Impact of nanofluid natural convection due to magnetic field in existence of melting heat transfer is simulated using CVFEM in this research. KKL model is taken into account to obtain properties of CuO–H₂O nanofluid. Roles of melting parameter (δ), CuO–H₂O volume fraction (φ), Hartmann number (Ha), and Rayleigh (Ra) number are depicted in outputs. Results depict that temperature gradient improves with rise of Rayleigh number and melting parameter. Nusselt number detracts with rise of Ha. At the end, a comparison as a limiting case of the considered problem with the existing studies is made and found in good agreement.

1. Introduction

Sheremet et al. [9] illustrated the free convective flow of ferrofluid in a rotating enclosure. Wavy duct in existence of Brownian forces has been examined by Shehzad et al. [10]. Sheikholeslami et al. [11] illustrated different uses of nanotechnology in their article paper. Abbas et al. [12] demonstrated the nanofluid flow through a horizontal Riga plate. Chamkha and Rashad [13] reported the nanoparticle migration on porous cone. Ellahi et al. [14] analyzed particle shape effects on Marangoni convection boundary layer flow of a nanofluid. They considered the Lorentz forces impact in governing equations. Malvandi et al. [15] reported nanofluid flow inside a channel in existence of Lorentz forces. Garoosi et al. [16] investigated performance of heat exchanger via nanofluid. They indicated that optimum volume fraction of nanoparticle exists to obtain maximum Nusselt number. Mesoscopic method has been utilized by Sheikholeslami and Ellahi [17] for a three-dimensional problem. This research intends to present the impact of melting heat transfer on free convection of ferrofluid in the presence of Lorentz forces. CVFEM is selected to find the outputs. Roles of melting parameter, CuO–water volume fraction, and Hartmann and Rayleigh numbers are presented.

2. Problem Statement

Figure 1 depicts the geometry, boundary condition, and sample element. The inner wall is hot wall (T = T₀) and...
the outer one is melting surface \((T = T_m) \). Other walls are adiabatic. Horizontal magnetic field has been applied. The enclosure is field with nanofluid.

3. Governing Equation and Simulation

3.1. Governing Formulation.

2D steady convective nanofluid flow is considered in existence of constant magnetic field. The fluid flow is laminar and incompressible. The flow is steady and Newtonian. The viscous dissipation is negligible in this study. The effects of Brownian force and thermophoretic force are not taken into condition. The flow also follows the Boussinesq assumption. The prevailing equations under these constraints can be written as [20]

\[
\begin{align*}
\frac{\partial v}{\partial y} + \frac{\partial u}{\partial x} &= 0, \\
\rho_{nf} \left(\frac{\partial u}{\partial y} + u \frac{\partial u}{\partial x} \right) &= -\frac{\partial P}{\partial x} + B_y \sigma_{nf} v \frac{\partial B_x}{\partial x}, \\
\rho_{nf} \left(\frac{\partial v}{\partial x} + u \frac{\partial v}{\partial x} \right) &= -\frac{\partial P}{\partial y} + B_x \sigma_{nf} v \frac{\partial B_y}{\partial x}, \\
B_y &= B_0 \cos \lambda, \\
B_x &= B_0 \sin \lambda, \\
\left(\rho C_p \right)_{nf} \left(\frac{\partial T}{\partial y} + u \frac{\partial T}{\partial x} \right) &= k_{nf} \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right), \\
\end{align*}
\]

\(\rho_{nf}, \rho_B, (\rho \beta)_{nf}, \) and \(\sigma_{nf} \) are calculated as [17, 18]

\[
\begin{align*}
(\rho C_p)_{nf} &= \phi (\rho C_p)_s + (1 - \phi) (\rho C_p)_f, \\
\rho_{nf} &= \rho_f (1 - \phi) + \phi \rho_s, \\
(\rho \beta)_{nf} &= \phi (\rho \beta)_s + (1 - \phi) (\rho \beta)_f, \\
\sigma_{nf} &= \sigma_f \left(\frac{1 + (2 + \sigma_s/\sigma_f) - \phi (1 + \sigma_s/\sigma_f) - \phi - 1 + \sigma_s/\sigma_f}{3 \phi (-1 + \sigma_s/\sigma_f)} \right)^{-1} + 1. \\
\end{align*}
\]

