (𝑘 = 1, 2, . . . , 𝐾);
K refers to the number of land cover classes. Let zoom factor
be 𝑆. And then conduct downsampling on all the coarse
fraction images 𝐿𝐹𝑘 to obtain “super-coarse-resolution frac-
tion images,” 𝐿𝐿𝐹𝑘 according to 𝑆. The size of 𝐿𝐹𝑘 is 𝑆2
times the size of 𝐿𝐿𝐹𝑘. This algorithm aims to estimate
𝐿𝐹𝑘’s spatial distribution on finer spatial resolution. The
relationship between 𝐿𝐹𝑘 and 𝐿𝐿𝐹𝑘 should be learned to
estimate the spatial distribution on finer spatial scale.

2.4.2. Build Dictionary. Divide each 𝐿𝐿𝐹𝑘 into 𝑁 blocks
image by image. Each image block contains 𝐶 × 𝐶 pixels. For
each “super-coarse-resolution block” 𝑥𝑘𝑖 (𝑖 = 1, 2, 3, . . . , 𝑁),
corresponding coarse-resolution block, 𝑦𝑘𝑖 (each containing
𝐶 × 𝑆 × 𝐶 × 𝑆 pixels), can be found at the same location in
the corresponding coarse-resolution fraction image, the size
of which is 𝑆2 times the size of 𝑥𝑘𝑖 . Both 𝑥

𝑘
𝑖 and 𝑦

𝑘
𝑖 are vectors

composed of the soft attribute values of all the pixels of this



4 Mathematical Problems in Engineering

class in corresponding block. And calculate𝐺(𝑥𝑖), the average
soft attribute value of 𝑥𝑘𝑖 .

Set dictionary entry, {𝐺(𝑥𝑘𝑖 ), 𝑥
𝑘
𝑖 , 𝑦
𝑘
𝑖 }. 𝐺(𝑥

𝑘
𝑖 ) and 𝑥

𝑘
𝑖 func-

tion as the index of dictionary entries. 𝐺(𝑥𝑘𝑖 ) is set as the first
index, while 𝑥𝑘𝑖 is the second index, and 𝑦𝑘𝑖 functions as the
contents of the dictionary items.

2.4.3. Match Similar Blocks. Set two judgment coefficients, 𝜀
and 𝜀.

𝜀 = 󵄩󵄩󵄩󵄩󵄩𝐺 (𝑥
𝑘
𝑠 ) − 𝐺 (𝑥

𝑘
𝑖 )
󵄩󵄩󵄩󵄩󵄩
2
,

𝜀 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1
𝑐 × 𝑐

𝑐2

∑
𝑗=1

𝑥𝑘𝑠 (𝑗) − 𝑥
𝑘
𝑖 (𝑗)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

.
(1)

Make 𝑥𝑘𝑠 (𝑠 = 1, 2, 3, . . . , 𝑁), image blocks to be trained,
traverse all the dictionary entries in order and calculate 𝜀,
and keep 𝑧1 items which makes 𝜀 < 𝑇𝑠. Moreover, let 𝑥𝑘𝑠
traverse the second index of 𝑧1 items and calculate 𝜀. Keep
𝑧2 items which makes 𝜀 < 𝑇𝑠, search the corresponding 𝑦𝑘𝑖 ,
and conduct weighted sum on 𝑦𝑘𝑖 to get 𝑦𝑘𝑖 to estimate the
fine-resolution block corresponding to low-resolution block,
which matches similar image blocks.

In addition, 𝑇𝑠 and 𝑇𝑠 are threshold values. These two
threshold values directly influence the accuracy and con-
suming time of SPM. However, this paper tries to validate
proposed method. So these two threshold values are not
under discussion. Both values are set as 0.15, since either
accuracy or consuming time is taken into consideration.

2.4.4. Train BP Network. The vector is composed of soft
attribution values within a 𝐶 × 𝐶 block, 𝑥𝑘𝑖 is taken as input
of training sample, and neurons of input layer amount to 𝐶2

correspondingly. Then the vector which consists of 𝑦𝑘𝑖 is set
as output, so the output layer has 𝐶2 ∙ 𝑆2 neurons.