\(k_{nf}, \mu_{nf} \) are calculated via KKL model [19]:

\[
\begin{align*}
k_{nf} &= 1 + \frac{3 (k_p/k_f - 1) \phi}{(k_p/k_f - 2) - (k_p/k_f - 1) \phi} + 5 \\
&\times 10^4 g' (\phi, d_p, T) \phi \rho_f c_{p,f} \sqrt{\frac{k_p T}{d \rho_p}}, \\
R_f &= 4 \times 10^{-8} \text{km}^2/\text{W}, \\
R_p &= -d_p \left(1/k_p - 1/k_{p,eff} \right), \\
g' (\phi, d_p, T) &= \ln(T) \left(a_1 + a_2 \ln(\phi) + a_3 \ln(d_p) + a_4 \ln(\phi) + a_5 \ln(d_p) \right) + a_6 \ln(\phi) + a_7 \ln(d_p) + a_8 \ln(\phi) + a_9 \ln(d_p), \\
\mu_{nf} &= \frac{\mu_f}{1 - \phi} + \frac{k_{Brownian}}{k_f} \times \frac{\mu_f}{Pr}. \\
\end{align*}
\]

Properties and needed parameters are provided in Tables 1 and 2 [19].
Table 1: Coefficient values of CuO–H₂O [19].

<table>
<thead>
<tr>
<th>Coefficient values</th>
<th>CuO–water</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>-26.5933108</td>
</tr>
<tr>
<td>a₂</td>
<td>-0.403818333</td>
</tr>
<tr>
<td>a₃</td>
<td>-33.3516805</td>
</tr>
<tr>
<td>a₄</td>
<td>-1.915825591</td>
</tr>
<tr>
<td>a₅</td>
<td>6.421858E-02</td>
</tr>
<tr>
<td>a₆</td>
<td>48.40336955</td>
</tr>
<tr>
<td>a₇</td>
<td>-9.787756683</td>
</tr>
<tr>
<td>a₈</td>
<td>190.245610009</td>
</tr>
<tr>
<td>a₉</td>
<td>10.9285386565</td>
</tr>
<tr>
<td>a₁₀</td>
<td>-0.72009983664</td>
</tr>
</tbody>
</table>

Vorticity and stream function should be used to eliminate pressure source terms:
\[
\omega + \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} = 0, \quad \frac{\partial \psi}{\partial x} = -v, \quad \frac{\partial \psi}{\partial y} = u. \tag{4}
\]

Dimensionless quantities are introduced as follows:
\[
P = \frac{p}{\rho_{nf}(\alpha_{nf}/L)^2},
\]
\[
U = \frac{uL}{\alpha_{nf}},
\]
\[
V = \frac{vL}{\alpha_{nf}},
\]
\[
\theta = \frac{T - T_m}{T_h - T_m},
\]
\[
(X, Y) = \left(\frac{x}{L}, \frac{y}{L}\right),
\]
\[
\Psi = \frac{\psi}{\alpha_{nf}},
\]
\[
\Omega = \frac{\omega L^2}{\alpha_{nf}}. \tag{5}
\]

The final formulae are
\[
\Omega + \frac{\partial^2 \Psi}{\partial Y^2} + \frac{\partial^2 \Psi}{\partial X^2} = 0,
\]
\[
\frac{\partial \Omega}{\partial X} U + \frac{\partial \Omega}{\partial Y} V = \left(\frac{\partial^2 \Omega}{\partial X^2} + \frac{\partial^2 \Omega}{\partial Y^2}\right), \tag{6}
\]

Boundary conditions are
\[
\frac{\partial \theta}{\partial n} = 0.0 \quad \text{on other walls},
\]
\[
\theta = 0 \quad \text{on outer wall},
\]
\[
\theta = 1.0 \quad \text{on inner wall},
\]
\[
\Psi = 0.0 \quad \text{on all walls except melting surface}
\]
and in melting surface, we have
\[
\frac{\partial \theta}{\partial n} = \frac{A_2}{A_1} \frac{1}{\delta} \left(L + c_s (T_m - T_0)\right) \frac{\partial \Psi}{\partial n}, \tag{8}
\]

where dimensionless and constants parameters are illustrated as
\[
Pr = \frac{u_f}{\alpha_f},
\]
\[
Ra = \frac{g \beta_f \Delta TL^3}{(\nu_f \alpha_f)^3},
\]
\[
Ha = \frac{LB_0 \sqrt{\sigma_f \mu_f}}{\mu_f},
\]
\[
\delta = \frac{(\rho C_p)_f}{\rho_f} \frac{(T_h - T_m)}{1 + c_s (T_m - T_0)},
\]
\[
A_1 = \frac{\rho_{nf}}{\rho_f},
\]
\[
A_2 = \frac{h_{nf}}{h_f},
\]
\[
A_3 = \frac{(\rho \beta)_nf}{(\rho \beta)_f},
\]
\[
A_4 = \frac{k_{nf}}{k_f},
\]
\[
A_5 = \frac{\sigma_{nf}}{\sigma_f},
\]
\[
A_6 = \frac{\mu_{nf}}{\mu_f},
\]
\[
A_7 = \frac{(\rho \beta)_nf}{(\rho \beta)_f}. \tag{9}
\]

It should be mentioned that \(\delta\) is related to Stefan numbers.

Local and average Nusselt over the cold wall can be calculated as follows:
\[
\text{Nu}_{\text{loc}} = \left(\frac{k_{nf}}{k_f}\right) \frac{\partial \theta}{\partial r}, \tag{10}
\]
\[
\text{Nu}_{\text{ave}} = \frac{1}{0.5\pi} \int_0^{0.5\pi} \text{Nu}_{\text{loc}} d\xi.
\]
Table 2: Properties of H₂O and CuO [19].

<table>
<thead>
<tr>
<th></th>
<th>(\rho) (kg/m³)</th>
<th>(C_p) (J/kgK)</th>
<th>(k) (W/mK)</th>
<th>(\beta \times 10^5) (K⁻¹)</th>
<th>(d_p) (nm)</th>
<th>(\sigma) (Ω·m⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>997.1</td>
<td>4179</td>
<td>0.613</td>
<td>21</td>
<td>—</td>
<td>0.05</td>
</tr>
<tr>
<td>CuO</td>
<td>6500</td>
<td>540</td>
<td>18</td>
<td>29</td>
<td>45</td>
<td>(10^{-10})</td>
</tr>
</tbody>
</table>

Table 3: Mesh independency analysis when \(Ra = 10000 \), \(\delta = 0.2 \), \(Ha = 40 \), and \(\phi = 0.04 \).

<table>
<thead>
<tr>
<th>Mesh size</th>
<th>(Nu_{ave})</th>
</tr>
</thead>
<tbody>
<tr>
<td>51 \times 151</td>
<td>0.890241</td>
</tr>
<tr>
<td>61 \times 181</td>
<td>0.895531</td>
</tr>
<tr>
<td>71 \times 211</td>
<td>0.907145</td>
</tr>
<tr>
<td>81 \times 241</td>
<td>0.908743</td>
</tr>
<tr>
<td>91 \times 271</td>
<td>0.909166</td>
</tr>
</tbody>
</table>

Table 4: \(Nu_{ave} \) for various \(Gr \) and \(Ha \) at \(Pr = 0.733 \).

<table>
<thead>
<tr>
<th>Ha</th>
<th>(Gr = 2 \times 10^4)</th>
<th>Present work</th>
<th>Rudraiah et al. [20]</th>
<th>(Gr = 2 \times 10^5)</th>
<th>Present work</th>
<th>Rudraiah et al. [20]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.5665</td>
<td>2.5188</td>
<td></td>
<td>5.093205</td>
<td>4.9198</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.26626</td>
<td>2.2234</td>
<td></td>
<td>4.9047</td>
<td>4.8053</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>1.09954</td>
<td>1.0856</td>
<td></td>
<td>2.67911</td>
<td>2.8442</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.02218</td>
<td>1.011</td>
<td></td>
<td>1.46048</td>
<td>1.4317</td>
<td></td>
</tr>
</tbody>
</table>

3.2. Numerical Procedure. CVFEM uses both benefits of two common CFD methods. This method uses triangular element (see Figure 1(b)). Upwind approach is utilized for advection term. Gauss-Seidel approach is applied to solve the algebraic equations. Further notes can be found in [21].