Then BPNN should be trained to obtain the link weights
between neurons of different network layers. As a result, the
nonlinear mapping relationship between input and output
is learned. During the progress of network training, link
weights will be gradually changed by feedback to approach
expected output.

2.4.5. Estimate Based on BPNN. The trained network can be
used on coarse-resolution fraction block to estimate its finer
resolution faction block. The vector of soft attribution values
of each land class of coarse-resolution block to be mapped
should be extracted as input, and the vector of estimated
soft attribution values of this land cover class within fine-
resolution block will be obtained as output.

2.4.6. Stitch Fraction Blocks. Stitch all estimated fine-
resolution block sequentially to get fine-resolution fraction
images.

2.4.7. Class Allocation. Allocate classes in UOC [13] for each
subpixel in turn.

3. Experiments and Analysis

To validate the proposed SPM method, experiments on two
images were carried out. Traditional BPNN, interpolation-
based fast algorithm with MSIs, and proposed method were
tested. To fully assess the method, fine spatial resolution
images were degraded to simulate coarse image. PCC (per-
cent correctly classified) and Kappa coefficient were intro-
duced into this paper to evaluate the accuracy. Besides, two
indicators PCC󸀠 and Kappa󸀠 [14] are introduced to evaluate
mixed pixels mapping results. The scale factor 𝑆 had been
fully discussed in other paperswhere it usually varies between
2 and 5. In this paper, the scale factor is set as 3. No
more discussion about 𝑆 was included in this paper, while
the influence of the size of blocks towards accuracy was
discussed.

3.1. Test Image 1. An image acquired by ROSIS works as the
first set of experimental data. There are 4 kinds of land cover
classes in this image. Firstly, downsampling is conducted
on the original image to obtain fraction images of different
classes. The size of original image is 900 × 900 pixels, and the
scale factor is set as 3, 𝑆 = 3, and the block size is set as 2 × 2.
So the size of fraction image is 270 × 270 pixels, which means
that each pixel of coarse image corresponds to 3 × 3 pixels of
original image.The flowchart of SPM based on self-similarity
learning is shown in Figure 3.

Furthermore, downsampling is conducted on the fraction
images to obtain lower coarse fraction images, whose sizes
are 90 × 90. Traditional BP method, interpolation-based fast
algorithm with MSIs, and the BSSL method are carried out
for SPM experiments. The results are shown in Figures 4(c)
and 4(d).

3.2. Test Image 2. Select an aerial image as the experimental
data for test 2; this image still contains 4 kinds of land cover
classes: road, water, corn, and vegetables. The image size is
540 × 720. Suppose the scale factor as 3, 𝑆 = 3, and set
block size as 2 × 2. After being treated in the same manner,
test image is downsampled to obtain “super-coarse-fraction
images.” Afterwards, interpolation-based fast algorithm with
MSIs, traditional BPNN method, and the proposed method
are, respectively, conducted on coarse fraction image blocks
to test SPM, and the results obtained are shown in Figures
5(b), 5(c), and 5(d).

3.3. Influence of Block Size on SPM. Discussion about the
influence of block size on accuracy was conducted on test
image 2. Three block sizes were tested on proposed method
(scale factor is set as 3). And the results are shown in Tables
1 and 2. As the size increases, the PCC shows significant
decline. The bigger the block size is, the more complex
structure information it contains, and thus, the harder SPM
works. It consumes more time with smaller block size.
However, the influence on time is not as obvious and critical
as that on accuracy. To pursue better accuracy, sacrifice of
such little time is acceptable.
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Figure 3: Flowchart of SPM based on self-similarity learning.
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Figure 4: Mapping result comparison of image 1. (a) Reference land cover map. (b) Result of traditional BPNN. (c) Result of interpolated
SPM with MSIs. (d) Result of proposed method.
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(a) (b)
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Figure 5: Mapping result comparison of image 2. (a) Reference land cover map. (b) Result of traditional BPNN. (c) Result of interpolated
SPM with MSIs. (d) Result of BSSL method.

Table 1: Different accuracy with different sizes of image block.

Size of image block
2 × 2 3 × 3 4 × 4 5 × 5 6 × 6

PCC index 92.537% 89.572% 83.629% 79.180% 74.532%

Table 2: Different computation times with different sizes of image
block.