4. Grid Independence and Validation

Outputs should not rely on mesh size. Therefore, several grids should be tested. For example, as shown in Table 3, a grid size of 71 \times 211 can be selected. The correctness of CVFEM code for nanofluid natural convective heat transfer is demonstrated in Figure 2 ([18]). This CVFEM code has good accuracy for magnetohydrodynamic flow as depicted in Table 4 [20].

5. Results and Discussion

Nanofluid flow in a half sinusoidal annulus due to magnetic field in presence of melting surface is examined. \(\mu_{nf} \), \(k_{nf} \) of CuO–water nanofluid are estimated by means of KKL model. Graphs and tables are depicted for different amounts of CuO–H₂O volume fraction (\(\phi = 0 \) to 0.04), melting parameter (\(\delta = 0 \) to 0.2), Rayleigh number (\(Ra = 500 \) to 5000), and Hartmann number (\(Ha = 0 \) to 40).

Impact of adding CuO nanoparticles in water on velocity contours is depicted in Figure 3. Temperature gradient decreases with augment of \(\phi \). \(|\Psi_{\text{max}}| \) augments with adding nanoparticles because of increment in the solid movements. In presence of melting heat transfer and magnetic field, effect of adding nanoparticles on isotherms becomes negligible.

Figures 4 and 5 depict the impact of Rayleigh and Hartmann numbers in absence of melting heat transfer. There is only one eddy in streamline. In low Rayleigh number, conduction mechanism is dominant. As Ra increases, the distortion of isotherms is enhanced close to the hot wall. Adding magnetic field makes isotherms become parallel. In presence of melting heat transfer the primary eddy diminishes and increasing Lorentz forces generates three layers for streamline. Increasing melting parameter augments the bottom eddy.
Mathematical Problems in Engineering

Figure 3: Impact of adding CuO in water on streamlines and isotherms (nanofluid ($\phi = 0.04$) (—) and pure fluid ($\phi = 0$) (- - -)) when $Ra = 5000$ and $\delta = 0.2$.

Figure 6 illustrates the impact of δ, Ra, and Ha on Nu_{ave}. The formula for Nu_{ave} corresponding to active parameters is

$$Nu_{ave} = 0.799 + 0.305\delta + 0.19Ra^* - 0.16Ha^* + 0.003Ra^*\delta - 0.0039\delta Ha^* - 0.028Ra^*Ha^* + 0.003Ra^*Ha^* - 0.058\delta^2 - 0.012Ra^*^2 + 0.039Ha^*^2,$$

where $Ha^* = 0.1Ha$ and $Ra^* = 0.001Ra$. As melting parameter augments, temperature gradient is enhanced and in turn Nusselt number is enhanced. Increasing buoyancy forces leads the thermal boundary layer thickness to reduce. So Nusselt number increases with enhancement of Ra. As Hartmann number augments, isotherms become parallel. Therefore Nusselt number has opposite relationship with Ha.

6. Conclusions

Nanofluid free convection due to Lorentz force in existence of melting surface is reported. Combination of FEM and FVM is utilized to solve the PDEs. KKL model is considered for nanofluid. Roles of Hartmann number, CuO–water volume fraction, Rayleigh number, and melting parameter are presented. Outputs depict that temperature gradient improves with augment of melting parameter and Rayleigh number. Adding magnetic field makes the temperature gradient reduce due to domination of conduction mechanism in high Hartmann number.

Nomenclature

B: Magnetic field
T: Fluid temperature
Nu: Nusselt number
Figure 4: Isotherms and streamlines for various Ha, Ra when $\delta = 0$ and $\phi = 0.04$.
Figure 5: Isotherms and streamlines for various Ha, Ra when $\delta = 0.2$ and $\phi = 0.04$.
Figure 6: Impacts of δ, Ha, and Ra on Nu_{ave}.
Ra: Rayleigh number
g: Gravitational acceleration vector
Ha: Hartmann number.

Greek Symbols
Θ: Dimensionless temperature
α: Thermal diffusivity
Ω and Ψ: Dimensionless vorticity and stream function
δ: Melting parameter
β: Thermal expansion coefficient
σ: Electrical conductivity
μ: Dynamic viscosity.

Subscripts
f: Base fluid
loc: Local
nf: Nanofluid.

Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.

References