Size of image block
2 × 2 3 × 3 4 × 4 5 × 5 6 × 6

Computation time 311.59 307.43 298.85 275.09 236.11

As a result, small size block should be utilized for better
accuracy when the size of image to be estimated is relatively
small.

3.4. Experiment Results Contrast. From Figures 4 and 5, a
conclusion can be drawn visually where BSSL method has

better spatial distribution. In the mapping results of BPNN
and interpolation-based method, the size and shape of land
cover like elongated river become deformed seriously, and
serious distortion exists in most isolated and scattered points
like land cover. There are obvious burrs at the edge of
land cover. The results of BSSL overcome the defects of the
traditional methods to a large extent. Significant promotion
can be found for slender river restoration, and isolated,
scattered point feature mapping results have been obviously
improved comparedwith traditionalmethods.Thus, the SPM
that this paper proposed utilizes the structure features of the
land cover relatively and remains more in line with the actual
situation.

For further comparison of the experimental results,
quantitative analysis should be carried out by adopting three
accuracy indexes including confusion matrix, PCC (percent
correctly classified), and Kappa coefficient to evaluate the
accuracy of the results. In addition, two new indicators PCC󸀠
and Kappa󸀠 are introduced. These two indicators conduct
calculations only on mixed pixels, which exclude the impact
of nonmixed pixels to evaluate SPM better. Pixels of the
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Table 3: Accuracy of test image 1.

PCC Kappa PCC󸀠 Kappa󸀠

Traditional BP
mapping 87.655% 0.8426 67.740% 0.5644

Interpolated
method with
MSIs

91.114% 0.8752 71.845% 0.6325

SPM based on
BSSL 93.383% 0.8982 75.745% 0.6628

Table 4: Accuracy of test image 2.

PCC Kappa PCC󸀠 Kappa󸀠

Traditional
BP mapping 85.333% 0.8327 71.528% 0.5547

Interpolated
method with
MSIs

89.440% 0.8747 75.630% 0.6271

SPM based
on BSSL 92.537% 0.9091 78.559% 0.6643

Table 5: Computation times of different methods.

BPNN MSI BSSL
Computation time(s) 264.03 148.28 216.45

result under evaluation and reference image are compared
pixel by pixel, and it comes to the final result after statistical
calculation.

Tables 3 and 4 show the comparison of accuracy evalua-
tion coefficients of the twomethods in two sets of test images.
As shown above, the PCC index of this method in image 1 has
an increase of 2.269% and 5.728% and the kappa coefficient
is, respectively, high being 0.0230 and 0.0556, compared with
interpolation-basedmethodwithMSIs and traditional BPNN
method, respectively. PPC󸀠 index rises to 3.9% and 8.005%,
respectively, and kappa󸀠 coefficient increases to 0.0303 and
0.0976. And the PCC index of this method in image 2 has
an increase of 3.097% and 7.207% and the kappa coefficient
is, respectively, high being 0.0344 and 0.0764, compared with
MSI and traditional BPNN. PPC󸀠 index rises to 2.929% and
7.031% respectively and kappa󸀠 increases to 0.0372 and 0.1096.

In addition, computation time comparison is listed in
Table 5.The proposedmethod consumesmoderate computa-
tion timewith better accuracy comparedwith fast algorithms.

In general, each accuracy index of BSSL algorithm has
been improved in various degrees in comparison with tra-
ditional algorithms. Computation time of proposed method
is moderate. It can be concluded that the proposed method
takes the structural information of the image into account
and is superior to traditional fast algorithms on accuracy.

4. Conclusion

Owing to the shortcoming of existing fast SPM algorithms
based on spatial correlation hypothesis that they are not able
to reconstruct such specific spatial distribution as narrow

linear, strip and division, tiny point land cover features
perfectly, the results of existing SPM tend to meet the
technical requirements badly.

The SPM based on BSSL that this paper proposed takes
land cover structure features into account and improves
the accuracy of SPM. As experimental results show, this
method lives up to practical distribution of land cover and
promotes the effect and accuracy of SPM and consumes
moderate computation time, compared with existing fast
SPMalgorithms.The size of image block is of vital importance
in this method. In most cases, 2 × 2 or 3 × 3 small image
block provides relatively good SPM result considering both
time and accuracy.

The proposed method shows its potential in real-time
applications, while the computation time can be further
shortened in future research.
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